Many reinforced concrete structures, such as bridges,

Size: px
Start display at page:

Download "Many reinforced concrete structures, such as bridges,"

Transcription

1 Reliability analyses of interface shear transfer in AASHTO LRFD specifications model and an alternative model Mahmoodreza Soltani Many reinforced concrete structures, such as bridges, depend on the transfer of shear forces across concrete-to-concrete interfaces no or negligible moment is present. This phenomenon is explained by a theory called interface shear transfer (IST). One of the most common examples of IST occurs at the connection of precast concrete girders and cast-in-place concrete bridge decks (Fig. ). Composite action between the girder and deck, which is aided by the interface transfer of shear forces, results in bridge stiffness and strength. Previous research has shown that the interface-shear-transfer model of the AASHTO LRFD Bridge Design Specifications produces inconsistent levels of accuracy for different values of design variables. In this study, reliability analyses were performed on the AASHTO LRFD specifications model and an alternative model to evaluate and determine their resistance factors. The results of the reliability study showed that the alternative model performs better than the AASHTO LRFD specifications model. Soltani and Ross created a database from tests conducted between 99 and. This study showed that current code-based IST models produce inconsistent levels of accuracy for the ratio of experimental strength to nominal strength (bias factor) throughout the range of design variables. For example, bias factors in the IST model of the American Association of State Highway and Transportation Officials AASHTO LRFD Bridge Design Specifications were.9 and.8 (with and without resistance factor applied, respectively), and the model accuracy also varied significantly for different compressive strengths of concrete. Recognizing the limitations of the current AASHTO LRFD specifications based IST design model, Soltani et al. proposed a new IST design model developed through a multiple linear-regression analysis. Soltani et al. s revised IST model produced more accurate results and a bias factor of.9 with consistent levels of accuracy throughout the considered range of design variables. PCI Journal September October 8

2 Cast-in-place concrete deck A Horizontal shear at interface Shear interface Shear interface Cross section A-A Precast concrete girder A Figure. Graphic showing location of nterface shear transfer between precast concrete girder and cast-in-place concrete deck. The objective of the present study is threefold. First, the reliability level of the AASHTO LRFD specifications based model for predicting the nominal IST resistance is delineated based on the IST database created by Soltani and Ross. This is achieved by defining the mean and coefficient of variation of resistance and the load distribution models. Second, a resistance factor is determined for Soltani et al. s IST model to reach the AASHTO LRFD specifications reliability index target value of.. Third, this study illustrates the reliability indices in different intervals throughout the range of all IST design variables, including interface area of concrete A cv, interface shear reinforcement ρf y, compressive strength of concrete f c, roughness amplitude of interface R, and compressive force normal to the shear plane P c. These design variables are the main parameters that affect IST capacity, according to the sensitivity analysis performed by Soltani et al. Background Interface shear transfer Three mechanisms resist the shear forces passing through a concrete-to-concrete interface. These mechanisms are as follows: shear-friction, cohesion between concrete surfaces dowel action of reinforcement,8 Mast and Birkeland and Birkeland initially proposed the shear-friction mechanism to explain shear force transfer across cracks in reinforced concrete members. Figure illustrates the shear-friction mechanism using a sawtooth model. Shear force parallel to the interface causes a horizontal displacement h between two concrete surfaces. The horizontal displacement is accompanied by a vertical displacement v due to concrete interlock. The vertical displacement causes tension in the steel reinforcement crossing the interface; this tension results in a clamping force and friction along the interface. Cohesion is the bond between concrete interface surfaces. Dowel action is due to the direct shear resistance of the reinforcement crossing the interface. AASHTO LRFD specifications IST model Section.8. of the AASHTO LRFD specifications contains the provisions for the IST model, with the factored interface shear resistance V ri determined by Eq. (). φ V ni V ri = φv ni () = shear resistance factor (.9 for normalweight concrete and.8 for lightweight concrete) = nominal interface shear resistance In addition, the requirement in Eq. () must be fulfilled. V ri V ui () V ui = factored interface shear force due to the total load based on the applicable strength and extreme-event load combinations PCI Journal September October 8

3 In the AASHTO LRFD specifications, the nominal capacity is calculated based on the summation of cohesion at the interface and friction that results from interface reinforcement and clamping force. K = fraction of concrete strength available to resist interface shear According to the IST provisions of the AASHTO LRFD specifications (Eq..8..-), the nominal capacity can be found using Eq. (). V ni = ca cv + μ(a vf f y + P c ) () K = limiting interface shear resistance The specified compressive strength must be greater than. MPa (. ksi). Table gives the factors c, μ, K, and K (AASHTO LRFD specifications section.8..). Soltani et al. s revised IST model c μ A vf f y = cohesion factor = friction factor = area of interface shear reinforcement crossing the shear plane within the area A cv = yield stress of reinforcement Soltani et al. s IST model is determined through the summation of three terms: cohesion, friction from interface reinforcement, and friction from compression force normal to the interface. The predicted IST strength V pre is given by Eq. (). V pre = CA cv + M A vf f y + M P c () In addition, the requirements in Eq. () and () must be fulfilled. V ni K f c A cv () V ni K A cv () C M M = cohesion coefficient = friction coefficient for the shear-friction mechanism = friction coefficient for the normal force Interface reinforcement h σ stl σ comp Concrete layer τ V τ Concrete layer σ stl σ comp Figure. Interface shear transfer, sawtooth model. Source: Data from Santos and Júlio (). Note: h = horizontal displacement; v = vertical displacement; σ comp = compressive stress perpendicular to the interface; σ stl = tensile stress developed in steel reinforcement due to shear-friction; τ = shear stress developed at the interface. 8 PCI Journal September October 8

