RECURSIVE INVERSE DYNAMICS

Size: px
Start display at page:

Download "RECURSIVE INVERSE DYNAMICS"

Transcription

1

2 We assume at the outset that the manipulator under study is of the serial type with n+1 links including the base link and n joints of either the revolute or the prismatic type. The underlying algorithm consists of two steps: Kinematic Computations: required to determine the twists of all the links and their time derivatives in terms of θ, θ, θ Dynamic Computations: required to determine both the constraint and the external wrenches. Henceforth, revolute joints are referred to as R, prismatic joints as P.

3 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS We will use the Denavit-Hartenberg (DH) notation. Moreover, every 3-D vector-component transfer from the F i frame to the frame F i +1 requires a multiplication by Q it. Likewise, every component transfer from the frame F i +1 to the F i frame requires a multiplication by Q i. If we have: r i = r 1, r 2, r 3 and we need:[r i ] i+1 then we proceed as follows: r i+1 = Q i T r i

4 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS If we recall the form of Q i we then have: r i+1 = cosθ i senθ i 0 λ i sinθ i λ i cosθ i μ i μ i sinθ i μ i cosθ i λ i r 1 r 2 r 3 = Where: λ i = cosα i and μ i = senα i r 1 cosθ i + r 2 cosθ i λ i r + μ i r 3 μ i r + λ i r 3 While: r = r 1 sinθ i r 2 cosθ i Likewise, if we have v i+1 = v 1, v 2, v T 3 and we need [v] i, we use the component transformation given below: v i = cos θ i λ i sinθ i μ i sin θ i sin θ i λ i cosθ i μ i cosθ i 0 μ i λ i v 1 v 2 v 3 = v 1 cosθ i + vsinθ i v 1 sinθ i + vcosθ i v 2 μ i + v 3 λ i

5 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS It is now apparent that every coordinate transformation between successive frames, whether forward or backward, requires eight multiplications and four additions. We indicate the units of multiplications and additions with M and A, respectively.

6 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS The angular velocity and acceleration of the ith link are computed recursively as follows: ω i = ω i 1 + ω i θ i e i, ω i = ω i 1 + ω i 1 ω i 1 θ i e i + ith joint R ith joint P θ i e i, ith joint R ith joint P for i = 1, 2,..., n, where ω 0 and ω 0 are the angular velocity and angular acceleration of the base link. This equations are valid in any coordinate frame.

7 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS In view of outwards recursive nature of the kinematic relations it is apparent that a transfer from F i to F i+1 coordinate is needed, which can be accomplished by multiplying either ei or any other vector withe (i-1) subscript by matrix Q it. Hence, the angular velocities and accelerations are computed recursively, as indicated below: ω i = Q i T ω i 1 + Q i T θ i e i, ω i = Q i T ( ω i 1 + ω i 1 Q T i ω i 1 θ i e i + θ i e i ith joint R ith joint P ith joint R ith joint R

8 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS If the base link is an inertial frame, then: ω 0 = 0 ω 0 = 0 Furthermore, in order to determine the number of operations required to calculate ω i in F i+1 when ω i 1 is available in F i, we note that: ω i 1 θ i e i i = θ i ω y θ i ω x 0 Where w x, w y e w z are the w i-1 components in F i-1

9 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS Furthermore, let c i be the position vector of C i, the mass center of the ith link, ρ i being the vector directed from O i to C i, as shown in Figures

10 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS The position vectors of two successive mass centers thus observe the relationships: if the ith joint is R: δ i 1 = a i 1 ρ i 1 c i = c i 1 + δ i 1 + ρ i if the ith joint is P: δ i 1 = d i 1 ρ i 1 c i = c i 1 + δ i 1 + b i e i + ρ i Note that in the presence of a revolute pair at the ith join, the difference a i 1 ρ i 1 is constant in F i. Likewise, in the presence of a prismatic pair at the same joint, the difference d i 1 ρ i 1 is constant in F i.

