Robotics I. June 6, 2017

Size: px
Start display at page:

Download "Robotics I. June 6, 2017"

Transcription

1 Robotics I June 6, 217 Exercise 1 Consider the planar PRPR manipulator in Fig. 1. The joint variables defined therein are those used by the manufacturer and do not correspond necessarily to a Denavit-Hartenberg (DH) convention. The blue arrow indicates in this case the positive increments of the joint variable. y p L q m4 q m2 q m3 B q m1 x Figure 1: A planar PRPR manipulator with the joint variables q m = (q m1, q m2, q m3, q m4 ) defined by the manufacturer. Determine the direct kinematics f m (q m ) for the planar position p R 2 of the end-effector w.r.t. the given (x, y) reference frame, using the joint variables q m provided by the manufacturer. Assign a set of frames according to the DH convention, draw them on the manipulator, and compile the associated table of DH parameters. Choose the origin of frame coincident with that of the manufacturer. Determine again the direct kinematics f(q) for the planar position p R 2 of the end-effector w.r.t. the DH frame, using now the joint variables q of your DH notation. Draw the manipulator in the two zero configurations: the one associated with q m = and the one with q =. Establish the transformation φ( ) needed to map one set of variables into the other, say q m q, so that for any given q m the transformed q = φ(q m ) describes the same physical configuration of the manipulator (in particular, f m (q m ) = f(φ(q m )). Suppose that a joint velocity command q has been determined using routines and control software that operates with the DH variables q. What velocity command q m should be transferred to the low-level controller of the robot manufacturer in order to obtain the expected motion behavior? 1

2 Exercise 2 With reference to Fig. 2, a laser sensor placed at the base of a 3R robot is monitoring an angular sector of the workspace, scanning it on a horizontal plane at a given height, with minimum and maximum radial sensing distance ρ min and ρ max, respectively. When a human presence is detected by the laser sensor and localized by vector r human, the robot end-effector should be controlled for safety, so as to: either i) retract with a velocity v [i] e along the horizontal and centripetal direction of the workspace, with a scalar speed which is inversely proportional to the distance r human ; or ii) be repulsed with a velocity v [ii] e along an horizontal direction and away from the detected human, with a scalar speed which is inversely proportional to the relative distance between the human and the robot end-effector. The two alternative reactions occur only when r human [ρ min, ρ max ]. Beyond ρ max the robot continues its original task, as specified by a joint velocity q task. Finally, when the human is closer than ρ min to the robot base, the robot should simply stop. Provide the symbolic expression of the commanded joint velocity q that realizes these human-robot coexistence control rules in all the considered cases. y e z pe x e y! min x! max r human Figure 2: Human-robot coexistence, with a laser scanner measuring the position of a human w.r.t. the base of a spatial 3R robot. Exercise 3 A generic revolute joint of a robot should move through the sequence of four knots specified by the angular values q 1 = 7, q 2 = 45, q 3 = 1, q 4 = 1. Define an interpolating path in the form of a cubic spline q = q(s) C 2, for s [, 1], such that at s 1 =, s 2 =.25, s 3 =.5, and s 4 = 1, we have q() = q 1, q(.25) = q 2, q(.5) = q 3, q(1) = q 4. The path tangent q (s) at the initial and final knots is given by (q 2 q 1 )/( ) and (q 4 q 3 )/( ), respectively. Provide the parametric expression and the associated numerical values of the coefficients for the three cubic polynomials in the spline solution. Assuming that the path is executed at a constant speed ṡ =.4/s: what is the total traveling time T from q 1 to q 4? which is the value of the joint velocity at the initial and final time, q() and q(t )? what is the maximum absolute value of the acceleration q(t) reached during the time interval [, T ], and which is the time instant t = t a at which this maximum occurs? [24 minutes, open books but no computer or smartphone] 2

3 Solution June 6, 217 Exercise 1 A frame assignment for the PRPR manipulator which is consistent with the Denavit-Hartenberg (DH) convention is shown in Fig. 3, and the associated parameters are given in Tab. 1. x 4 p x 3 q 4 x y 4 x 2 x 1 q 3 y 3 q 2 y 1 z 2 z q 1 Figure 3: The DH frames assigned to the planar PRPR manipulator, with associated joint variables. i α i d i a i θ i 1 π/2 q 1 2 π/2 q 2 3 π/2 q 3 4 L q 4 Table 1: Table of DH parameters of the planar PRPR manipulator. Using the joint variables q m = (q m1, q m2, q m3, q m4 ) of the manufacturer, by geometric inspection of Fig. 1 the direct kinematics of the PRPR manipulator is ( ) ( ) px qm1 + (B + q m3 ) sin q m2 + L cos q m4 p = = = f p y (B + q m3 ) cos q m2 + L sin q m (q m ). (1) m4 Similarly, using the D-H variables q = (q 1, q 2, q 3, q 4 ), ( by geometric ( inspection (3 of Fig. 3 (or, computing the sequence of matrix/vector products A 1 (q 1 ) 1 A 2 (q 2 ) 2 A 3 (q 3 ) A 4 (q 4 ) ( 1 ) ))) T from Tab. 1, and then extracting the z and x components) we have ( ) ( ) p z q1 + q 3 cos q 2 L sin(q 2 + q 4 ) p = = = f(q). (2) q 3 sin q 2 + L cos(q 2 + q 4 ) p x The zero configurations of the robot arm when q m = and when q = are obviously different 3