4 Table. Factors for use in metric (MPa) interface-shear-transfer model based on AASHTO LRFD specifications Condition c μ K K Cast-in-place concrete slab on clean concrete girder surfaces, free of laitance, surface roughened to an amplitude of mm.9.. (normalweight concrete) 8.9 (lightweight concrete) Normalweight concrete placed monolithically.... Lightweight concrete placed monolithically or nonmonolithically against a clean concrete surface, free of laitance, surface roughened to an amplitude of mm Normalweight concrete placed against a clean concrete surface, free of laitance, with surface intentionally roughened to an amplitude of mm Concrete placed against a clean concrete surface, free of laitance, but not intentionally roughened Concrete anchored to as-rolled structural steel by headed studs or by reinforcing bars all steel in contact with concrete is clean and free of paint Note: c = cohesion factor; K = fraction of concrete strength available to resist interface shear; K = limiting interface shear resistance; μ = friction factor. mm =.9 in. These coefficients are calculated in Eq. () to (9). k k k k k C = k R + k ʹ f c () M = k R fc + k R M = k + k f cʹ = cohesion factor applied to R =. MPa = cohesion factor applied to f c =. MPa = shear friction factor applied to R = MPa = shear friction factor applied to f c =. MPa (8) (9) = normal force friction factor applied to R =.8 MPa for normalweight concrete and. MPa for lightweight concrete k = normal force friction factor applied to f c =. MPa for normalweight concrete and MPa for lightweight concrete The units of V pre, A cv, A vf, f y, P c, R, and f c are kn, mm, mm, MPa, kn, mm, and MPa, respectively. The k to k factors were determined through the application of a multiple linear regression analysis conducted in the previous study. Previous reliability studies of the AASHTO LRFD specifications IST model Scott 9 performed push-off tests (the most conventional IST test method) to determine whether the current code equations accurately predict the horizontal shear strength at the connection of precast concrete girders and cast-in-place concrete decks for both normalweight and lightweight concrete members. A structural reliability analysis showed that the AASHTO LRFD specifications resistance factors provided a reliability index of.88 and. for normalweight concrete and lightweight concrete, respectively. The present study considered the minimum reinforcement requirement of the AASHTO LRFD specifications, unlike Scott s work, which considered the edition. Lang created a database with data from tests from previous research. A reliability analysis performed on the database showed that the reliability indices for normalweight concrete were.9 and. for rough and smooth interface roughness conditions, respectively. For lightweight concrete, the indices were. and. for rough and smooth interface roughness conditions, respectively. The present study differs from Lang s research in that it includes updated test data, focuses exclusively on uncracked reinforced specimens, and considers the minimum reinforcement requirements of the AASHTO LRFD specifications. Reliability analysis The most important objective in engineering design is to ensure structural safety, which relates to applied loads and structural resistance. Some of the uncertainties that result from the inherent variability in load and resistance mod- PCI Journal September October 8 9

5 els can be quantified through the application of reliability theory and eventually be taken into account in design codes. Reliability is a measure of the probability of a structural failure, which is defined within the context of a limit state (the boundary between desired and undesired performance). The load model Q and the resistance model R m are considered to be random variables in the structural reliability analysis. Per Nowak and Collins and Robert, the structural reliability or survival probability of structures p s is given by Eq. (). p s = P(R m Q > ) () This is the survival probability of the structural system if the resistance value is more than the load value. Considering Eq. (), the failure probability p f is determined by Eq. (). DC γ DW DW γ LL LL IM = dead load from the weight of structural components and nonstructural attachments = load factor of DW =. in the AASHTO LRFD specifications Strength I load combination = dead load from the weight of the wearing surface = load factor of LL =. in the AASHTO LRFD specifications Strength I load combination = live load from the forces from moving vehicles on the bridge = impact load from the forces produced by moving vehicles on the bridge p f = P(R m Q < ) () The reliability index β, which is related to the failure probability p f, is defined by Eq. (). β = φ (p f ) () From Eq. (), the nominal resistance V ni can be written as Eq. (). V ni = γ DCDC +γ DW DW +γ LL (LL + IM) φ The resistance model can be written as Eq. (). () R = V ni MFP () φ () = inverse standard normal distribution function If R m and Q are normally distributed, random, and independent variables, the reliability index can be determined by Eq. (). m Rm m Q σ Rm σ Q β = m R m m Q σ Rm +σ () Q = mean value of resistance model = mean value of load model = standard deviation of resistance model = standard deviation of load model Statistical details of the resistance model The AASHTO LRFD specifications consider the limit state factored load combination for horizontal shear resistance at the interface of a bridge deck and bridge girder to be a Strength I load combination. Thus, Eq. () in the AASH- TO LRFD specifications is defined as Eq. (). γ DC γ DC DC + γ DW DW + γ LL (LL + IM) = φv ni () = load factor of DC =. in the AASHTO LRFD specifications Strength I load combination M F P = material factor = fabrication factor = professional factor The material factor accounts for variation in material properties affecting the IST, including compressive strength of concrete, yield strength of reinforcement, and so forth. The fabrication factor reflects variation in member geometry, such as dimensions, moment of inertia, and reinforcement placement. The professional factor represents the accuracy of the IST model. The mean m Rm and coefficient of variation COV Rm values of the resistance model are given by Eq. () and (8), respectively. λ M λ F λ P = mean value of M = mean value of F = mean value of P m Rm = V ni λ M λ F λ P () COV Rm = COV M + COV F + COV P (8) PCI Journal September October 8

6 Table. Statistical parameters of resistance model Statistical parameters Bias factor λ Coefficient of variation Material factor M.. Fabrication factor F.. Professional factor P (Soltani et al. 8) Professional factor P (AASHTO LRFD specifications) COV M = coefficient of variation of M Normalweight concrete.8. Lightweight concrete..9 Normalweight concrete.. Lightweight concrete.. Results and discussion COV F = coefficient of variation of F Normality of the IST professional factors COV P = coefficient of variation of P For the professional factor, Eq. () (AASHTO LRFD specifications) and Eq. () (Soltani et al.) were used to predict the IST nominal resistance in two categories: normalweight concrete and lightweight concrete. Table summarizes the statistical parameters of resistance used in this study, based on previous research. Statistical details of the load model The load model Q is given by Eq. (9). Q = DC + DW + (LL + IM) (9) The mean m Q and coefficient of variation COV Q values of the load model are given by Eq. () and (), respectively. m Q = DCλ DC + DWλ DW + (LL + IM)λ LL+IM () The professional factor, bias factor, and coefficient of variation were calculated from the ratio of experimental IST strength to nominal IST strength predicted by the AASHTO LRFD specifications (Eq. []) and Soltani et al. s IST model (Eq. []) using the IST database created by Soltani and Ross. The statistical parameters were computed for normalweight and lightweight concrete (Table ). To use Eq. (), the normality of the resistance and load models needs to be checked. The load model has a normal distribution because all of the parameters used in the equation have normal distributions. However, in the resistance model, the professional factor needs to be checked. To check the normality of distributions of P, the standard normal variable Z value was calculated using Eq. (). Z value = V exp Vn Avg V exp Vn i SD V () exp Vn λ DC λ DW λ LL+IM = bias factor of DC = bias factor of DW = bias factor of LL + IM V exp = measured experimental IST strength (for the sample number of i) V n = predicted nominal IST strength (for the sample number of i) Table. Statistical parameters of load model COV Q = COV DC +COV DW +COV LL+IM () Statistical parameters Bias factor λ Coefficient of variation DC.. COV DC COV DW = coefficient of variation of DC = coefficient of variation of DW COV LL+IM = coefficient of variation of LL + IM Table gives the bias factors and coefficients of variation of the load model. DW.. LL + IM.8.8 Note: DC = dead load from the weight of structural components and nonstructural attachments; DW = dead load from the weight of the wearing surface; IM = impact load from the forces produced by moving vehicles on the bridge; LL = live load from the forces produced by moving vehicles on the bridge. PCI Journal September October 8

