INSTRUCTIONS TO CANDIDATES:

Size: px
Start display at page:

Download "INSTRUCTIONS TO CANDIDATES:"

Transcription

1 NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This eamination paper contains SIX (6) questions and comprises TEN (0) pages.. Answer an FOR (4) questions. 3. All questions carr equal marks. 4. This is an open-book eamination. You ma open an number of books and notes.

2 Pg ME 444. a. Fig. shows a connecting (bent) rod (BJ) rigidl connecting the rotational joint J to the cuboid (ABCDEFGO). Let > Frame be fied and serve as the universe frame of reference. > The cuboid (ABCDEFGO), bent connecting rod (BJ), and joint J be all connected as one rigid assembl. 3> Frame H be attached rigidl to the rotational joint J and Frame M be fied rigidl onto the cuboid. That is, Frames H and M are attached rigidl to the cuboid -connecting-rod assembl bod. 4> Frame H be translating with respect to Frame. 5> Ais k be fied onto Frame H. 6> The cuboid-connecting-rod rigid assembl is rotating about ais k. At a certain instant of time, the origin of Frame H (joint J) is translating at a velocit of ( ) H T u = 3 m/sec, and the cuboid-connecting-rod assembl is rotating about ais k at an angular velocit of 0 rad/sec. At this same instant of time the assembl and frames are at the configuration indicated in Fig.. At that same instant of time, determine: i. The angular velocit of the cuboid-connecting-rod assembl with respect to Frame. ii. The translational velocit of point C (on the cuboid) with respect to Frame. (5 marks) D E 3 A O B C G F length of line segments: AD=CB= DE=CF= J OG=EF=3 h 30 deg OJ=0 k h Fig.

3 Pg 3 ME 444 b. The Intellede robot is a si-ais manipulator with all rotational joints. The first three ais intersect at a common point. Fig. is a schematic diagram of the Intellede robot showing the si rotational joint aes (indicated b the line segments protruding out of the links). We wish to solve the inverse kinematics of the position problem for this robot. Can the decoupling principle be used? If so, identif the decoupled subsstem b showing the equations relating the decoupled task subspace and the decoupled subset of joints. Indicate the number of degrees of freedom of this subsstem. If not, eplain wh? (0 marks) Fig.

4 Pg 4 ME 444. a. Frames M and C are attached rigidl to a cuboid as shown in Fig. 3. Frame is fied and serves as the universe frame of reference. The cube undergoes the following motion in the indicated sequence: > Rotation about the ais of Frame C b 30, then > Translation of (,, 3) along Frame C, then 3> Rotation about the ais of Frame M b 45, and then 4> Rotation about the ais of Frame b 60. Let T i and T i be the 4 4 homogeneous transformation matrices that C M describe the position and orientation of Frames C and M, respectivel, in after motion i. Find i. ii. iii. iv. v. TC TC TC 3 TC 4 TM 4 D E A 3 c B C c F G Fig. 3 line segment lengths: AD= DC=3 DE= (8 marks)

5 Pg 5 ME 444 b. Fig.4 shows a 4-ais robot with all rotational joints. The first joint rotates about a vertical ais while the net three joints rotate about horiontal aes parallel to the plane of Frame. Frame E is attached to the robot end-effector. A si ais force-torque sensor provides 3 force and 3 torque readings along and about the,, and aes of the sensor frame S. Frame S is coincident to the fied frame of reference. At the following stationar configuration: RE pe TE = = , the robot end-effector is carring a cubic (0. m cube) paload of 0 kg. Determine the si readings of the si-ais force-torque sensor. Assume that the robot links are weightless. The gravitational force is pointing downward along the negative ais direction of Frame. The end-effector frame is at the base of the gripper. The center of mass of the paload is at its center and lies on the ais of the end-effector. The acceleration due to gravit is 9.8 m/s. (7 marks) s,u J 3 J 4 J J si-ais force sensor s,u s,u E paload center of mass E 0.05 m Fig. 4