4 y " p = f m () = $ L% ' # B& x " p = f () = $ % ' # L& x z Figure 4: Zero configurations of the robot arm: when q m = (left) and when q = (right). and are shown in Fig. 4. By comparing eqs. (1) and (2), we find the direct transformation q = q 1 q 2 q 3 q 4 q m1 = π/2 q m2 B + q m3 = φ(q m). (3) q m2 + q m4 π From the inverse transformation, we obtain also the linear mapping from the DH velocities q to the robot joint velocities q m used by the manufacturer: q 1 1 q m = φ 1 π/2 q 2 1 (q) = q q 3 B m = q = J q. (4) 1 q 2 + q 4 + π/2 1 1 Exercise 2 Define the projections along the z axis (on an arbitrary plane, say z = ) for the two vectors and r human = p e = r human,x r human,y h p e,x p e,y p e,z q = J 1 (q)v e, with v e = p e = Π z (p e ) = p e,x p e,y r human = Π z (r human ) = r human,x r human,y where h is the (arbitrary) height of the laser scanning plane. The joint velocity command for the requested robot motion is then given by the following cases:, if r human < ρ min v [i] e = p e p e 1 r human v [ii] e = p e r human p e r human 2,, if r human [ρ min, ρ max ] q task, if r human > ρ max. (5) 4

5 Exercise 3 Using path parametrization, the three cubic tracts of the interpolating spline are conveniently defined as q A (σ A ) = q 1 + a 1 σ A + a 2 σ 2 A + a 3 σ 3 A, σ A = s s 1 [, 1], s [s 1, s 2 ] (6) q B (σ B ) = q 2 + b 1 σ B + b 2 σ 2 B + b 3 σ 3 B, σ B = s s 2 [, 1], s [s 2, s 3 ] (7) q C (σ C ) = q 3 + c 1 σ C + c 2 σ 2 C + c 3 σ 3 C, σ C = s s 3 [, 1], s [s 3, s 4 ], (8) with the nine coefficients a 1,..., c 3 determined by satisfying the nine boundary conditions q A (1) = q 2, q B (1) = q 3, q C (1) = q 4, q A () = q 2 q 1, q C (1) = q 4 q 3, q A (1) = q B () [ = v 2 ], q B (1) = q C () [ = v 3 ], q A (1) = q B (), q B (1) = q C (). (9) However, the divide et impera approach is more convenient if we assume, for the time being, that we know the value of the first derivatives v 2 and v 3 at the two intermediate knots (at s = s 2 and s = s 3, respectively). The coefficients of each of the three cubic polynomials would then be completely defined by the four local boundary conditions at the two extremes of their interval of definition. Performing computations for the cubic A yields the coefficients a 1 = q 2 q 1, a 2 = (q 2 q 1 ) v 2 ( ), a 3 = v 2 ( ) (q 2 q 1 ), (1) and thus Similarly, for the cubic B q A(1) = 2a 2 + 6a 3 ( ) 2 = 4v 2 4(q 2 q 1 ) ( ) 2. (11) b 1 = v 2 (s 3 s 2 ), b 2 = 3(q 3 q 2 ) (2v 2 +v 3 )(s 3 s 2 ), b 3 = 2(q 3 q 2 )+(v 2 +v 3 )(s 3 s 2 ), (12) and thus and Finally, for the cubic C q B() = 2b 2 ( ) 2 = 6(q 3 q 2 ) ( ) 2 4v 2 + 2v 3 (13) q B(1) = 2b 2 + 6b 3 ( ) 2 = 2v 2 + 4v 3 6(q 3 q 2 ) ( ) 2. (14) c 1 = v 3 ( ), c 2 = 2(q 4 q 3 ) 2v 3 ( ), c 3 = v 3 ( ) (q 4 q 3 ), (15) and thus q C() = 2c 2 ( ) 2 = 4(q 4 q 3 ) ( ) 2 4v 3. (16) Imposing the continuity of the second derivative at the internal knots q A(1) = q B() q B(1) = q C(), 5