7 Normalweight concrete Lightweight concrete Linear (normalweight concrete) Linear (lightweight concrete) Bias factor R² =.8 R² =.9 Bias factor R²=.98 R² = Z value - - Z value AASHTO LRFD specifications Soltani et al. (8) Figure. Normal variable distributions of interface-shear-transfer models. Note: R = roughness amplitude of interface; Z value = standard normal variable. Avg V exp Vn = mean value of the strength ratios ( LL + IM ) LR = DC + DW + ( LL + IM ) () SD V exp Vn = standard deviation of the strength ratios If the professional factor is normally distributed, the data in the graph will be in an approximately straight line. Figure illustrates the test data in both categories, normalweight concrete and lightweight concrete, for each IST model. Considering the linear regression of the bias factors and Z value, the minimum value of the statistical parameter R is.8, and the maximum professional factor P value is.9 8. These values indicate that the professional factor P is normally distributed in both categories. Reliability analysis The data in each model were separated into two categories: normalweight concrete and lightweight concrete. In the AASHTO LRFD specifications database, there were 9 tests with normalweight concrete and tests with lightweight concrete. In Soltani et al.s model database, there were tests with normalweight concrete and 98 tests with lightweight concrete. To investigate the reliability indices for different load values, the reliability indices were calculated using Eq. () and () for a dead load ratio DR and live load ratio LR, respectively. DR = DW DC + DW + LL + IM ( ) () The resistance factor φ, used in Eq. () to calculate the reliability index from Soltani et al. s model, was adjusted to.9. With this value, Soltani et al. s model calculated the reliability index to be approximately., which is the target reliability index of most structural design codes, such as the AASHTO LRFD specifications. This target value of. means that the probability of failure is approximately equal to.%. Figure compares the reliability index with the dead load ratios DR from the wearing surface and the live load ratios LR. In the AASHTO LRFD specifications model, the reliability indices of normalweight concrete are generally less than the target reliability index of., while the reliability indices of lightweight concrete are generally greater. The reliability index plane of normalweight concrete is generally less than. (Fig. ), as the reliability index plane of lightweight concrete is generally greater than.. In Soltani et al. s model, the reliability indices of normalweight and lightweight concrete are both around.. The shapes and values of the reliability index planes are also similar in both categories. To compare the reliability index as just one number for each model, an example of a critical loading scenario (DR and LR values) was chosen from the PCI Bridge Design Manual. According to Tables 9.a.- and, the maximum shear values of the wearing surface V ws, barrier weight V b, and lane load plus truck load with impact V LL + V LT were PCI Journal September October 8

8 DR LR DR LR DR LR DR LR AASHTO LRFD specifications Soltani et al. (8) Figure. Percentage of live load and dead load from wearing surface versus reliability index for normalweight concrete (top) and lightweight concrete (bottom). Note: DR = dead load ratio; LR = live load ratio; β = reliability index. equal to,, and 98 kn (,, and kip), respectively. Thus, DR and LR were calculated to be. and.8 using Eq. () and (), respectively. As previously mentioned, the resistance factor φ of the AASHTO LRFD specifications IST model is.9 for normalweight concrete and.8 for lightweight concrete. To investigate influence of the resistance factor, reliability indices were determined for a range of resistance factors (Fig. ). Following this scenario, the target reliability index of. was satisfied with the resistance factors. In Soltani et al. s model with normalweight concrete, the resistance factor should be.9 to reach to the target reliability index of.; this model with lightweight concrete needs to have the resistance factor of., which leads to the reliability index of.8. In AASHTO LRFD specifications with normalweight concrete, the resistance factor has to be equal to. to reach to the target reliability index and. for tests with lightweight concrete (it produces reliability index of.). The AASHTO LRFD specifications IST model was conservative for lightweight concrete (no need for any resistance factor PCI Journal September October 8

9 8 AASHTO LRFD specifications normalweight concrete AASHTO LRFD specifications lightweight concrete Soltani et al. normalweight concrete Soltani et al. lightweight concrete Resistance factor Figure. Reliability indices for different resistance factors. [φ equal to ]); however, it was significantly unconservative for normalweight concrete. In the latter case, a resistance factor of. was needed to satisfy the target reliability index of.. The AASHTO LRFD specifications based resistance factors led to reliability indices of.8 (p f equal to.%) and.8 (p f equal to %) for normalweight concrete and lightweight concrete, respectively. Hence, the target reliability index was not satisfied for either normalweight concrete or lightweight concrete tests. Alternatively, the resistance factors used in Soltani et al. s model successfully met the target reliability index of.. The resistance factor of.9 in Soltani et al. s model led to reliability indices of. (p f equal to.%) and. (p f equal to.%) for normalweight concrete and lightweight concrete, respectively. Parametric reliability analysis A bin analysis was also performed to evaluate the relationships between the reliability index and IST design variables, including the area of concrete interface A cv, interface shear reinforcement index ρf y, compressive strength of concrete f c, roughness amplitude of interface R, and compressive force normal to the shear plane P c. These design variables were selected for investigation because they affect IST capacity and are used in both the AASHTO LRFD specifications model and Soltani et al. s model. The interface reinforcement index ρf y is calculated using Eq. (). ρ f y = A vf A cv f y () The range of the roughness amplitude of interface R and compressive force normal to the shear plane P c were each divided into two categories. The roughness amplitude of interface categories was greater than. mm (. in.) and less than. mm. The compressive force normal to the shear plane was divided into tests with zero compressive force and tests with nonzero compressive force. These categorizations were selected based on the characteristics of tests in the database. For the rest of the design variables, the range of each variable was divided into four and three equally spaced bins for normalweight concrete and lightweight concrete, respectively. Both models had more normalweight concrete tests than lightweight concrete; thus, to have a comparable number of tests, more normalweight concrete bins were defined than lightweight concrete bins. Tables and show the bias factor, coefficient of variation, and number of tests for each bin. The bias factors for tests with normalweight concrete ranged from. to. in the AASHTO LRFD specifications model and from. to. in Soltani et al. s model. Tests with lightweight concrete had bias factors ranging from. to. in the AASHTO LRFD specifications model and from. to. in Soltani et al. s model. Thus, Soltani et al. s model was generally more accurate than the AASHTO LRFD specifications model. The coefficients of variation ranged from. to.9 and from. to. in the AASHTO LRFD specifications model and Soltani et al. s model, respectively. PCI Journal September October 8