6 Pg 6 ME a. Frame C is attached rigidl to one corner of a cuboid as shown in Fig. 5. The ais of frame C is directed from point C to E. The ais of frame C is directed from point C to B. Determine the 4 4 homogeneous transformation matri TC that describes the position and orientation of frame C in frame. (5 marks) u u D E A 3 c C F c B G u Fig. 5 line segment lengths: AD= DC=3 DE= b. Fig. 6 shows a robot with two rotational joints J and J. Frame 0 is fied to ground. The first link (the rigid bent rod J ABJ which connectes joints J and J ) rotates about the -ais of frame 0. The bent rod J AB alwas lies on the plane of frame 0. Frame is attached to the end-effector as indicated in Fig. 6. The and aes of frame are normal and along the longitudinal ais, respectivel, of link. The robot is in motion, and at a certain time instant the following are known: > The robot is at the configuration shown in Fig. 6. > The ais of motion of joint J is parallel to the ais of frame 0. 3> The coordinates of J in frame 0 are (, 4, 6). 0 J A 0 J q q B Fig. 6 link 4 30 deg line segments: link J A = 0 AB = 4 parallel to 0 B J = 6 parallel to 0 i. Assign a Cartesian coordinate frame to link (the bent rod) according to the Denavit-Hartenberg Convention. Sketch the robot with the coordinate frames on our eamination scripts.

7 Pg 7 ME 444 ii. Fill in the the following table of kinematic parameters: Link θ i r i d i α i iii. Draw the robot at the configuration q = 0 and q = 45. iv. Determine the position and orientation of the end-effector (frame ) in frame 0 as a function of the joint variables. Epress this position and orientation as a 4 4 homogeneous transformation matri 0 T. (0 marks) 4. A two degree-of-freedom manipulator shown in Fig. 7 moves an object of mass m in the vertical plane. The manipulator starts at rest from Position at time t = 0 (i.e. θ( 0 ) = θ, ρ( ) ρ, θ & 0 = ( 0 ) = 0, ρ&( 0 ) = 0), and moves to Position at time t = T seconds (i.e. θ( T ) = θ, ρ( ) ρ, θ & T = ( T ) = 0, ρ&( T ) = 0 ) as shown in Fig. 8. Y ρ(t) mass m θ(t) X Fig. 7 a. Derive the Lagrange dnamic equations of the manipulator b taking into account the object mass m and neglecting the masses of the manipulator links. ( marks) Y ρ Position θ 0 X θ ρ Position Fig. 8

8 Pg 8 ME 444 θ && ( t ) ρ&&( t ) a b t T T 0 0 T T t -a -b Fig. 9 b. Assume that the joint motions are performed with constant accelerations as shown in Fig. 9. For θ = 5 degrees, θ = 5 degrees, ρ = m, ρ = m, T = sec, determine the following: i. the magnitudes a and b of the joint accelerations θ && ( t ) and ρ&&( t ) respectivel. ii. the trajectories θ ( t ) and ρ( t ). iii. the actuator torque τ ( t ) and the actuator force f(t) required for this motion. 5. a. Consider the coupled nonlinear sstem && = u + u, && + & cos + 3( ) = u 3(cos ) u, where u, u are the inputs and, are the outputs. i. What is the dimension of the state space of the sstem? (3 marks) ii. Choose state variables and write the sstem as a sstem of first order differential equations in state space. iii. Find an inverse dnamics control so that the closed loop sstem is linear and decoupled, with each subsstem having natural frequenc 0 radians and damping ratio 0.5. ( marks)

9 Pg 9 ME 444 b. Consider the nonlinear dnamic equation of a manipulator given b M( q )&& q + C( q, q& )& q + g( q ) = u, where M( q) denotes the inertia matri, C( q, q& )& q denotes the coriolis and centrifugal terms, g( q) denotes the gravitational terms, and u denotes the generalied inputs.se Lapunov analsis to show that the PD control law u = K q K q&, p d where K p, Kd are diagonal matrices of (positive) proportional and derivative gains respectivel, ields a stable nonlinear sstem. Give an epression for the stead state value of q. (3 marks) 6. a. Consider the simplified sstem shown in Fig. 0 representing an end effector contacting the environment along the direction labeled where f : input force eerted b the end effector f dist : a disturbance force m e : equivalent inertia of environment (positive) b e : damping constant (positive) k e : stiffness constant (positive). Fig. 0 The contact force which is given b f e = k e is required to track a constant desired force trajector f d. i. Choosing, & as state variables, and the force error as the output variable, i.e. = f f, d e epress the dnamic equations of the sstem in state space form.