6 and using eqs. (11), (13 14) and (16), leads to the linear system of equations ( ) v2 A = b with ( ) 4(s3 s 1 ) 2( ) A =, b = 2( ) 4(s 4 s 2 ) Replacing the numerical data, the system is solved as ( ) ( v2 = A b = v v 3 6(q 3 q 2 ) + 4(q 2 q 1 ) 4(q 4 q 3 ) + 6(q 3 q 2 ). and the coefficients (1), (12), and (15) of the three cubic polynomials take then the numerical values a = q 1 = 7, a 1 = 115, a 2 = , a 3 = , b = q 2 = 45, b 1 = , b 2 = , b 3 = , c = q 3 = 1, c 1 = , c 2 = , c 3 = The plots of the interpolating geometric spline q(s), for s [, 1], and of its first and second derivatives q (s) and q (s) are shown in Fig. 5. If the motion on the geometric path q(s) is at constant speed ṡ = k =.4 s 1 ( s = ), then the total time for tracing the interval between s = and s = 1 is simply T = 1/k = 1/.4 = 2.5 s. Moreover, velocity and acceleration of the joint moving at constant speed are q = q ṡ = q k and q = q s + q ṡ 2 = q k 2, respectively. Therefore, the initial and final velocity will be q() = q A() ṡ() = q 2 q 1 k = 184 /s, q(t ) = q C(1) ṡ(t ) = q 4 q 3 k = 72 /s. On the other hand, since the second derivative of a geometric cubic spline is made by linear segments between the knots, its maximum necessarily occurs in one of the knots. Being the joint acceleration simply a scaled version of the second spatial derivative, the maximum (absolute) value of the acceleration is found as max q(t) = t [,T ] k2 max s [,1] q (s) = k 2 max { q A(), q B(), q C(), q C(1) } ), =.16 max { 251.8, 53.6, , } = max { 4.299, , , } = /s 2, occurring at the second knot. The plots of the interpolating trajectory q(t), for t [, T ], and of its velocity q(t) and acceleration q(t) are shown in Fig. 6. 6

7 1 geometric cubic spline 5 [deg] parameter s [non dimensional] 4 1st derivative [deg] parameter s 6 2nd derivative [deg] parameter s Figure 5: Geometric spline q(s), with first and second derivative. 7

8 1 cubic spline position 5 [deg] time t [sec] 15 velocity 1 5 [deg/sec] time t [sec] 1 acceleration 5 [deg/sec 2 ] time t [sec] Figure 6: Spline trajectory q(t), with velocity and acceleration. 8

Robotics I June 11, 2018

Robotics I June 11, 2018 Exercise 1 Robotics I June 11 018 Consider the planar R robot in Fig. 1 having a L-shaped second link. A frame RF e is attached to the gripper mounted on the robot end effector. A B y e C x e Figure 1:

More information

Robotics I. February 6, 2014

Robotics I. February 6, 2014 Robotics I February 6, 214 Exercise 1 A pan-tilt 1 camera sensor, such as the commercial webcams in Fig. 1, is mounted on the fixed base of a robot manipulator and is used for pointing at a (point-wise)

More information

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1.

, respectively to the inverse and the inverse differential problem. Check the correctness of the obtained results. Exercise 2 y P 2 P 1. Robotics I July 8 Exercise Define the orientation of a rigid body in the 3D space through three rotations by the angles α β and γ around three fixed axes in the sequence Y X and Z and determine the associated

More information

Robotics I. Test November 29, 2013

Robotics I. Test November 29, 2013 Exercise 1 [6 points] Robotics I Test November 9, 013 A DC motor is used to actuate a single robot link that rotates in the horizontal plane around a joint axis passing through its base. The motor is connected

More information

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration;

Robotics I. April 1, the motion starts and ends with zero Cartesian velocity and acceleration; Robotics I April, 6 Consider a planar R robot with links of length l = and l =.5. he end-effector should move smoothly from an initial point p in to a final point p fin in the robot workspace so that the

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Robotics I. Classroom Test November 21, 2014

Robotics I. Classroom Test November 21, 2014 Robotics I Classroom Test November 21, 2014 Exercise 1 [6 points] In the Unimation Puma 560 robot, the DC motor that drives joint 2 is mounted in the body of link 2 upper arm and is connected to the joint

More information

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions.

q 1 F m d p q 2 Figure 1: An automated crane with the relevant kinematic and dynamic definitions. Robotics II March 7, 018 Exercise 1 An automated crane can be seen as a mechanical system with two degrees of freedom that moves along a horizontal rail subject to the actuation force F, and that transports

More information

Lecture 8: Kinematics: Path and Trajectory Planning

Lecture 8: Kinematics: Path and Trajectory Planning Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration Space c Anton Shiriaev. 5EL158: Lecture 8 p. 1/20 Lecture 8: Kinematics: Path and Trajectory Planning Concept of Configuration

More information

Robotics I Midterm classroom test November 24, 2017

Robotics I Midterm classroom test November 24, 2017 xercise [8 points] Robotics I Midterm classroom test November, 7 Consider the -dof (RPR) planar robot in ig., where the joint coordinates r = ( r r r have been defined in a free, arbitrary way, with reference

More information

Position and orientation of rigid bodies

Position and orientation of rigid bodies Robotics 1 Position and orientation of rigid bodies Prof. Alessandro De Luca Robotics 1 1 Position and orientation right-handed orthogonal Reference Frames RF A A p AB B RF B rigid body position: A p AB