11 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS We derive the corresponding relations between the velocities and accelerations of the mass centers of links i - 1 and i, namely, if the ith joint is R: c i = c i 1 + ω i 1 δ i 1 + ω i ρ i c i = c i 1 + ω i 1 δ i 1 + ω i 1 (ω i 1 δ i 1 ) + ω i (ω i ρ i ) if the ith joint is R: ω i ρ i + u i = δ i 1 + ρ i + b i e i v i = ω i u i c i = c i = c i 1 + v i + c i 1 + b i e i ω i u i + ω i (v i + 2 b i e i + b i e i )

12 KINEMATICS COMPUTATIONS: OUTWARD RECURSIONS For i = 1, 2,..., n, where c 0 and c 0 are the velocity and acceleration of the mass center of the base link. If the latter is an inertial frame, then ω 0 = 0 ω 0 = 0 c 0 = 0 c 0 = 0 The expressions above are invariant. They hold in any coordinate frame, as long as all vectors involved are expressed F i in that frame. However, we have vectors in the frame, and hence a coordinate trasformation is needed. This coordinate trasformation is taken into account in the following algorithm whereby the logical variable R is true if the ith joint is R; otherwise is false

13 ALGORITHM OUTWARD RECURSION Read Q n 1 i 0, c 0, ω 0, c 0, ω 0, c 0, ρ n n 1 i 1, δ 1 0 For i=1 till n step 1 do: Update Q i if R then: c i Q T i (c i 1 + δ i 1 ) + ρ i ω i Q T i ω i 1 + θ i e i u i 1 ω i 1 δ i 1 v i ω i ρ i c i Q T i c i 1 + u i 1 v i ω i Q T i ω i 1 + ω i 1 + θ i e i + θ i e i c i Q T i c i 1 + ω i 1 δ i 1 + ω i 1 u i 1 + ω i ρ i + ω i v i

14 ALGORITHM OUTWARD Else u i Q i T δ i 1 + ρ i + b i e i c i Q i T c i 1 + u i ω i Q i T ω i 1 v i ω i u i w i b i e i c i Q T i c i 1 + v i + w i ω i Q T i ω i 1 c i Q T i c i 1 + Endif Enddo RECURSION ω i u i + ω i v i + w i + w i + b i e i

15 ALGORITHM OUTWARD RECURSION If, moreover, we take into account that the cross product of two arbitrary vectors requires 6M and 3A, we then have the operation counts given below: R joint P joint M A M A Q i c i ω i c i ω i c i

16 DYNAMICS COMPUTATIONS: INWARD RECURSIONS Free-body diagram of the ith link

17 DYNAMICS COMPUTATIONS: INWARD RECURSIONS A free-body diagram of the EE appears in figure. Note that the link is acted upon by a nonworking constraint wrench, exerted though the nth pair, and a working wrench; the latter involves both active and dissipative forces and moments. Although dissipative forces and moment are difficult to model. Since this forces and moment depend only on joint variable and joint rates, the can be calculated one the cinematic variable are known.

18 DYNAMICS COMPUTATIONS: INWARD RECURSIONS Hence, the force and the moment that (i-1)st link excert on th ith link throught the ith joint produce non working constraint and active wrences. That is for a revolute pair: n i P = n i x n i y τ i f P i = in which n ip and f ip are the nonzero Fi-components of the nonworking constraint moment exerted by the (i 1)st link on the ith link; obviously, this moment lies in a plane perpendicular to Z i, whereas τ i is the active torque applied by the motor at the said joint. f i x f i y f i z

19 DYNAMICS COMPUTATIONS: INWARD RECURSIONS For a prismatic pair, one has: n i P = n i x n i y n i z f i P = f i x f i y τ i Whre vector n ip contains only nonworking constraint torques, while τ i is now the active force exerted by ith motor in the Z i direction, f ix and f iy being the nonzero Fi-components of the nonworking constraint force excerted by the ith joint on the ith link, which is perpendicular to the Zi axis.