10 Pg 0 ME 444 ii. If the force input is chosen as f = k k & + k f + f, 3 d dist write down all the conditions involving k, k, k 3, k e, be such that the stead state force error ss is ero when f d is a constant (i.e. a step input). ( marks) b. The Lagrange dnamic equations of a two degree of freedom cartesian manipulator is given b && = f f e, && = f f, e where, are the joint variables, f, f are the input forces, and f e, f e are the cartesian components of the contact force at the end effector. Consider the constraint surface shown in Fig. which is described as = 0. The end effector is initiall in contact with the constraint surface and initial conditions are given b ( 0 ) = 3, ( 0 ) = 0, &( 0 ) = 0, &( 0 ) = 0. Y 4 constraint surface f n 0 3 X Fig. Assume that the constraint surface is frictionless and the contact force is alwas normal to the constraint surface. Find the input forces f, f which would maintain a constant normal contact force f n of magnitude N, and move the end effector of the manipulator along the constraint surface with a tangential velocit t m/s, where t is the time in seconds. (3 marks) END OF PAPER

1 HOMOGENEOUS TRANSFORMATIONS

1 HOMOGENEOUS TRANSFORMATIONS HOMOGENEOUS TRANSFORMATIONS Purpose: The purpose of this chapter is to introduce ou to the Homogeneous Transformation. This simple 4 4 transformation is used in the geometr engines of CAD sstems and in

More information

Mechanics Departmental Exam Last updated November 2013

Mechanics Departmental Exam Last updated November 2013 Mechanics Departmental Eam Last updated November 213 1. Two satellites are moving about each other in circular orbits under the influence of their mutual gravitational attractions. The satellites have

More information

Kinematics. Félix Monasterio-Huelin, Álvaro Gutiérrez & Blanca Larraga. September 5, Contents 1. List of Figures 1.

Kinematics. Félix Monasterio-Huelin, Álvaro Gutiérrez & Blanca Larraga. September 5, Contents 1. List of Figures 1. Kinematics Féli Monasterio-Huelin, Álvaro Gutiérre & Blanca Larraga September 5, 2018 Contents Contents 1 List of Figures 1 List of Tables 2 Acronm list 3 1 Degrees of freedom and kinematic chains of rigid

More information

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS

KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Chapter 8 KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS Figure 8.1: 195 196 CHAPTER 8. KINEMATIC RELATIONS IN DEFORMATION OF SOLIDS 8.1 Motivation In Chapter 3, the conservation of linear momentum for a

More information

Robotics I June 11, 2018

Robotics I June 11, 2018 Exercise 1 Robotics I June 11 018 Consider the planar R robot in Fig. 1 having a L-shaped second link. A frame RF e is attached to the gripper mounted on the robot end effector. A B y e C x e Figure 1:

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Robotics I. June 6, 2017

Robotics I. June 6, 2017 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg

More information

Dynamics and control of mechanical systems

Dynamics and control of mechanical systems JU 18/HL Dnamics and control of mechanical sstems Date Da 1 (3/5) 5/5 Da (7/5) Da 3 (9/5) Da 4 (11/5) Da 5 (14/5) Da 6 (16/5) Content Revie of the basics of mechanics. Kinematics of rigid bodies coordinate

More information

Nonlinear Systems Examples Sheet: Solutions

Nonlinear Systems Examples Sheet: Solutions Nonlinear Sstems Eamples Sheet: Solutions Mark Cannon, Michaelmas Term 7 Equilibrium points. (a). Solving ẋ =sin 4 3 =for gives =as an equilibrium point. This is the onl equilibrium because there is onl

More information

Solution 11. Kinetics of rigid body(newton s Second Law)

Solution 11. Kinetics of rigid body(newton s Second Law) Solution () urpose and Requirement Solution Kinetics of rigid bod(newton s Second Law) In rob, kinematics stud regarding acceleration of mass center should be done before Newton s second law is used to

More information

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

Linear and Angular Velocities 2/4. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Linear and Angular Velocities 2/4. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Linear and ngular elocities 2/4 Instructor: Jacob osen dvanced obotic - ME 263D - Department of Mechanical & erospace Engineering - UL Jacobian Matri - alculation Methods Differentiation the Forward Kinematics

More information

1. Consider the 1-DOF system described by the equation of motion, 4ẍ+20ẋ+25x = f.

1. Consider the 1-DOF system described by the equation of motion, 4ẍ+20ẋ+25x = f. Introduction to Robotics (CS3A) Homework #6 Solution (Winter 7/8). Consider the -DOF system described by the equation of motion, ẍ+ẋ+5x = f. (a) Find the natural frequency ω n and the natural damping ratio