More information

13 Path Planning Cubic Path P 2 P 1. θ 2

13 Path Planning Cubic Path P 2 P 1. θ 2 13 Path Planning Path planning includes three tasks: 1 Defining a geometric curve for the end-effector between two points. 2 Defining a rotational motion between two orientations. 3 Defining a time function

More information

INSTRUCTIONS TO CANDIDATES:

INSTRUCTIONS TO CANDIDATES: NATIONAL NIVERSITY OF SINGAPORE FINAL EXAMINATION FOR THE DEGREE OF B.ENG ME 444 - DYNAMICS AND CONTROL OF ROBOTIC SYSTEMS October/November 994 - Time Allowed: 3 Hours INSTRCTIONS TO CANDIDATES:. This

More information

Inverse differential kinematics Statics and force transformations

Inverse differential kinematics Statics and force transformations Robotics 1 Inverse differential kinematics Statics and force transformations Prof Alessandro De Luca Robotics 1 1 Inversion of differential kinematics! find the joint velocity vector that realizes a desired

More information

Differential Kinematics

Differential Kinematics Differential Kinematics Relations between motion (velocity) in joint space and motion (linear/angular velocity) in task space (e.g., Cartesian space) Instantaneous velocity mappings can be obtained through

More information

Lecture Note 4: General Rigid Body Motion

Lecture Note 4: General Rigid Body Motion ECE5463: Introduction to Robotics Lecture Note 4: General Rigid Body Motion Prof. Wei Zhang Department of Electrical and Computer Engineering Ohio State University Columbus, Ohio, USA Spring 2018 Lecture

More information

Quaternion Cubic Spline

Quaternion Cubic Spline Quaternion Cubic Spline James McEnnan jmcennan@mailaps.org May 28, 23 1. INTRODUCTION A quaternion spline is an interpolation which matches quaternion values at specified times such that the quaternion

More information

Case Study: The Pelican Prototype Robot

Case Study: The Pelican Prototype Robot 5 Case Study: The Pelican Prototype Robot The purpose of this chapter is twofold: first, to present in detail the model of the experimental robot arm of the Robotics lab. from the CICESE Research Center,

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

MEAM 520. More Velocity Kinematics

MEAM 520. More Velocity Kinematics MEAM 520 More Velocity Kinematics Katherine J. Kuchenbecker, Ph.D. General Robotics, Automation, Sensing, and Perception Lab (GRASP) MEAM Department, SEAS, University of Pennsylvania Lecture 12: October

More information

Trajectory-tracking control of a planar 3-RRR parallel manipulator

Trajectory-tracking control of a planar 3-RRR parallel manipulator Trajectory-tracking control of a planar 3-RRR parallel manipulator Chaman Nasa and Sandipan Bandyopadhyay Department of Engineering Design Indian Institute of Technology Madras Chennai, India Abstract

More information

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1

Given U, V, x and θ perform the following steps: a) Find the rotation angle, φ, by which u 1 is rotated in relation to x 1 1 The Jacobian can be expressed in an arbitrary frame, such as the base frame located at the first joint, the hand frame located at the end-effector, or the global frame located somewhere else. The SVD

More information

ME5286 Robotics Spring 2017 Quiz 2

ME5286 Robotics Spring 2017 Quiz 2 Page 1 of 5 ME5286 Robotics Spring 2017 Quiz 2 Total Points: 30 You are responsible for following these instructions. Please take a minute and read them completely. 1. Put your name on this page, any other

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot

MECH 576 Geometry in Mechanics November 30, 2009 Kinematics of Clavel s Delta Robot MECH 576 Geometry in Mechanics November 3, 29 Kinematics of Clavel s Delta Robot The DELTA Robot DELTA, a three dimensional translational manipulator, appears below in Fig.. Figure : Symmetrical (Conventional)

More information

(W: 12:05-1:50, 50-N202)

(W: 12:05-1:50, 50-N202) 2016 School of Information Technology and Electrical Engineering at the University of Queensland Schedule of Events Week Date Lecture (W: 12:05-1:50, 50-N202) 1 27-Jul Introduction 2 Representing Position

More information

Chapter 3 + some notes on counting the number of degrees of freedom

Chapter 3 + some notes on counting the number of degrees of freedom Chapter 3 + some notes on counting the number of degrees of freedom Minimum number of independent parameters = Some number of dependent parameters minus the number of relationships (equations) you can

More information

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University

Kinematics of a UR5. Rasmus Skovgaard Andersen Aalborg University Kinematics of a UR5 May 3, 28 Rasmus Skovgaard Andersen Aalborg University Contents Introduction.................................... Notation.................................. 2 Forward Kinematics for

More information

RECURSIVE INVERSE DYNAMICS

RECURSIVE INVERSE DYNAMICS We assume at the outset that the manipulator under study is of the serial type with n+1 links including the base link and n joints of either the revolute or the prismatic type. The underlying algorithm