20 DYNAMICS COMPUTATIONS: INWARD RECURSIONS Free-body diagram of the end-effector

21 DYNAMICS COMPUTATIONS: INWARD RECURSIONS From the figure above, the Newton-Euler equations of the end-effector are: f P n = m n c n f n P i = I n ω n + ω n I n ω n n + ρ n fp n where f and n are the external force and moment, the former being applied at the mass center of the EE. The Newton- Euler equations for the remaining links are derived based on the free-body diagram namely, f i P = m i n P i = I i ω i + ω i I i ω i + n i+1 P P c i f i+1 + a i ρ i f P i+1 + ρ i f i P

22 DYNAMICS COMPUTATIONS: INWARD RECURSIONS The vectors n P i and f P i indicate the couples and active forces, denoted by t i. In fact, if the i-th joint is rotationally has: τ i = e i T n i P if the i-th joint is prismatic then the actuator force reduces to: τ i = e i T f i P The foregoing relations are written in invariant form. In order to perform the computations involved, transformations that transfer coordinates between two successive frame are required. In taking these coordinate transformations into account, we derive the Newton-Euler algorithm from the above equation.

23 ALGORITHM INWARD RECURSIONS f P n m n c n f n P P n I n ω n + ω n I n ω n n + ρ n f n If R then P τ n n n z Else P τ n f n z For i=n-1 till 1 step-1 do P φ i+1 Q i f i+1 f P i m i c i φ i n P i I i ω i + ω i I i ω i + ρ i f P P i + Q i n i 1 If R then P τ i n i else τ i f i P enddo z z P + (a i ρ i ) Q i f i+1

24 COMPLEXITY OF DYNAMICS COMPUTATIONS A summary of all the calculations is shown in Table: Row # M A (n-1) 4(n-1) 6 3(n-1) 3(n-1) 7 44(n-1) 37(n-1) Total 55n-22 44n-14 The total number of additions and moltiplications For M d can be calculated with the following formulas: M d = 55n 22 A d = 44n 14

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS

DYNAMICS OF SERIAL ROBOTIC MANIPULATORS DYNAMICS OF SERIAL ROBOTIC MANIPULATORS NOMENCLATURE AND BASIC DEFINITION We consider here a mechanical system composed of r rigid bodies and denote: M i 6x6 inertia dyads of the ith body. Wi 6 x 6 angular-velocity

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR The 6nx6n matrices of manipulator mass M and manipulator angular velocity W are introduced below: M = diag M 1, M 2,, M n W = diag (W 1, W 2,, W n ) From this definitions

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Newton-Euler formulation) Dimitar Dimitrov Örebro University June 8, 2012 Main points covered Newton-Euler formulation forward dynamics inverse dynamics

More information

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for

Dynamics. describe the relationship between the joint actuator torques and the motion of the structure important role for Dynamics describe the relationship between the joint actuator torques and the motion of the structure important role for simulation of motion (test control strategies) analysis of manipulator structures

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form:

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form: ME 5(b): Homework #2 Solution Problem : Problem 2 (d,e), Chapter 3 of MLS. Let s review some material from the parts (b) of this problem: Part (b): Using the Product of Exponentials approach, the structure

More information

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J.

Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik. Robot Dynamics. Dr.-Ing. John Nassour J. Artificial Intelligence & Neuro Cognitive Systems Fakultät für Informatik Robot Dynamics Dr.-Ing. John Nassour 25.1.218 J.Nassour 1 Introduction Dynamics concerns the motion of bodies Includes Kinematics

More information

Video 1.1 Vijay Kumar and Ani Hsieh

Video 1.1 Vijay Kumar and Ani Hsieh Video 1.1 Vijay Kumar and Ani Hsieh 1 Robotics: Dynamics and Control Vijay Kumar and Ani Hsieh University of Pennsylvania 2 Why? Robots live in a physical world The physical world is governed by the laws

More information

Screw Theory and its Applications in Robotics

Screw Theory and its Applications in Robotics Screw Theory and its Applications in Robotics Marco Carricato Group of Robotics, Automation and Biomechanics University of Bologna Italy IFAC 2017 World Congress, Toulouse, France Table of Contents 1.