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2016 3-1 3-2 Freeform c 2016 Homework 3. Given: n L-shaped telescoping arm is pinned to ground at point. The arm is rotating counterclockwise

More information

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2

I xx + I yy + I zz = (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + (x 2 + y 2 + z 2 )dm = 2 9196_1_s1_p095-0987 6/8/09 1:09 PM Page 95 010 Pearson Education, Inc., Upper Saddle River, NJ. ll rights reserved. This material is protected under all copright laws as the currentl 1 1. Show that the

More information

5.3 Rigid Bodies in Three-Dimensional Force Systems

5.3 Rigid Bodies in Three-Dimensional Force Systems 5.3 Rigid odies in Three-imensional Force Sstems 5.3 Rigid odies in Three-imensional Force Sstems Eample 1, page 1 of 5 1. For the rigid frame shown, determine the reactions at the knife-edge supports,,.

More information

10. The dimensional formula for c) 6% d) 7%

10. The dimensional formula for c) 6% d) 7% UNIT. One of the combinations from the fundamental phsical constants is hc G. The unit of this epression is a) kg b) m 3 c) s - d) m. If the error in the measurement of radius is %, then the error in the

More information

Fluid Mechanics II. Newton s second law applied to a control volume

Fluid Mechanics II. Newton s second law applied to a control volume Fluid Mechanics II Stead flow momentum equation Newton s second law applied to a control volume Fluids, either in a static or dnamic motion state, impose forces on immersed bodies and confining boundaries.

More information

SOLUTION (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + I xx + I yy + I zz = = 2. (x 2 + y 2 + z 2 )dm

SOLUTION (y 2 + z 2 )dm + (x 2 + y 2 )dm. (x 2 + z 2 )dm + I xx + I yy + I zz = = 2. (x 2 + y 2 + z 2 )dm 1 1. Show that the sum of the moments of inertia of a bod, I + I + I, is independent of the orientation of the,, aes and thus depends onl on the location of its origin. I + I + I = Lm ( + )dm + Lm ( +

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes

9.2. Cartesian Components of Vectors. Introduction. Prerequisites. Learning Outcomes Cartesian Components of Vectors 9.2 Introduction It is useful to be able to describe vectors with reference to specific coordinate sstems, such as the Cartesian coordinate sstem. So, in this Section, we

More information

Gravitational potential energy

Gravitational potential energy Gravitational potential energ m1 Consider a rigid bod of arbitrar shape. We want to obtain a value for its gravitational potential energ. O r1 1 x The gravitational potential energ of an assembl of N point-like

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2018 3-1 3-2 Freeform c 2018 Homework H.3. Given: The disk shown is rotating about its center with a constant rotation rate of Ω. Four slots

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for Dynamics describe the relationship between the joint actuator torques and the motion of the structure important role for simulation of motion (test control strategies) analysis of manipulator structures

More information

Chapter 8 Rotational Motion and Dynamics Reading Notes

Chapter 8 Rotational Motion and Dynamics Reading Notes Name: Chapter 8 Rotational Motion and Dynamics Reading Notes Section 8-1: Angular quantities A circle can be split into pieces called degrees. There are 360 degrees in a circle. A circle can be split into

More information

ME 323 Examination #2 April 11, 2018

ME 323 Examination #2 April 11, 2018 ME 2 Eamination #2 April, 2 PROBLEM NO. 25 points ma. A thin-walled pressure vessel is fabricated b welding together two, open-ended stainless-steel vessels along a 6 weld line. The welded vessel has an

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

Transformation of kinematical quantities from rotating into static coordinate system

Transformation of kinematical quantities from rotating into static coordinate system Transformation of kinematical quantities from rotating into static coordinate sstem Dimitar G Stoanov Facult of Engineering and Pedagog in Sliven, Technical Universit of Sofia 59, Bourgasko Shaussee Blvd,

More information

INTRINSIC COORDINATES

INTRINSIC COORDINATES INTRINSIC CRDINATES Question 1 (**) s = 4asin m A bead of mass m is made to slide along a smooth wire, which is fied in a vertical plane, and is bent into the shape of an inverted ccloid with intrinsic

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

Problem 1 16 Problem 2 24 Problem 3 40 Problem 4 40 RESULT 120

Problem 1 16 Problem 2 24 Problem 3 40 Problem 4 40 RESULT 120 ME 301 THERY F MHINES I SEN MITERM EXMINTIN 24.12.2014 Section 01 : M. Kemal Özgören Name Last Name Signature Problem 1 16 Problem 2 24 Problem 3 40 Problem 4 40 RESULT 120 Tpe of Eamination: losed ook.