More information

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010

EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 2010 ME 35 - Machine Design I Spring Semester 010 Name of Student Lab. Div. Number EXAM 1. OPEN BOOK AND CLOSED NOTES Thursday, February 18th, 010 Please use the blank paper provided for your solutions. Write

More information

Interpolated Rigid-Body Motions and Robotics

Interpolated Rigid-Body Motions and Robotics Interpolated Rigid-Body Motions and Robotics J.M. Selig London South Bank University and Yuanqing Wu Shanghai Jiaotong University. IROS Beijing 2006 p.1/22 Introduction Interpolation of rigid motions important

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Advanced Robotic Manipulation Handout CS37A (Spring 017) Solution Set #3 Problem 1 - Inertial properties In this problem, you will explore the inertial properties of a manipulator at its end-effector.

More information

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian

Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian c Anton Shiriaev. 5EL158: Lecture 7 p. 1/?? Lecture 7: Kinematics: Velocity Kinematics - the Jacobian Manipulator Jacobian

More information

Robotics 1 Inverse kinematics

Robotics 1 Inverse kinematics Robotics 1 Inverse kinematics Prof. Alessandro De Luca Robotics 1 1 Inverse kinematics what are we looking for? direct kinematics is always unique; how about inverse kinematics for this 6R robot? Robotics

More information

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202)

Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) J = x θ τ = J T F 2018 School of Information Technology and Electrical Engineering at the University of Queensland Lecture Schedule Week Date Lecture (M: 2:05p-3:50, 50-N202) 1 23-Jul Introduction + Representing

More information

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point.

Example: RR Robot. Illustrate the column vector of the Jacobian in the space at the end-effector point. Forward kinematics: X e = c 1 + c 12 Y e = s 1 + s 12 = s 1 s 12 c 1 + c 12, = s 12 c 12 Illustrate the column vector of the Jacobian in the space at the end-effector point. points in the direction perpendicular

More information

DYNAMICS OF PARALLEL MANIPULATOR

DYNAMICS OF PARALLEL MANIPULATOR DYNAMICS OF PARALLEL MANIPULATOR PARALLEL MANIPULATORS 6-degree of Freedom Flight Simulator BACKGROUND Platform-type parallel mechanisms 6-DOF MANIPULATORS INTRODUCTION Under alternative robotic mechanical

More information

Advanced Robotic Manipulation

Advanced Robotic Manipulation Lecture Notes (CS327A) Advanced Robotic Manipulation Oussama Khatib Stanford University Spring 2005 ii c 2005 by Oussama Khatib Contents 1 Spatial Descriptions 1 1.1 Rigid Body Configuration.................

More information

Ch. 5: Jacobian. 5.1 Introduction

Ch. 5: Jacobian. 5.1 Introduction 5.1 Introduction relationship between the end effector velocity and the joint rates differentiate the kinematic relationships to obtain the velocity relationship Jacobian matrix closely related to the

More information

MEEN 363 Notes Copyright, Dara W. Childs

MEEN 363 Notes Copyright, Dara W. Childs MEEN 363 Notes Copyright, Dara W. Childs Lecture 1. PARTICLE KINEMATICS IN A PLANE Kinematics: Geometric in nature, defines motion without regard to forces that cause motion or result from motion. Kinetics:

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Lecture «Robot Dynamics» : Kinematics 3

Lecture «Robot Dynamics» : Kinematics 3 Lecture «Robot Dynamics» : Kinematics 3 151-0851-00 V lecture: CAB G11 Tuesday 10:15-12:00, every week exercise: HG G1 Wednesday 8:15-10:00, according to schedule (about every 2nd week) office hour: LEE

More information

Cubic Splines; Bézier Curves

Cubic Splines; Bézier Curves Cubic Splines; Bézier Curves 1 Cubic Splines piecewise approximation with cubic polynomials conditions on the coefficients of the splines 2 Bézier Curves computer-aided design and manufacturing MCS 471

More information

Motion of a Point. Figure 1 Dropped vehicle is rectilinear motion with constant acceleration. Figure 2 Time and distance to reach a speed of 6 m/sec

Motion of a Point. Figure 1 Dropped vehicle is rectilinear motion with constant acceleration. Figure 2 Time and distance to reach a speed of 6 m/sec Introduction Motion of a Point In this chapter, you begin the subject of kinematics (the study of the geometry of motion) by focusing on a single point or particle. You utilize different coordinate systems

More information

Parametric Equations, Vectors, and Vector Valued Functions. Different parametric equations can yield the same curve:

Parametric Equations, Vectors, and Vector Valued Functions. Different parametric equations can yield the same curve: Parametric Equations, Vectors, and Vector Valued Functions Different parametric equations can yield the same curve: x=t, y=t 2 for t in [ 1,1] and x=t 3, y=t 6 for t in [ 1,1] give the same parabolic arc,