10 Table. Statistical information of evaluating bins for normalweight concrete f ć, MPa ρf y, MPa A cv, mm R, mm P c, kn Source Parameter < > < >. <,, 9,8 9,8 9, >9, < > AASHTO LRFD specifications Soltani et al. (8) λ COV n.d. Number of tests λ COV Number of tests Note: A cv = area of concrete considered to be engaged in interface shear transfer; COV = coefficient of variation; f c = compressive strength of concrete; n.d. = no data in the bin; P c = permanent net compressive force normal to the shear plane; R = roughness amplitude of interface; λ = bias factor; ρf y = interface reinforcement index. mm =.9 in.; kn =. kip; MPa =. ksi. Table. Statistical information of evaluating bins for lightweight concrete f ć, MPa ρf y, MPa A cv, mm R, mm P c, kn Source Parameter <8 8 > <...8 >.8 <,, 9, >9, < > AASHTO LRFD specifications Soltani et al. (8) λ COV n.d... n.d Number of tests λ COV Number of tests Note: A cv = area of concrete considered to be engaged in interface shear transfer; COV = coefficient of variation; f c = compressive strength of concrete; n.d. = no data in the bin; P c = permanent net compressive force normal to the shear plane; R = roughness amplitude of interface; λ = bias factor; ρf y = interface reinforcement index. mm =.9 in.; kn =. kip; MPa =. ksi. This shows that Soltani et al. s model is consistently more accurate throughout the ranges of design variables than the AASHTO LRFD specifications model. In some bins of the AASHTO LRFD specifications model, there were no data to compare with similar bins of Soltani et al. s model. This was due to requirements in the AASHTO LRFD specifications, such as minimum compressive strength of concrete and minimum interface reinforcement of tests. These limitations do not exist in Soltani et al. s model. Figure illustrates the reliability indices related to each bin of IST design variables, including compressive strength of concrete, interface reinforcement index, area of concrete interface, roughness amplitude of interface, and compressive force normal to the shear plane. The results of this analysis will help designers and practitioners produce reliable designs. The investigation of the reliability index with respect to each design variable is discussed in the following sections. Compressive strength of concrete f ć For normalweight concrete with f c between and MPa (.9 and 8. ksi), the AASHTO LRFD specifications reliability index was. (below the target reliability index), which is significantly higher than the target reliability index when f c is greater than MPa. The reliability indices of Soltani et al. s model were more consistent than those of the AASHTO LRFD specifications IST model, and averaged around. for all bins. For lightweight concrete, the reliability indices of Soltani et al. s model for all bins ranged from. to.9. When the compressive strength of concrete was greater than 8 MPa (. ksi), the AASHTO LRFD specifications reliability indices were higher than the target reliability index of.. PCI Journal September October 8

11 AASHTO LRFD specifications Soltani et al. (8) < < Compressive strength of concrete f c, MPa < < <8 8- < Compressive strength of concrete f c, MPa < < Interface reinforcement index ρf y, MPa < Area of concrete interface A cv, mm < > Roughness amplitude of interface R, mm Compressive force normal to the shear plane P c, kn Normalweight concrete Interface reinforcement index ρf y, MPa -9 9< Area of concrete interface A cv, mm < > Roughness amplitude of interface R, mm Compressive force normal to the shear plane P c, kn Lightweight concrete Figure. Reliability indices for ranges of design variables. Note: mm =.9 in.; kn =. kip; MPa =. ksi. PCI Journal September October 8