More information

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS

CH. 1 FUNDAMENTAL PRINCIPLES OF MECHANICS 446.201 (Solid echanics) Professor Youn, eng Dong CH. 1 FUNDENTL PRINCIPLES OF ECHNICS Ch. 1 Fundamental Principles of echanics 1 / 14 446.201 (Solid echanics) Professor Youn, eng Dong 1.2 Generalied Procedure

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS37A (Spring 017 Solution Set # Problem 1 - Redundant robot control The goal of this problem is to familiarize you with the control of a robot that is redundant with

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Robot Manipulator Control. Hesheng Wang Dept. of Automation

Robot Manipulator Control. Hesheng Wang Dept. of Automation Robot Manipulator Control Hesheng Wang Dept. of Automation Introduction Industrial robots work based on the teaching/playback scheme Operators teach the task procedure to a robot he robot plays back eecute

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Lecture «Robot Dynamics»: Dynamics and Control

Lecture «Robot Dynamics»: Dynamics and Control Lecture «Robot Dynamics»: Dynamics and Control 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) Marco

More information

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties

Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties Australian Journal of Basic and Applied Sciences, 3(1): 308-322, 2009 ISSN 1991-8178 Adaptive Robust Tracking Control of Robot Manipulators in the Task-space under Uncertainties M.R.Soltanpour, M.M.Fateh

More information

Rigid Manipulator Control

Rigid Manipulator Control Rigid Manipulator Control The control problem consists in the design of control algorithms for the robot motors, such that the TCP motion follows a specified task in the cartesian space Two types of task

More information

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following:

Math 323 Exam 2 - Practice Problem Solutions. 2. Given the vectors a = 1,2,0, b = 1,0,2, and c = 0,1,1, compute the following: Math 323 Eam 2 - Practice Problem Solutions 1. Given the vectors a = 2,, 1, b = 3, 2,4, and c = 1, 4,, compute the following: (a) A unit vector in the direction of c. u = c c = 1, 4, 1 4 =,, 1+16+ 17 17

More information

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY

CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY CHAPTER 10 ROTATION OF A RIGID OBJECT ABOUT A FIXED AXIS WEN-BIN JIAN ( 簡紋濱 ) DEPARTMENT OF ELECTROPHYSICS NATIONAL CHIAO TUNG UNIVERSITY OUTLINE 1. Angular Position, Velocity, and Acceleration 2. Rotational

More information

Optimal Motion Planning for Free-Flying Robots

Optimal Motion Planning for Free-Flying Robots Optimal Motion Planning for Free-Fling Robots R. Lampariello, S. Agrawal, G. Hiringer Institute of Robotics and Mechatronics Department of Mechanical Engineering German Aerospace Center (DLR) Universit

More information

CONSERVATION OF ANGULAR MOMENTUM FOR A CONTINUUM

CONSERVATION OF ANGULAR MOMENTUM FOR A CONTINUUM Chapter 4 CONSERVATION OF ANGULAR MOMENTUM FOR A CONTINUUM Figure 4.1: 4.1 Conservation of Angular Momentum Angular momentum is defined as the moment of the linear momentum about some spatial reference

More information

Physics 207, Lecture 4, Sept. 15

Physics 207, Lecture 4, Sept. 15 Phsics 07, Lecture 4, Sept. 15 Goals for hapts.. 3 & 4 Perform vector algebra (addition & subtraction) graphicall or b, & z components Interconvert between artesian and Polar coordinates Distinguish position-time

More information

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis

NONLINEAR DYNAMICS AND CHAOS. Numerical integration. Stability analysis LECTURE 3: FLOWS NONLINEAR DYNAMICS AND CHAOS Patrick E McSharr Sstems Analsis, Modelling & Prediction Group www.eng.o.ac.uk/samp patrick@mcsharr.net Tel: +44 83 74 Numerical integration Stabilit analsis

More information

Instructions for Section 2

Instructions for Section 2 200 MATHMETH(CAS) EXAM 2 0 SECTION 2 Instructions for Section 2 Answer all questions in the spaces provided. In all questions where a numerical answer is required an eact value must be given unless otherwise

More information

5. Nonholonomic constraint Mechanics of Manipulation

5. Nonholonomic constraint Mechanics of Manipulation 5. Nonholonomic constraint Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 5. Mechanics of Manipulation p.1 Lecture 5. Nonholonomic constraint.