More information

Multibody simulation

Multibody simulation Multibody simulation Dynamics of a multibody system (Euler-Lagrange formulation) Dimitar Dimitrov Örebro University June 16, 2012 Main points covered Euler-Lagrange formulation manipulator inertia matrix

More information

Classical Mechanics. Luis Anchordoqui

Classical Mechanics. Luis Anchordoqui 1 Rigid Body Motion Inertia Tensor Rotational Kinetic Energy Principal Axes of Rotation Steiner s Theorem Euler s Equations for a Rigid Body Eulerian Angles Review of Fundamental Equations 2 Rigid body

More information

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Newton-Euler Dynamics of Robots

Newton-Euler Dynamics of Robots 4 NewtonEuler Dynamics of Robots Mark L. Nagurka Marquette University BenGurion University of the Negev 4.1 Introduction Scope Background 4.2 Theoretical Foundations NewtonEuler Equations Force and Torque

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc.

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc. ECE569 Exam 1 October 28, 2015 1 Name: Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers carefully. Calculators

More information

Ch. 5: Jacobian. 5.1 Introduction

Ch. 5: Jacobian. 5.1 Introduction 5.1 Introduction relationship between the end effector velocity and the joint rates differentiate the kinematic relationships to obtain the velocity relationship Jacobian matrix closely related to the

More information

Dynamics. Dynamics of mechanical particle and particle systems (many body systems)

Dynamics. Dynamics of mechanical particle and particle systems (many body systems) Dynamics Dynamics of mechanical particle and particle systems (many body systems) Newton`s first law: If no net force acts on a body, it will move on a straight line at constant velocity or will stay at

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Lecture 38: Equations of Rigid-Body Motion

Lecture 38: Equations of Rigid-Body Motion Lecture 38: Equations of Rigid-Body Motion It s going to be easiest to find the equations of motion for the object in the body frame i.e., the frame where the axes are principal axes In general, we can

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic Functions Kinematic functions Kinematics deals with the study of four functions(called kinematic functions or KFs) that mathematically

More information

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 5 VELOCITY AND STATIC ANALYSIS OF MANIPULATORS Ashitava Ghosal 1 1 Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian

More information

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is

For a rigid body that is constrained to rotate about a fixed axis, the gravitational torque about the axis is Experiment 14 The Physical Pendulum The period of oscillation of a physical pendulum is found to a high degree of accuracy by two methods: theory and experiment. The values are then compared. Theory For

More information

Robotics I. June 6, 2017

Robotics I. June 6, 2017 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg

More information

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA

Manipulator Dynamics 2. Instructor: Jacob Rosen Advanced Robotic - MAE 263D - Department of Mechanical & Aerospace Engineering - UCLA Manipulator Dynamics 2 Forward Dynamics Problem Given: Joint torques and links geometry, mass, inertia, friction Compute: Angular acceleration of the links (solve differential equations) Solution Dynamic

More information

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University Kinematics of a UR5 May 3, 28 Rasmus Skovgaard Andersen Aalborg University Contents Introduction.................................... Notation.................................. 2 Forward Kinematics for

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Introduction to Robotics

Introduction to Robotics J. Zhang, L. Einig 277 / 307 MIN Faculty Department of Informatics Lecture 8 Jianwei Zhang, Lasse Einig [zhang, einig]@informatik.uni-hamburg.de University of Hamburg Faculty of Mathematics, Informatics

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

Chapter 3 + some notes on counting the number of degrees of freedom

Chapter 3 + some notes on counting the number of degrees of freedom Chapter 3 + some notes on counting the number of degrees of freedom Minimum number of independent parameters = Some number of dependent parameters minus the number of relationships (equations) you can

More information

The Principle of Virtual Power Slide companion notes

The Principle of Virtual Power Slide companion notes The Principle of Virtual Power Slide companion notes Slide 2 In Modules 2 and 3 we have seen concepts of Statics and Kinematics in a separate way. In this module we shall see how the static and the kinematic