12 Interface reinforcement index ρf y In the tests with normalweight concrete using Soltani et al. s model, more interface reinforcement led to higher values of reliability index. The lowest reliability index was. in the AASHTO LRFD specifications model, when the interface reinforcement index was between.8 and. MPa (. and.8 ksi). The reliability indices for the tests with lightweight concrete in all bins of the AASHTO LRFD specifications model were too high compared with the target reliability index. However, the reliability indices were consistent, with an average of approximately. for Soltani et al. s model. Area of concrete interface A cv For normalweight concrete, when the area of concrete interface was between, and 9,8 mm ( and in. ), the AASHTO LRFD specifications reliability index was the lowest (β equal to.98). In Soltani et al. s model, the highest reliability index was obtained when the area of concrete interface was less than, mm ( in. ). For the tests with lightweight concrete, the minimum AASHTO LRFD specifications reliability index was.99. However, the minimum reliability index of Soltani et al. s model was.9 when the area of concrete interface was between, and 9, mm ( and in. ). Roughness amplitude of interface R For the tests with normalweight concrete, the AASHTO LRFD specifications reliability index was. for a roughness amplitude of interface greater than mm (. in.) and. for a roughness amplitude of interface less than mm. Thus, the AASHTO LRFD specifications model was. times more reliable when the interface was roughened compared with smooth interfaces. However, Soltani et al. s model showed consistent reliability index values for both interface roughness scenarios (β of about.). The minimum reliability index for the tests with lightweight concrete using the AASH- TO LRFD specifications model was., which is higher than the target reliability index. Compressive force normal to the shear plane P c The AASHTO LRFD specifications reliability indices do not relate to the compressive force normal to the shear plane. The reliability index for tests with normalweight concrete was less than.8, with or without the presence of a normal force. However, for tests with normalweight concrete using Soltani et al. s model, the reliability index was around. in both P c scenarios. Considering lightweight concrete with no normal force applied, the reliability index of Soltani et al. s model was.9. The AASHTO LRFD specifications reliability index was higher than the target reliability index in both P c scenarios. The results of the parametric study show that the AASHTO LRFD specifications reliability index values depend on the values of the design variables. However, the reliability indices of Soltani et al. s model were more consistent for different ranges of the design variables compared with the AASHTO LRFD specifications model and also averaged around the target reliability index of.. Conclusion Reliability analyses were performed on the IST model of the AASHTO LRFD specifications and on Soltani et al. s revised IST model to evaluate and determine their respective resistance factors. The analyses considered members with normalweight and lightweight concrete. Source data for the analyses were from a database presented in Soltani and Ross. To perform the reliability analyses, a resistance model R and a load model Q were created for each IST model. The reliability indices were obtained under a critical load scenario in which the shear values of the wearing surface, barrier weight, and lane load plus truck load with impact were determined to be,, and 98 kn (,., and kip), respectively. The reliability index of the current AASHTO LRFD specifications IST model was reported. Considering the target reliability index of., a resistance factor was proposed for Soltani et al. s model. Finally, reliability analyses using bin analysis were performed on ranges of design variables, including the compressive strength of concrete f c, area of concrete interface A cv, interface reinforcement index ρf y, roughness amplitude of interface R, and compressive force normal to the shear plane P c. The resistance factors of.9 (normalweight concrete) and.8 (lightweight concrete) in the AASHTO LRFD specifications model led to reliability indices of.8 and.8 for normalweight and lightweight concrete, respectively. For the tests with normalweight concrete, a resistance factor of. resulted in the target reliability index of.. The reliability index of the current AASHTO LRFD specifications IST model for normalweight concrete tests is lower than the target reliability index, while the AASHTO LRFD specifications IST model for lightweight concrete is too conservative (no resistance factor needed to satisfy the target reliability index). These results showed the need to revise the AASHTO LRFD specifications IST model and the resistance factors associated with it. The resistance factor of.9 for both normalweight and lightweight concrete in Soltani et al. s model resulted in reliability indices of. and. for normalweight and lightweight concrete, respectively. This shows that Soltani et al. s model met the target reliability index requirement through applying only one resistance factor for both normalweight and lightweight concrete. Therefore, Soltani et al. s model is an appropriate alternative to the current AASHTO LRFD specifications IST model. References. Soltani, M., and B. E. Ross.. Database Evaluation of Interface Shear Transfer in Reinforced Concrete Members. ACI Structural Journal (): 8 9. PCI Journal September October 8

13 . AASHTO (American Association of State Highway and Transportation Officials).. AASHTO LRFD Bridge Design Specifications. th ed., customary U.S. units. Washington, DC: AASHTO.. Soltani, M., B. E. Ross, and A. Khademi. Forthcoming. A Statistical Approach to Refine Design Codes for Interface Shear Transfer in Reinforced Concrete Structures. ACI Structural Journal.. Mast, R. F. 98. Auxiliary Reinforcement in Concrete Connections. Journal of the Structural Division 9 (): 8.. Birkeland, P. W., and H. W. Birkeland. 9. Connections in Precast Concrete Construction. Journal of the American Concrete Institute (): 8.. Hsu, T. T., S. T. Mau, and B. Chen. 98. Theory on Shear Transfer Strength of Reinforced Concrete. Structural Journal 8 (): 9.. Santos, P. M., and E. N. Júlio.. A State-of-the-Art Review on Shear-Friction. Engineering Structures : Jimenez-Perez, R., P. Gergely, and R. N. White. 98. Shear Transfer across Cracks in Reinforced Concrete. Report PB Ithaca, NY: Cornell University. 9. Scott, J.. Interface Shear Strength in Lightweight Concrete Bridge Girders. PhD diss., Virginia Polytechnic Institute and State University, Blacksburg, VA.. AASHTO.. AASHTO LRFD Bridge Design Specifications. th ed. Washington, DC: AASHTO.. Lang, M.. Analysis of the AASHTO LRFD Horizontal Shear Strength Equation. PhD diss., Virginia Polytechnic Institute and State University, Blacksburg, VA.. PCI Bridge Design Manual Steering Committee.. PCI Bridge Design Manual. MNL-. rd ed. Chicago, IL: PCI. Notation A cv A vf = area of concrete engaged in interface shear transfer = area of interface shear reinforcement crossing the shear plane within the area A cv Avg V exp Vn = mean value of the strength ratios c C = cohesion factor = cohesion coefficient COV DC = coefficient of variation of DC COV DW = coefficient of variation of DW COV F = coefficient of variation of F COV LL+IM = coefficient of variation of LL + IM COV M = coefficient of variation of M COV P = coefficient of variation of P COV Q = coefficient of variation of the load model COV R = coefficient of variation of the resistance model DC DR DW f c = dead load from the weight of structural components and nonstructural attachments = dead load ratio = dead load from the weight of the wearing surface = compressive strength of concrete. Nowak, A. S., and K. R. Collins.. Reliability of Structures. Boston, MA: McGraw-Hill.. Robert, E. M Structural Reliability Analysis and Prediction. Chichester, West Sussex, UK: Wiley.. Nowak, A. S., M. M. Szerszen, E. K. Szeliga, A. Szwed, and P. J. Podhorecki.. Reliability-based Calibration for Structural Concrete. Report UNLCE -. Lincoln, NE: University of Nebraska Department of Civil Engineering.. Nowak, A. S Calibration of LRFD Bridge Design Code. NCHRP (National Cooperative Highway Research Project) report 8. Washington, DC: Transportation Research Board. nchrp_rpt_8.pdf. f y F h IM k k k k = yield stress of reinforcement = fabrication factor = horizontal displacement = impact load from the forces produced by moving vehicles on the bridge = cohesion factor applied to R = cohesion factor applied to f c = shear friction factor applied to R = shear friction factor applied to f c 8 PCI Journal September October 8