More information

Positioning Servo Design Example

Positioning Servo Design Example Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pick-and-place robot to move the link of a robot between two positions. Usually

More information

A Position-Based Visual Impedance Control for Robot Manipulators

A Position-Based Visual Impedance Control for Robot Manipulators 2007 IEEE International Conference on Robotics and Automation Roma, Ital, 10-14 April 2007 ThB21 A Position-Based Visual Impedance Control for Robot Manipulators Vinceno Lippiello, Bruno Siciliano, and

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics

Design and Control of Compliant Humanoids. Alin Albu-Schäffer. DLR German Aerospace Center Institute of Robotics and Mechatronics Design and Control of Compliant Humanoids Alin Albu-Schäffer DLR German Aerospace Center Institute of Robotics and Mechatronics Torque Controlled Light-weight Robots Torque sensing in each joint Mature

More information

Lecture «Robot Dynamics»: Dynamics 2

Lecture «Robot Dynamics»: Dynamics 2 Lecture «Robot Dynamics»: Dynamics 2 151-0851-00 V lecture: CAB G11 Tuesday 10:15 12:00, every week exercise: HG E1.2 Wednesday 8:15 10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Nonlinear and Cooperative Control of Multiple Hovercraft with Input Constraints

Nonlinear and Cooperative Control of Multiple Hovercraft with Input Constraints Submitted as a Regular Paper to the European Control Conference Revised: December 8, Nonlinear and Cooperative Control of Multiple Hovercraft with Input Constraints William B. Dunbar, Reza Olfati-Saber,

More information

Robust Control of Cooperative Underactuated Manipulators

Robust Control of Cooperative Underactuated Manipulators Robust Control of Cooperative Underactuated Manipulators Marcel Bergerman * Yangsheng Xu +,** Yun-Hui Liu ** * Automation Institute Informatics Technology Center Campinas SP Brazil + The Robotics Institute

More information

THE CAVENDISH EXPERIMENT Physics 258/259

THE CAVENDISH EXPERIMENT Physics 258/259 TM 1977, DSH 1988, 2005 THE CAVENDISH EXPERIMENT Physics 258/259 A sensitive torsion balance is used to measure the Newtonian gravitational constant G. The equations of motion of the torsion balance are

More information

Equilibrium of Rigid Bodies

Equilibrium of Rigid Bodies Equilibrium of Rigid Bodies 1 2 Contents Introduction Free-Bod Diagram Reactions at Supports and Connections for a wo-dimensional Structure Equilibrium of a Rigid Bod in wo Dimensions Staticall Indeterminate

More information

Derivatives and Graphs

Derivatives and Graphs 2 Practice nswers are available in the classroom and on the website. Scan this QR code for a direct link. I use the pp Scan on my phone erivatives and Graphs 11. particle moves in a straight line, its

More information

PHY4116 From Newton to Einstein. Mid-Term Test, 10a.m. Wed. 16 th Nov Duration: 50 minutes. There are 25 marks in Section A and 25 in Section B.

PHY4116 From Newton to Einstein. Mid-Term Test, 10a.m. Wed. 16 th Nov Duration: 50 minutes. There are 25 marks in Section A and 25 in Section B. PHY46 From Newton to Einstein Mid-Term Test, 0a.m. Wed. 6 th Nov. 06 Duration: 50 minutes. There are 5 marks in Section A and 5 in Section B. Use g = 0 ms in numerical calculations. You ma use the following

More information

Contents. Dynamics and control of mechanical systems. Focuses on

Contents. Dynamics and control of mechanical systems. Focuses on Dnamics and control of mechanical sstems Date Da (/8) Da (3/8) Da 3 (5/8) Da 4 (7/8) Da 5 (9/8) Da 6 (/8) Content Review of the basics of mechanics. Kinematics of rigid bodies - coordinate transformation,

More information

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar

Video 8.1 Vijay Kumar. Property of University of Pennsylvania, Vijay Kumar Video 8.1 Vijay Kumar 1 Definitions State State equations Equilibrium 2 Stability Stable Unstable Neutrally (Critically) Stable 3 Stability Translate the origin to x e x(t) =0 is stable (Lyapunov stable)

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum:

Chapter 8: Momentum, Impulse, & Collisions. Newton s second law in terms of momentum: linear momentum: Chapter 8: Momentum, Impulse, & Collisions Newton s second law in terms of momentum: impulse: Under what SPECIFIC condition is linear momentum conserved? (The answer does not involve collisions.)