More information

Robot Dynamics II: Trajectories & Motion

Robot Dynamics II: Trajectories & Motion Robot Dynamics II: Trajectories & Motion Are We There Yet? METR 4202: Advanced Control & Robotics Dr Surya Singh Lecture # 5 August 23, 2013 metr4202@itee.uq.edu.au http://itee.uq.edu.au/~metr4202/ 2013

More information

where R represents the radius of the circle and T represents the period.

where R represents the radius of the circle and T represents the period. Chapter 3 Circular Motion Uniform circular motion is the motion of an object in a circle with a constant or uniform speed. Speed When moving in a circle, an object traverses a distance around the perimeter

More information

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form:

ME 115(b): Homework #2 Solution. Part (b): Using the Product of Exponentials approach, the structure equations take the form: ME 5(b): Homework #2 Solution Problem : Problem 2 (d,e), Chapter 3 of MLS. Let s review some material from the parts (b) of this problem: Part (b): Using the Product of Exponentials approach, the structure

More information

Exercise 1b: Differential Kinematics of the ABB IRB 120

Exercise 1b: Differential Kinematics of the ABB IRB 120 Exercise 1b: Differential Kinematics of the ABB IRB 120 Marco Hutter, Michael Blösch, Dario Bellicoso, Samuel Bachmann October 5, 2016 Abstract The aim of this exercise is to calculate the differential

More information

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant

Interpolation. Create a program for linear interpolation of a three axis manufacturing machine with a constant QUESTION 1 Create a program for linear interpolation of a three axis manufacturing machine with a constant velocity profile. The inputs are the initial and final positions, feed rate, and sample period.

More information

ROBOTICS Laboratory Problem 02

ROBOTICS Laboratory Problem 02 ROBOTICS 2015-2016 Laboratory Problem 02 Basilio Bona DAUIN PoliTo Problem formulation The planar system illustrated in Figure 1 consists of a cart C sliding with or without friction along the horizontal

More information

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics

Robotics I Kinematics, Dynamics and Control of Robotic Manipulators. Velocity Kinematics Robotics I Kinematics, Dynamics and Control of Robotic Manipulators Velocity Kinematics Dr. Christopher Kitts Director Robotic Systems Laboratory Santa Clara University Velocity Kinematics So far, we ve

More information

8 Velocity Kinematics

8 Velocity Kinematics 8 Velocity Kinematics Velocity analysis of a robot is divided into forward and inverse velocity kinematics. Having the time rate of joint variables and determination of the Cartesian velocity of end-effector

More information

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009

ME Machine Design I. EXAM 1. OPEN BOOK AND CLOSED NOTES. Wednesday, September 30th, 2009 ME - Machine Design I Fall Semester 009 Name Lab. Div. EXAM. OPEN BOOK AND CLOSED NOTES. Wednesday, September 0th, 009 Please use the blank paper provided for your solutions. Write on one side of the paper

More information

Vectors and 2D Kinematics. AIT AP Physics C

Vectors and 2D Kinematics. AIT AP Physics C Vectors and 2D Kinematics Coordinate Systems Used to describe the position of a point in space Coordinate system consists of a fixed reference point called the origin specific axes with scales and labels

More information

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS

ROBOTICS: ADVANCED CONCEPTS & ANALYSIS ROBOTICS: ADVANCED CONCEPTS & ANALYSIS MODULE 4 KINEMATICS OF PARALLEL ROBOTS Ashitava Ghosal 1 1 Department of Mechanical Engineering & Centre for Product Design and Manufacture Indian Institute of Science

More information

Rational Univariate Representation

Rational Univariate Representation Rational Univariate Representation 1 Stickelberger s Theorem a rational univariate representation (RUR) 2 The Elbow Manipulator a spatial robot arm with three links 3 Application of the Newton Identities

More information

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino

ROBOTICS 01PEEQW. Basilio Bona DAUIN Politecnico di Torino ROBOTICS 01PEEQW Basilio Bona DAUIN Politecnico di Torino Kinematic Functions Kinematic functions Kinematics deals with the study of four functions(called kinematic functions or KFs) that mathematically

More information

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style

9.1. Basic Concepts of Vectors. Introduction. Prerequisites. Learning Outcomes. Learning Style Basic Concepts of Vectors 9.1 Introduction In engineering, frequent reference is made to physical quantities, such as force, speed and time. For example, we talk of the speed of a car, and the force in

More information

Control Synthesis for Dynamic Contact Manipulation

Control Synthesis for Dynamic Contact Manipulation Proceedings of the 2005 IEEE International Conference on Robotics and Automation Barcelona, Spain, April 2005 Control Synthesis for Dynamic Contact Manipulation Siddhartha S. Srinivasa, Michael A. Erdmann

More information

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves

Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves Introduction to Computer Graphics (Lecture No 07) Ellipse and Other Curves 7.1 Ellipse An ellipse is a curve that is the locus of all points in the plane the sum of whose distances r1 and r from two fixed

More information

Physics 1A. Lecture 3B

Physics 1A. Lecture 3B Physics 1A Lecture 3B Review of Last Lecture For constant acceleration, motion along different axes act independently from each other (independent kinematic equations) One is free to choose a coordinate

More information

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION

PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION PLANAR KINETICS OF A RIGID BODY FORCE AND ACCELERATION I. Moment of Inertia: Since a body has a definite size and shape, an applied nonconcurrent force system may cause the body to both translate and rotate.