14 k = normal force friction factor applied to R V ri = factored interface shear resistance k K K LL = normal force friction factor applied to f c = fraction of concrete strength available to resist interface shear = limiting interface shear resistance = live load from the forces from moving vehicles on the bridge V ui V ws Z value β = factored interface shear force due to the total load based on the applicable strength and extreme-event load combinations = wearing surface maximum shear = standard normal variable = reliability index LR = live load ratio γ DC = load factor of DC m Q = mean value of the load model γ DW = load factor of DW m RM = mean value of the resistance model γ LL = load factor of LL M = material factor λ = bias factor M M p f p s P P c Q R R m = friction coefficient for the shear-friction mechanism = friction coefficient for the normal force = failure probability = survival probability = professional factor = compressive force normal to the shear plane = load model = roughness amplitude of interface = resistance model SD V exp Vn = standard deviation of the strength ratios v V b = vertical displacement = barrier weight maximum shear λ DC λ DW λ F λ LL+IM λ M λ P μ ρf y σ comp σ Q σ R σ stl = bias factor of DC = bias factor of DW = mean value of F = bias factor of LL + IM = mean value of M = mean value of P = friction factor = interface reinforcement index = compressive stress perpendicular to the interface = standard deviation of load model = standard deviation of resistance model = tensile stress developed in steel reinforcement due to shear-friction V exp V LL V LT = measured experimental interface shear transfer strength = lane load maximum shear = truck load maximum shear τ φ φ () = shear stress developed at the interface = shear resistance factor = inverse standard normal distribution function V n = predicted nominal interface shear transfer strength V ni = nominal interface shear resistance according to the AASHTO LRFD specifications V pre = predicted interface shear transfer strength PCI Journal September October 8 9

15 About the authors <Body>Mohamed Mahmoodreza Soltani, K. Nafadi, PhD, is a PhD, postdoctoral is an assistant researcher/lecturer professor of in structural the Glenn engineering Department at of Assiut Civil FPO University Engineering in at Assiut, Clemson Egypt. University former in Clemson, graduate S.C. research He received He is a assistant his bachelor s in the degree Department from Shahid of Civil, Beheshti Construction, University and in Tehran, Environmental Iran; his Engineering master s degree at North from the Carolina University State of Texas University at El Paso, (NCSU) in Tex.; Raleigh. and his PhD from Clemson University. His research interests include the behavior, analysis, and design of reinforced Omar and prestressed M. Khalafalla, concrete is a structures graduate and bridge engineering research and reliability and teaching analysis assistant of civil engineering FPOsystems. and PhD candidate in the Department of Civil, Construction, and Environmental Engineering at NCSU. FPO FPO Gregory W. Lucier, PhD, is a research assistant professor in the Department of Civil, Construction, and Environmental Engineering and manager of the Constructed Facilities Laboratory at NCSU. Sami H. Rizkalla, PhD, FPCI, FACI, FASCE, FIIFC, FEIC, FCSCE, is Distinguished Professor of Civil Engineering and Construction, director of the Constructed Facilities Laboratory, and director of the National Science Foundation Center on Integration of Composites into Infrastructure at NCSU. Abstract Body Interface textshear transfer (IST) is a concept that describes the mechanisms by which shear forces pass Keywords through a concrete-to-concrete interface no, or negligible, moment is present. Previous research Body has shown text that the IST model of the American Association of State Highway and Transportation Officials AASHTO policy LRFD Bridge Design Specifications Review produces inconsistent levels of accuracy for different values text of design variables, such as compressive Body strength of concrete. In this study, a reliability analysis Reader was performed comments on the AASHTO LRFD specifications model to evaluate the code s resistance factor. In addition, a text comparative reliability analysis was performed Body on a new IST model that improves the limitations of the AASHTO LRFD specifications model to calibrate its resistance factor to meet the target reliability index of.. Results showed that for a critical load combination, the reliability indices of the AASHTO LRFD specifications model with normalweight and lightweight concrete were.8 and.8, respectively, as applying a resistance factor of.9, the reliability indices of the alternative IST model for tests with normalweight concrete and lightweight concrete were. and., respectively. The results of the reliability study show that the alternative model performs better than the AASHTO LRFD specifications model. In this study, reliability indices were also scrutinized for different ranges of IST design variables, which benefits designers and practitioners. Keywords Design model, interface shear transfer design variables, lightweight concrete, load model, normalweight concrete, resistance factor, resistance model, shear friction. FPO FPO Paul Z. Zia, PhD, PE, FPCI, is a Distinguished University Professor Emeritus in the Department of Civil, Construction, and Environmental Engineering at NCSU. Gary J. Klein, PE, is executive vice president and senior principal for Wiss, Janney, Elstner Associates Inc. in Northbrook, Ill. Review policy This paper was reviewed in accordance with the Precast/Prestressed Concrete Institute s peer-review process. Reader comments Please address any reader comments to PCI Journal editor-in-chief Emily Lorenz at elorenz@pci.org or Precast/Prestressed Concrete Institute, c/o PCI Journal, W. Adams St., Suite, Chicago, IL. PCI Journal September October 8

The seventh edition of the PCI Design Handbook:

The seventh edition of the PCI Design Handbook: Examination of the effective coefficient of friction for shear friction design Kristian Krc, Samantha Wermager, Lesley H. Sneed, and Donald Meinheit The seventh edition of the PCI Design Handbook: Precast

More information

Appendix K Design Examples

Appendix K Design Examples Appendix K Design Examples Example 1 * Two-Span I-Girder Bridge Continuous for Live Loads AASHTO Type IV I girder Zero Skew (a) Bridge Deck The bridge deck reinforcement using A615 rebars is shown below.

More information

Appendix J. Example of Proposed Changes

Appendix J. Example of Proposed Changes Appendix J Example of Proposed Changes J.1 Introduction The proposed changes are illustrated with reference to a 200-ft, single span, Washington DOT WF bridge girder with debonded strands and no skew.