More information

Chapter 6. Screw theory for instantaneous kinematics. 6.1 Introduction. 6.2 Exponential coordinates for rotation

Chapter 6. Screw theory for instantaneous kinematics. 6.1 Introduction. 6.2 Exponential coordinates for rotation Screw theory for instantaneous kinematics 6.1 Introduction Chapter 6 Screw theory was developed by Sir Robert Stawell Ball [111] in 1876, for application in kinematics and statics of mechanisms (rigid

More information

The Jacobian. Jesse van den Kieboom

The Jacobian. Jesse van den Kieboom The Jacobian Jesse van den Kieboom jesse.vandenkieboom@epfl.ch 1 Introduction 1 1 Introduction The Jacobian is an important concept in robotics. Although the general concept of the Jacobian in robotics

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product

The Cross Product. MATH 311, Calculus III. J. Robert Buchanan. Fall Department of Mathematics. J. Robert Buchanan The Cross Product The Cross Product MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Introduction Recall: the dot product of two vectors is a scalar. There is another binary operation on vectors

More information

112 Dynamics. Example 5-3

112 Dynamics. Example 5-3 112 Dynamics Gravity Joint 1 Figure 6-7: Remotely driven two d.o.r. planar manipulator. Note that, since no external force acts on the endpoint, the generalized forces coincide with the joint torques,

More information

III. Work and Energy

III. Work and Energy Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Robot Control Basics CS 685

Robot Control Basics CS 685 Robot Control Basics CS 685 Control basics Use some concepts from control theory to understand and learn how to control robots Control Theory general field studies control and understanding of behavior

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture 08 Vectors in a Plane, Scalars & Pseudoscalers Let us continue today with

More information

Torque and Rotation Lecture 7

Torque and Rotation Lecture 7 Torque and Rotation Lecture 7 ˆ In this lecture we finally move beyond a simple particle in our mechanical analysis of motion. ˆ Now we consider the so-called rigid body. Essentially, a particle with extension

More information

Rotation. I. Kinematics - Angular analogs

Rotation. I. Kinematics - Angular analogs Rotation I. Kinematics - Angular analogs II. III. IV. Dynamics - Torque and Rotational Inertia Work and Energy Angular Momentum - Bodies and particles V. Elliptical Orbits The student will be able to:

More information

Dynamics of Open Chains

Dynamics of Open Chains Chapter 9 Dynamics of Open Chains According to Newton s second law of motion, any change in the velocity of a rigid body is caused by external forces and torques In this chapter we study once again the

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

Exercise 1b: Differential Kinematics of the ABB IRB 120

Exercise 1b: Differential Kinematics of the ABB IRB 120 Exercise 1b: Differential Kinematics of the ABB IRB 120 Marco Hutter, Michael Blösch, Dario Bellicoso, Samuel Bachmann October 5, 2016 Abstract The aim of this exercise is to calculate the differential

More information

(r i F i ) F i = 0. C O = i=1

(r i F i ) F i = 0. C O = i=1 Notes on Side #3 ThemomentaboutapointObyaforceF that acts at a point P is defined by M O (r P r O F, where r P r O is the vector pointing from point O to point P. If forces F, F, F 3,..., F N act on particles

More information

Reduced-order Forward Dynamics of Multi-Closed-Loop Systems

Reduced-order Forward Dynamics of Multi-Closed-Loop Systems Noname manuscript No. (will be inserted by the editor) Reduced-order Forward Dynamics of Multi-Closed-Loop Systems Majid Koul Suril V Shah S K Saha M Manivannan the date of receipt and acceptance should

More information

Research Article A New Methodology for Solving Trajectory Planning and Dynamic Load-Carrying Capacity of a Robot Manipulator

Research Article A New Methodology for Solving Trajectory Planning and Dynamic Load-Carrying Capacity of a Robot Manipulator Mathematical Problems in Engineering Volume 16 Article ID 1337 8 pages http://dx.doi.org/1.11/16/1337 Research Article A New Methodology for Solving Trajectory Planning and Dynamic Load-Carrying Capacity