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Selection of Servomotors and Reducer Units for a 2 DoF PKM

Selection of Servomotors and Reducer Units for a 2 DoF PKM Selection of Servomotors and Reducer Units for a 2 DoF PKM Hermes GIBERTI, Simone CINQUEMANI Mechanical Engineering Department, Politecnico di Milano, Campus Bovisa Sud, via La Masa 34, 20156, Milano,

More information

Robotics 2 Robot Interaction with the Environment

Robotics 2 Robot Interaction with the Environment Robotics 2 Robot Interaction with the Environment Prof. Alessandro De Luca Robot-environment interaction a robot (end-effector) may interact with the environment! modifying the state of the environment

More information

Speed how fast an object is moving (also, the magnitude of the velocity) scalar

Speed how fast an object is moving (also, the magnitude of the velocity) scalar Mechanics Recall Mechanics Kinematics Dynamics Kinematics The description of motion without reference to forces. Terminology Distance total length of a journey scalar Time instant when an event occurs

More information

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18

Dynamics. Basilio Bona. Semester 1, DAUIN Politecnico di Torino. B. Bona (DAUIN) Dynamics Semester 1, / 18 Dynamics Basilio Bona DAUIN Politecnico di Torino Semester 1, 2016-17 B. Bona (DAUIN) Dynamics Semester 1, 2016-17 1 / 18 Dynamics Dynamics studies the relations between the 3D space generalized forces

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

PHYSICS 220 LAB #6: CIRCULAR MOTION

PHYSICS 220 LAB #6: CIRCULAR MOTION Name: Partners: PHYSICS 220 LAB #6: CIRCULAR MOTION The picture above is a copy of Copernicus drawing of the orbits of the planets which are nearly circular. It appeared in a book published in 1543. Since

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Nonholonomic Constraints Examples

Nonholonomic Constraints Examples Nonholonomic Constraints Examples Basilio Bona DAUIN Politecnico di Torino July 2009 B. Bona (DAUIN) Examples July 2009 1 / 34 Example 1 Given q T = [ x y ] T check that the constraint φ(q) = (2x + siny

More information

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney

Chapter 4. Motion in Two Dimensions. With modifications by Pinkney Chapter 4 Motion in Two Dimensions With modifications by Pinkney Kinematics in Two Dimensions covers: the vector nature of position, velocity and acceleration in greater detail projectile motion a special

More information

Reading. w Foley, Section 11.2 Optional

Reading. w Foley, Section 11.2 Optional Parametric Curves w Foley, Section.2 Optional Reading w Bartels, Beatty, and Barsky. An Introduction to Splines for use in Computer Graphics and Geometric Modeling, 987. w Farin. Curves and Surfaces for

More information

Spiral spline interpolation to a planar spiral

Spiral spline interpolation to a planar spiral Spiral spline interpolation to a planar spiral Zulfiqar Habib Department of Mathematics and Computer Science, Graduate School of Science and Engineering, Kagoshima University Manabu Sakai Department of

More information

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics

Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Engineering Mechanics Prof. U. S. Dixit Department of Mechanical Engineering Indian Institute of Technology, Guwahati Kinematics Module 10 - Lecture 24 Kinematics of a particle moving on a curve Today,

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 1 / 40 CEE 271: Applied Mechanics II, Dynamics Lecture 9: Ch.13, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa 2 / 40 EQUATIONS OF MOTION:RECTANGULAR COORDINATES

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

General Theoretical Concepts Related to Multibody Dynamics

General Theoretical Concepts Related to Multibody Dynamics General Theoretical Concepts Related to Multibody Dynamics Before Getting Started Material draws on two main sources Ed Haug s book, available online: http://sbel.wisc.edu/courses/me751/2010/bookhaugpointers.htm

More information

Multi-body Singularity Equations IRI Technical Report

Multi-body Singularity Equations IRI Technical Report IRI-TR-10-02 Multi-body Singularity Equations IRI Technical Report On how to obtain the equations for computation with CUIK O. Bohigas-Nadal L. Ros Abstract This technical report explains how to obtain

More information

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body

Dynamics 12e. Copyright 2010 Pearson Education South Asia Pte Ltd. Chapter 20 3D Kinematics of a Rigid Body Engineering Mechanics: Dynamics 12e Chapter 20 3D Kinematics of a Rigid Body Chapter Objectives Kinematics of a body subjected to rotation about a fixed axis and general plane motion. Relative-motion analysis