More information

Influence of Roughness, Cohesion and Friction on the Interface Shear Strength of Composite Concrete-to- Concrete Bond

Influence of Roughness, Cohesion and Friction on the Interface Shear Strength of Composite Concrete-to- Concrete Bond APSEC-ICCER 212 Norhazilan Md. Noor et. al. (Eds.) 2 4 October 212 Surabaya, Indonesia Influence of Roughness, Cohesion and Friction on the Interface Shear Strength of Composite Concrete-to- Concrete Bond

More information

A.2 AASHTO Type IV, LRFD Specifications

A.2 AASHTO Type IV, LRFD Specifications A.2 AASHTO Type IV, LRFD Specifications A.2.1 INTRODUCTION A.2.2 DESIGN PARAMETERS 1'-5.0" Detailed example showing sample calculations for design of typical Interior AASHTO Type IV prestressed concrete

More information

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement.

Roadway Grade = m, amsl HWM = Roadway grade dictates elevation of superstructure and not minimum free board requirement. Example on Design of Slab Bridge Design Data and Specifications Chapter 5 SUPERSTRUCTURES Superstructure consists of 10m slab, 36m box girder and 10m T-girder all simply supported. Only the design of Slab

More information

NCHRP Project High Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks

NCHRP Project High Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks NCHRP Project 18-15 High Performance/High-Strength Lightweight Concrete for Bridge Girders and Decks Bernie Kassner, Research Scientist Virginia Center for Innovation and Research Michael Brown Associate

More information

Finite Element Modeling of the Load Transfer Mechanism in Adjacent Prestressed. Concrete Box-Beams. a thesis presented to.

Finite Element Modeling of the Load Transfer Mechanism in Adjacent Prestressed. Concrete Box-Beams. a thesis presented to. Finite Element Modeling of the Load Transfer Mechanism in Adjacent Prestressed Concrete Box-Beams a thesis presented to the faculty of the Russ College of Engineering and Technology of Ohio University

More information

Risk Assessment of Highway Bridges: A Reliability-based Approach

Risk Assessment of Highway Bridges: A Reliability-based Approach Risk Assessment of Highway Bridges: A Reliability-based Approach by Reynaldo M. Jr., PhD Indiana University-Purdue University Fort Wayne pablor@ipfw.edu Abstract: Many countries are currently experiencing

More information

CSiBridge. Bridge Rating

CSiBridge. Bridge Rating Bridge Rating CSiBridge Bridge Rating ISO BRG102816M15 Rev. 0 Proudly developed in the United States of America October 2016 Copyright Copyright Computers & Structures, Inc., 1978-2016 All rights reserved.

More information

Flexure: Behavior and Nominal Strength of Beam Sections

Flexure: Behavior and Nominal Strength of Beam Sections 4 5000 4000 (increased d ) (increased f (increased A s or f y ) c or b) Flexure: Behavior and Nominal Strength of Beam Sections Moment (kip-in.) 3000 2000 1000 0 0 (basic) (A s 0.5A s ) 0.0005 0.001 0.0015

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk Topics Addressed Shear Stresses in Rectangular Beams Diagonal Tension

More information

APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS

APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS APPENDIX D SUMMARY OF EXISTING SIMPLIFIED METHODS D-1 An extensive literature search revealed many methods for the calculation of live load distribution factors. This appendix will discuss, in detail,

More information

SHEAR RESISTANCE BETWEEN CONCRETE-CONCRETE SURFACES

SHEAR RESISTANCE BETWEEN CONCRETE-CONCRETE SURFACES , DOI: 10.2478/sjce-2013-0018 M. KOVAČOVIC SHEAR RESISTANCE BETWEEN CONCRETE-CONCRETE SURFACES Marek KOVAČOVIC Email: marek.kovacovic@gmail.com Research field: composite structures Address: Department

More information

Chapter 8. Shear and Diagonal Tension

Chapter 8. Shear and Diagonal Tension Chapter 8. and Diagonal Tension 8.1. READING ASSIGNMENT Text Chapter 4; Sections 4.1-4.5 Code Chapter 11; Sections 11.1.1, 11.3, 11.5.1, 11.5.3, 11.5.4, 11.5.5.1, and 11.5.6 8.2. INTRODUCTION OF SHEAR

More information

Moment redistribution of continuous composite I-girders with high strength steel

Moment redistribution of continuous composite I-girders with high strength steel Moment redistribution of continuous composite I-girders with high strength steel * Hyun Sung Joo, 1) Jiho Moon, 2) Ik-Hyun sung, 3) Hak-Eun Lee 4) 1), 2), 4) School of Civil, Environmental and Architectural

More information

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003

Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Curved Steel I-girder Bridge LFD Guide Specifications (with 2003 Edition) C. C. Fu, Ph.D., P.E. The BEST Center University of Maryland October 2003 Guide Specifications (1993-2002) 2.3 LOADS 2.4 LOAD COMBINATIONS

More information

Load Resistant Factor Calibration for Tunnel

Load Resistant Factor Calibration for Tunnel Load Resistant Factor Calibration for Tunnel * S. Hooman. Ghasemi 1) *11) Department of Civil Engineering, Qazvin Branch, Islamic Azad University, Qazvin, 34158, Iran. 1 Hooman.Ghasemi@auburn.edu ABSTRACT

More information

Design of Reinforced Concrete Beam for Shear

Design of Reinforced Concrete Beam for Shear Lecture 06 Design of Reinforced Concrete Beam for Shear By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk 1 Topics Addressed Shear Stresses in Rectangular

More information

Load Capacity Evaluation of Pennsylvania s Single Span T-Beam Bridges

Load Capacity Evaluation of Pennsylvania s Single Span T-Beam Bridges Presentation at 2003 TRB Meeting, Washington, D.C. UNIVERSITY Load Capacity Evaluation of Pennsylvania s Single Span T-Beam Bridges F. N. Catbas, A. E. Aktan, K. Ciloglu, O. Hasancebi, J. S. Popovics Drexel

More information

Designing Reinforced Concrete Rectangular Columns for Biaxial Bending

Designing Reinforced Concrete Rectangular Columns for Biaxial Bending ENGINEERING DATA REORT NUMBER 57 Designing Reinforced Concrete Rectangular Columns for Biaxial Bending A SERVICE OF THE CONCRETE REINFORCING STEEL INSTITUTE 933 N. lum Grove Rd., Schaumburg, Illinois 60173-4758

More information

Probabilistic damage control seismic design of bridges using structural reliability concept

Probabilistic damage control seismic design of bridges using structural reliability concept Probabilistic damage control seismic design of bridges using structural reliability concept A. Saini Doctoral Student, University of Nevada, Reno, NV, USA A. Vosooghi Bridge Engineer III, Ph.D., P.E.,