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors

Virtual Passive Controller for Robot Systems Using Joint Torque Sensors NASA Technical Memorandum 110316 Virtual Passive Controller for Robot Systems Using Joint Torque Sensors Hal A. Aldridge and Jer-Nan Juang Langley Research Center, Hampton, Virginia January 1997 National

More information

Linköping University Electronic Press

Linköping University Electronic Press Linköping University Electronic Press Report Simulation Model of a 2 Degrees of Freedom Industrial Manipulator Patrik Axelsson Series: LiTH-ISY-R, ISSN 400-3902, No. 3020 ISRN: LiTH-ISY-R-3020 Available

More information

Physics 101 Lecture 12 Equilibrium

Physics 101 Lecture 12 Equilibrium Physics 101 Lecture 12 Equilibrium Assist. Prof. Dr. Ali ÖVGÜN EMU Physics Department www.aovgun.com Static Equilibrium q Equilibrium and static equilibrium q Static equilibrium conditions n Net eternal

More information

In most robotic applications the goal is to find a multi-body dynamics description formulated

In most robotic applications the goal is to find a multi-body dynamics description formulated Chapter 3 Dynamics Mathematical models of a robot s dynamics provide a description of why things move when forces are generated in and applied on the system. They play an important role for both simulation

More information

Chapter 14 Truss Analysis Using the Stiffness Method

Chapter 14 Truss Analysis Using the Stiffness Method Chapter 14 Truss Analsis Using the Stiffness Method Structural Mechanics 2 ept of Arch Eng, Ajou Univ Outline undamentals of the stiffness method Member stiffness matri isplacement and force transformation

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

Conservation of Linear Momentum for a Differential Control Volume

Conservation of Linear Momentum for a Differential Control Volume Conservation of Linear Momentum for a Differential Control Volume When we applied the rate-form of the conservation of mass equation to a differential control volume (open sstem in Cartesian coordinates,

More information

Survey of Wave Types and Characteristics

Survey of Wave Types and Characteristics Seminar: Vibrations and Structure-Borne Sound in Civil Engineering Theor and Applications Surve of Wave Tpes and Characteristics Xiuu Gao April 1 st, 2006 Abstract Mechanical waves are waves which propagate

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

Chapter 3 + some notes on counting the number of degrees of freedom

Chapter 3 + some notes on counting the number of degrees of freedom Chapter 3 + some notes on counting the number of degrees of freedom Minimum number of independent parameters = Some number of dependent parameters minus the number of relationships (equations) you can

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

Chapter 18 KINETICS OF RIGID BODIES IN THREE DIMENSIONS. The two fundamental equations for the motion of a system of particles .

Chapter 18 KINETICS OF RIGID BODIES IN THREE DIMENSIONS. The two fundamental equations for the motion of a system of particles . hapter 18 KINETIS F RIID DIES IN THREE DIMENSINS The to fundamental equations for the motion of a sstem of particles ΣF = ma ΣM = H H provide the foundation for three dimensional analsis, just as the do

More information

Inverting: Representing rotations and translations between coordinate frames of reference. z B. x B x. y B. v = [ x y z ] v = R v B A. y B.

Inverting: Representing rotations and translations between coordinate frames of reference. z B. x B x. y B. v = [ x y z ] v = R v B A. y B. Kinematics Kinematics: Given the joint angles, comute the han osition = Λ( q) Inverse kinematics: Given the han osition, comute the joint angles to attain that osition q = Λ 1 ( ) s usual, inverse roblems

More information

MAE 142 Homework #5 Due Friday, March 13, 2009

MAE 142 Homework #5 Due Friday, March 13, 2009 MAE 142 Homework #5 Due Friday, March 13, 2009 Please read through the entire homework set before beginning. Also, please label clearly your answers and summarize your findings as concisely as possible.