More information

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008

Robotics & Automation. Lecture 06. Serial Kinematic Chain, Forward Kinematics. John T. Wen. September 11, 2008 Robotics & Automation Lecture 06 Serial Kinematic Chain, Forward Kinematics John T. Wen September 11, 2008 So Far... We have covered rigid body rotational kinematics: representations of SO(3), change of

More information

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work

Translational vs Rotational. m x. Connection Δ = = = = = = Δ = = = = = = Δ =Δ = = = = = 2 / 1/2. Work Translational vs Rotational / / 1/ Δ m x v dx dt a dv dt F ma p mv KE mv Work Fd / / 1/ θ ω θ α ω τ α ω ω τθ Δ I d dt d dt I L I KE I Work / θ ω α τ Δ Δ c t s r v r a v r a r Fr L pr Connection Translational

More information

Lecture Note 8: Inverse Kinematics

Lecture Note 8: Inverse Kinematics ECE5463: Introduction to Robotics Lecture Note 8: Inverse Kinematics Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture 8 (ECE5463

More information

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be

1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be 1. The first thing you need to find is the mass of piece three. In order to find it you need to realize that the masses of the three pieces must be equal to the initial mass of the starting rocket. Now

More information

12. Foundations of Statics Mechanics of Manipulation

12. Foundations of Statics Mechanics of Manipulation 12. Foundations of Statics Mechanics of Manipulation Matt Mason matt.mason@cs.cmu.edu http://www.cs.cmu.edu/~mason Carnegie Mellon Lecture 12. Mechanics of Manipulation p.1 Lecture 12. Foundations of statics.

More information

Spatial Vector Algebra

Spatial Vector Algebra A Short Course on The Easy Way to do Rigid Body Dynamics Roy Featherstone Dept. Inormation Engineering, RSISE The Australian National University Spatial vector algebra is a concise vector notation or describing

More information

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity.

A. Incorrect! It looks like you forgot to include π in your calculation of angular velocity. High School Physics - Problem Drill 10: Rotational Motion and Equilbrium 1. If a bike wheel of radius 50 cm rotates at 300 rpm what is its angular velocity and what is the linear speed of a point on the

More information

Chapter 8 Lecture Notes

Chapter 8 Lecture Notes Chapter 8 Lecture Notes Physics 2414 - Strauss Formulas: v = l / t = r θ / t = rω a T = v / t = r ω / t =rα a C = v 2 /r = ω 2 r ω = ω 0 + αt θ = ω 0 t +(1/2)αt 2 θ = (1/2)(ω 0 +ω)t ω 2 = ω 0 2 +2αθ τ

More information

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10

General Definition of Torque, final. Lever Arm. General Definition of Torque 7/29/2010. Units of Chapter 10 Units of Chapter 10 Determining Moments of Inertia Rotational Kinetic Energy Rotational Plus Translational Motion; Rolling Why Does a Rolling Sphere Slow Down? General Definition of Torque, final Taking

More information

Lecture D10 - Angular Impulse and Momentum

Lecture D10 - Angular Impulse and Momentum J. Peraire 6.07 Dynamics Fall 2004 Version.2 Lecture D0 - Angular Impulse and Momentum In addition to the equations of linear impulse and momentum considered in the previous lecture, there is a parallel

More information

Lecture Note 4: General Rigid Body Motion

Lecture Note 4: General Rigid Body Motion ECE5463: Introduction to Robotics Lecture Note 4: General Rigid Body Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture

More information

Kinematics. Vector solutions. Vectors

Kinematics. Vector solutions. Vectors Kinematics Study of motion Accelerated vs unaccelerated motion Translational vs Rotational motion Vector solutions required for problems of 2- directional motion Vector solutions Possible solution sets