More information

The Principle of Virtual Power Slide companion notes

The Principle of Virtual Power Slide companion notes The Principle of Virtual Power Slide companion notes Slide 2 In Modules 2 and 3 we have seen concepts of Statics and Kinematics in a separate way. In this module we shall see how the static and the kinematic

More information

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples

Objectives. Fundamentals of Dynamics: Module 9 : Robot Dynamics & controls. Lecture 31 : Robot dynamics equation (LE & NE methods) and examples \ Module 9 : Robot Dynamics & controls Lecture 31 : Robot dynamics equation (LE & NE methods) and examples Objectives In this course you will learn the following Fundamentals of Dynamics Coriolis component

More information

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics

DIFFERENTIAL KINEMATICS. Geometric Jacobian. Analytical Jacobian. Kinematic singularities. Kinematic redundancy. Inverse differential kinematics DIFFERENTIAL KINEMATICS relationship between joint velocities and end-effector velocities Geometric Jacobian Analytical Jacobian Kinematic singularities Kinematic redundancy Inverse differential kinematics

More information

Kinematics (2) - Motion in Three Dimensions

Kinematics (2) - Motion in Three Dimensions Kinematics (2) - Motion in Three Dimensions 1. Introduction Kinematics is a branch of mechanics which describes the motion of objects without consideration of the circumstances leading to the motion. 2.

More information

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES

Lecture 21. MORE PLANAR KINEMATIC EXAMPLES Lecture 21. MORE PLANAR KINEMATIC EXAMPLES 4.5c Another Slider-Crank Mechanism Figure 4.24 Alternative slider-crank mechanism. Engineering-analysis task: For = ω = constant, determine φ and S and their

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Kinematics in Two Dimensions Will study the vector nature of position, velocity and acceleration in greater detail Will treat projectile motion and uniform circular motion

More information

Kinematics of. Motion. 8 l Theory of Machines

Kinematics of. Motion. 8 l Theory of Machines 8 l Theory of Machines Features 1. 1ntroduction.. Plane Motion. 3. Rectilinear Motion. 4. Curvilinear Motion. 5. Linear Displacement. 6. Linear Velocity. 7. Linear Acceleration. 8. Equations of Linear

More information

Robotics: Tutorial 3

Robotics: Tutorial 3 Robotics: Tutorial 3 Mechatronics Engineering Dr. Islam Khalil, MSc. Omar Mahmoud, Eng. Lobna Tarek and Eng. Abdelrahman Ezz German University in Cairo Faculty of Engineering and Material Science October

More information

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates

Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Control of a Handwriting Robot with DOF-Redundancy based on Feedback in Task-Coordinates Hiroe HASHIGUCHI, Suguru ARIMOTO, and Ryuta OZAWA Dept. of Robotics, Ritsumeikan Univ., Kusatsu, Shiga 525-8577,

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) Today s Objectives: Students will be able to apply the equation of motion using normal and tangential coordinates. APPLICATIONS Race

More information

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc.

ECE569 Exam 1 October 28, Name: Score: /100. Please leave fractions as fractions, but simplify them, etc. ECE569 Exam 1 October 28, 2015 1 Name: Score: /100 This exam is closed-book. You must show ALL of your work for full credit. Please read the questions carefully. Please check your answers carefully. Calculators

More information

Approximation of Circular Arcs by Parametric Polynomials

Approximation of Circular Arcs by Parametric Polynomials Approximation of Circular Arcs by Parametric Polynomials Emil Žagar Lecture on Geometric Modelling at Charles University in Prague December 6th 2017 1 / 44 Outline Introduction Standard Reprezentations

More information

CONSTANT KINETIC ENERGY ROBOT TRAJECTORY PLANNING

CONSTANT KINETIC ENERGY ROBOT TRAJECTORY PLANNING PERIODICA POLYTECHNICA SER. MECH. ENG. VOL. 43, NO. 2, PP. 213 228 (1999) CONSTANT KINETIC ENERGY ROBOT TRAJECTORY PLANNING Zoltán ZOLLER and Peter ZENTAY Department of Manufacturing Engineering Technical

More information

Chapter 8- Rotational Motion

Chapter 8- Rotational Motion Chapter 8- Rotational Motion Assignment 8 Textbook (Giancoli, 6 th edition), Chapter 7-8: Due on Thursday, November 13, 2008 - Problem 28 - page 189 of the textbook - Problem 40 - page 190 of the textbook

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings:

In this section of notes, we look at the calculation of forces and torques for a manipulator in two settings: Introduction Up to this point we have considered only the kinematics of a manipulator. That is, only the specification of motion without regard to the forces and torques required to cause motion In this

More information

Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial

Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial Robotics Volume, Article ID 75958, 6 pages http://dx.doi.org/.55//75958 Research Article Simplified Robotics Joint-Space Trajectory Generation with a via Point Using a Single Polynomial Robert L. Williams

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information