More information

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1. Robotics I July 8 Exercise Define the orientation of a rigid body in the 3D space through three rotations by the angles α β and γ around three fixed axes in the sequence Y X and Z and determine the associated

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

S O L V E D E X A M P L E S

S O L V E D E X A M P L E S UNIVERSITY OF RCHITECTURE, CIVIL ENGINEERING ND GEODESY TECHNICL ECHNICS DEPRTENT S O L V E D E X P L E S OF C O U R S E W O R K S ON ECHNICS PRT I (KINETICS & STTICS) ssistant Professor ngel ladensk,

More information

NONLINEAR AND COOPERATIVE CONTROL OF MULTIPLE HOVERCRAFT WITH INPUT CONSTRAINTS

NONLINEAR AND COOPERATIVE CONTROL OF MULTIPLE HOVERCRAFT WITH INPUT CONSTRAINTS NONLINEAR AND COOPERATIVE CONTROL OF MULTIPLE HOVERCRAFT WITH INPUT CONSTRAINTS William B. Dunbar, Reza Olfati Saber, Richard M. Murra Control and Dnamical Sstems, Mail Code 7-8 California Institute of

More information

Infinitesimal Rotations

Infinitesimal Rotations Universit of Connecticut DigitalCommons@UConn Chemistr Education Materials Department of Chemistr Januar 007 Infinitesimal Rotations Carl W. David Universit of Connecticut, Carl.David@uconn.edu Follow

More information

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives.

STATICS. Equivalent Systems of Forces. Vector Mechanics for Engineers: Statics VECTOR MECHANICS FOR ENGINEERS: Contents & Objectives. 3 Rigid CHATER VECTOR ECHANICS FOR ENGINEERS: STATICS Ferdinand. Beer E. Russell Johnston, Jr. Lecture Notes: J. Walt Oler Teas Tech Universit Bodies: Equivalent Sstems of Forces Contents & Objectives

More information

Unit 8 Notetaking Guide Torque and Rotational Motion

Unit 8 Notetaking Guide Torque and Rotational Motion Unit 8 Notetaking Guide Torque and Rotational Motion Rotational Motion Until now, we have been concerned mainly with translational motion. We discussed the kinematics and dynamics of translational motion

More information

Chapter 5 Equilibrium of a Rigid Body Objectives

Chapter 5 Equilibrium of a Rigid Body Objectives Chapter 5 Equilibrium of a Rigid Bod Objectives Develop the equations of equilibrium for a rigid bod Concept of the free-bod diagram for a rigid bod Solve rigid-bod equilibrium problems using the equations

More information

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted.

Consider a slender rod, fixed at one end and stretched, as illustrated in Fig ; the original position of the rod is shown dotted. 4.1 Strain If an object is placed on a table and then the table is moved, each material particle moves in space. The particles undergo a displacement. The particles have moved in space as a rigid bod.

More information

Control of constrained spatial three-link flexible manipulators

Control of constrained spatial three-link flexible manipulators Control of constrained spatial three-link flexible manipulators Sinan Kilicaslan, M. Kemal Ozgoren and S. Kemal Ider Gazi University/Mechanical Engineering Department, Ankara, Turkey Middle East Technical

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Lecture Notes (CS327A) Advanced Robotic Manipulation Oussama Khatib Stanford University Spring 2005 ii c 2005 by Oussama Khatib Contents 1 Spatial Descriptions 1 1.1 Rigid Body Configuration.................

More information

LECTURE 18: Uniform Circular Motion (UCM)

LECTURE 18: Uniform Circular Motion (UCM) Lectures Page 1 LECTURE 18: Uniform Circular Motion (UCM) Select LEARNING OBJECTIVES: i. ii. iii. iv. v. vi. vii. viii. ix. x. xi. xii. xiii. xiv. xv. Understand the definition of UCM, specifically that

More information

1.1 The Equations of Motion

1.1 The Equations of Motion 1.1 The Equations of Motion In Book I, balance of forces and moments acting on an component was enforced in order to ensure that the component was in equilibrium. Here, allowance is made for stresses which

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion

Angular velocity and angular acceleration CHAPTER 9 ROTATION. Angular velocity and angular acceleration. ! equations of rotational motion Angular velocity and angular acceleration CHAPTER 9 ROTATION! r i ds i dθ θ i Angular velocity and angular acceleration! equations of rotational motion Torque and Moment of Inertia! Newton s nd Law for

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information