More information

Robotics I Midterm classroom test November 24, 2017

Robotics I Midterm classroom test November 24, 2017 xercise [8 points] Robotics I Midterm classroom test November, 7 Consider the -dof (RPR) planar robot in ig., where the joint coordinates r = ( r r r have been defined in a free, arbitrary way, with reference

More information

16. Rotational Dynamics

16. Rotational Dynamics 6. Rotational Dynamics A Overview In this unit we will address examples that combine both translational and rotational motion. We will find that we will need both Newton s second law and the rotational

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

Lecture Note 7: Velocity Kinematics and Jacobian

Lecture Note 7: Velocity Kinematics and Jacobian ECE5463: Introduction to Robotics Lecture Note 7: Velocity Kinematics and Jacobian Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018

More information

Dynamics modeling of an electro-hydraulically actuated system

Dynamics modeling of an electro-hydraulically actuated system Dynamics modeling of an electro-hydraulically actuated system Pedro Miranda La Hera Dept. of Applied Physics and Electronics Umeå University xavier.lahera@tfe.umu.se Abstract This report presents a discussion

More information

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 1/?? Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian

More information

Dynamics. 1 Copyright c 2015 Roderic Grupen

Dynamics. 1 Copyright c 2015 Roderic Grupen Dynamics The branch of physics that treats the action of force on bodies in motion or at rest; kinetics, kinematics, and statics, collectively. Websters dictionary Outline Conservation of Momentum Inertia

More information

Section 13.4 The Cross Product

Section 13.4 The Cross Product Section 13.4 The Cross Product Multiplying Vectors 2 In this section we consider the more technical multiplication which can be defined on vectors in 3-space (but not vectors in 2-space). 1. Basic Definitions

More information

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions

In-Class Problems 30-32: Moment of Inertia, Torque, and Pendulum: Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 TEAL Fall Term 004 In-Class Problems 30-3: Moment of Inertia, Torque, and Pendulum: Solutions Problem 30 Moment of Inertia of a

More information

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS

Objective 1. Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI FINDING THE CROSS PRODUCT OF TWO VECTORS Lesson 87: The Cross Product of Vectors IBHL - SANTOWSKI In this lesson you will learn how to find the cross product of two vectors how to find an orthogonal vector to a plane defined by two vectors how

More information

7 Rotational Motion Pearson Education, Inc. Slide 7-2

7 Rotational Motion Pearson Education, Inc. Slide 7-2 7 Rotational Motion Slide 7-2 Slide 7-3 Recall from Chapter 6 Angular displacement = θ θ= ω t Angular Velocity = ω (Greek: Omega) ω = 2 π f and ω = θ/ t All points on a rotating object rotate through the

More information

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation

Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation ECE5463: Introduction to Robotics Lecture Note 12: Dynamics of Open Chains: Lagrangian Formulation Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio,

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Lesson Rigid Body Dynamics

Lesson Rigid Body Dynamics Lesson 8 Rigid Body Dynamics Lesson 8 Outline Problem definition and motivations Dynamics of rigid bodies The equation of unconstrained motion (ODE) User and time control Demos / tools / libs Rigid Body

More information

Some practical uses of the Lie group SE(3) in computers visualization

Some practical uses of the Lie group SE(3) in computers visualization Some practical uses of the Lie group SE(3) in computers visualization Jean D. Reuss Association Euratom-C.E.A sur la Fusion. CEA/DSM/DRFC, CEA-Cadarache, F-1318, Saint-Paul-lez-Durance, France. E-mail:

More information

7. FORCE ANALYSIS. Fundamentals F C

7. FORCE ANALYSIS. Fundamentals F C ME 352 ORE NLYSIS 7. ORE NLYSIS his chapter discusses some of the methodologies used to perform force analysis on mechanisms. he chapter begins with a review of some fundamentals of force analysis using

More information

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation

Transformations. 1 The Lorentz Transformation. 2 Velocity Transformation Transformations 1 The Lorentz Transformation In the last lecture we obtained the relativistic transformations for space/time between inertial frames. These transformations follow mainly from the postulate

More information

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia)

Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Flipping Physics Lecture Notes: Demonstrating Rotational Inertia (or Moment of Inertia) Have you ever struggled to describe Rotational Inertia to your students? Even worse, have you ever struggled to understand

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

Designing Information Devices and Systems I Discussion 2A

Designing Information Devices and Systems I Discussion 2A EECS 16A Spring 218 Designing Information Devices and Systems I Discussion 2A 1. Visualizing Matrices as Operations This problem is going to help you visualize matrices as operations. For example, when

More information

Theory of Vibrations in Stewart Platforms

Theory of Vibrations in Stewart Platforms Theory of Vibrations in Stewart Platforms J.M. Selig and X. Ding School of Computing, Info. Sys. & Maths. South Bank University London SE1 0AA, U.K. (seligjm@sbu.ac.uk) Abstract This article develops a

More information

Chapter 8. Rotational Motion

Chapter 8. Rotational Motion Chapter 8 Rotational Motion The Action of Forces and Torques on Rigid Objects In pure translational motion, all points on an object travel on parallel paths. The most general motion is a combination of

More information

Lecture Note 7: Velocity Kinematics and Jacobian

Lecture Note 7: Velocity Kinematics and Jacobian ECE5463: Introduction to Robotics Lecture Note 7: Velocity Kinematics and Jacobian Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point. Forward kinematics: X e = c 1 + c 12 Y e = s 1 + s 12 = s 1 s 12 c 1 + c 12, = s 12 c 12 Illustrate the column vector of the Jacobian in the space at the end-effector point. points in the direction perpendicular

More information

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 8 Lecture. Pearson Physics. Rotational Motion and Equilibrium. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 8 Lecture Pearson Physics Rotational Motion and Equilibrium Prepared by Chris Chiaverina Chapter Contents Describing Angular Motion Rolling Motion and the Moment of Inertia Torque Static Equilibrium

More information

Lorentz Transformations

Lorentz Transformations Lorentz Transformations 1 The Lorentz Transformation In the last lecture the relativistic transformations for space/time between inertial frames was obtained. These transformations esentially follow from

More information

Chapter 8. Centripetal Force and The Law of Gravity

Chapter 8. Centripetal Force and The Law of Gravity Chapter 8 Centripetal Force and The Law of Gravity Centripetal Acceleration An object traveling in a circle, even though it moves with a constant speed, will have an acceleration The centripetal acceleration

More information

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body

1.1. Rotational Kinematics Description Of Motion Of A Rotating Body PHY 19- PHYSICS III 1. Moment Of Inertia 1.1. Rotational Kinematics Description Of Motion Of A Rotating Body 1.1.1. Linear Kinematics Consider the case of linear kinematics; it concerns the description

More information

Two-Dimensional Rotational Dynamics

Two-Dimensional Rotational Dynamics Two-Dimensional Rotational Dynamics 8.01 W09D2 W09D2 Reading Assignment: MIT 8.01 Course Notes: Chapter 17 Two Dimensional Rotational Dynamics Sections 17.1-17.5 Chapter 18 Static Equilibrium Sections

More information

Chapter 12 Static Equilibrium

Chapter 12 Static Equilibrium Chapter Static Equilibrium. Analysis Model: Rigid Body in Equilibrium. More on the Center of Gravity. Examples of Rigid Objects in Static Equilibrium CHAPTER : STATIC EQUILIBRIUM AND ELASTICITY.) The Conditions

More information

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES Lecture 21. MORE PLANAR KINEMATIC EXAMPLES 4.5c Another Slider-Crank Mechanism Figure 4.24 Alternative slider-crank mechanism. Engineering-analysis task: For = ω = constant, determine φ and S and their

More information

Lecture 37: Principal Axes, Translations, and Eulerian Angles

Lecture 37: Principal Axes, Translations, and Eulerian Angles Lecture 37: Principal Axes, Translations, and Eulerian Angles When Can We Find Principal Axes? We can always write down the cubic equation that one must solve to determine the principal moments But if

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information