More information

Bayesian Approach in Structural Tests with Limited Resources

Bayesian Approach in Structural Tests with Limited Resources Bayesian Approach in Structural Tests with Limited Resources *Kidong Park 1), David Webber 2), Changsoon Rha 3), Jidae Park 4), & Junggil Lee 1), 2), 4), 5) Health, Safety & Environment Division, Samsung

More information

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010

2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 2010 NASCC / Structures Congress Orlando, Florida May 13, 2010 Load Transfer in Composite Construction (Chapter I of the 2010 AISC Specification) William P. Jacobs, V Stanley D. Lindsey & Associates Atlanta,

More information

Uncertainty modelling using software FReET

Uncertainty modelling using software FReET Uncertainty modelling using software FReET D. Novak, M. Vorechovsky, R. Rusina Brno University of Technology Brno, Czech Republic 1/30 Outline Introduction Methods and main features Software FReET Selected

More information

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE

EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE EARTHQUAKE SIMULATION TESTS OF BRIDGE COLUMN MODELS DAMAGED DURING 1995 KOBE EARTHQUAKE J. Sakai 1, S. Unjoh 2 and H. Ukon 3 1 Senior Researcher, Center for Advanced Engineering Structural Assessment and

More information

A q u a b l u e a t t h e G o l d e n M i l e

A q u a b l u e a t t h e G o l d e n M i l e A q u a b l u e a t t h e G o l d e n M i l e H a t o R e y, P u e r t o R i c o G e n e r a l B u i l d i n g I n f o r m a t i o n Building Facts: 7-story parking structure + luxury apartments 900,000

More information

Research Article Shear Stress-Relative Slip Relationship at Concrete Interfaces

Research Article Shear Stress-Relative Slip Relationship at Concrete Interfaces Advances in Materials Science and Engineering Volume 216, Article ID 6475161, 9 pages http://dx.doi.org/1.1155/216/6475161 Research Article Shear Stress-Relative Slip Relationship at Concrete Interfaces

More information

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges

FHWA Bridge Design Guidance No. 1 Revision Date: July 21, Load Rating Evaluation of Gusset Plates in Truss Bridges FHWA Bridge Design Guidance No. 1 Revision Date: July 21, 2008 Load Rating Evaluation of Gusset Plates in Truss Bridges By Firas I. Sheikh Ibrahim, PhD, PE Part B Gusset Plate Resistance in Accordance

More information

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement

Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement RESEARCH ARTICLE OPEN ACCESS Shear Strength of Slender Reinforced Concrete Beams without Web Reinforcement Prof. R.S. Chavan*, Dr. P.M. Pawar ** (Department of Civil Engineering, Solapur University, Solapur)

More information

DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY

DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY DESIGN OF DOWELS FOR SHEAR TRANSFER AT THE INTERFACE BETWEEN CONCRETE CAST AT DIFFERENT TIMES: A CASE STUDY Samayamanthree Mudiyanselage Premasiri Karunarathna 118614J Degree of Master of Engineering in

More information

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design

Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Seismic Pushover Analysis Using AASHTO Guide Specifications for LRFD Seismic Bridge Design Elmer E. Marx, Alaska Department of Transportation and Public Facilities Michael Keever, California Department

More information

INTERFACE SHEAR TRANSFER FOR HIGH STRENGTH CONCRETE AND HIGH STRENGTH REINFORCEMENT

INTERFACE SHEAR TRANSFER FOR HIGH STRENGTH CONCRETE AND HIGH STRENGTH REINFORCEMENT INTERFACE SHEAR TRANSFER FOR HIGH STRENGTH CONCRETE AND HIGH STRENGTH REINFORCEMENT 641 Susumu KONO 1 And Hitoshi TANAKA SUMMARY The shear transfer at construction joints for members with high strength

More information

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method

Calibration of Resistance Factors for Drilled Shafts for the 2010 FHWA Design Method Calibration of Resistance Factors for Drilled Shafts for the 21 FHWA Design Method Murad Y. Abu-Farsakh, Ph.D., P.E. Qiming Chen, Ph.D., P.E. Md Nafiul Haque, MS Feb 2, 213 213 Louisiana Transportation

More information

Lecture-04 Design of RC Members for Shear and Torsion

Lecture-04 Design of RC Members for Shear and Torsion Lecture-04 Design of RC Members for Shear and Torsion By: Prof. Dr. Qaisar Ali Civil Engineering Department UET Peshawar drqaisarali@uetpeshawar.edu.pk www.drqaisarali.com 1 Topics Addressed Design of

More information

Lap splice length and details of column longitudinal reinforcement at plastic hinge region

Lap splice length and details of column longitudinal reinforcement at plastic hinge region Lap length and details of column longitudinal reinforcement at plastic hinge region Hong-Gun Park 1) and Chul-Goo Kim 2) 1), 2 Department of Architecture and Architectural Engineering, Seoul National University,

More information

Two-Direction Cracking Shear-Friction Membrane Model for Finite Elment Analysis of Reinforced concrete

Two-Direction Cracking Shear-Friction Membrane Model for Finite Elment Analysis of Reinforced concrete Washington University in St. Louis Washington University Open Scholarship All Theses and Dissertations (ETDs) January 2010 Two-Direction Cracking Shear-Friction Membrane Model for Finite Elment Analysis

More information

AASHTO-LRFD LIVE LOAD DISTRIBUTION SPECIFICATIONS

AASHTO-LRFD LIVE LOAD DISTRIBUTION SPECIFICATIONS AASHTO-LRFD LIVE LOAD DISTRIBUTION SPECIFICATIONS By Toorak Zokaie, 1 Member, ASCE ABSTRACT: The live load distribution factors contained in the AASHTO-LRFD Bridge Design Specification present a major

More information

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion

Example 1 - Single Headed Anchor in Tension Away from Edges BORRADOR. Calculations and Discussion Example 1 - Single Headed Anchor in Tension Away from Edges Check the capacity of a single anchor, 1 in. diameter, F1554 Grade 36 headed bolt with heavy-hex head installed in the top of a foundation without

More information

A RELIABILITY BASED SIMULATION, MONITORING AND CODE CALIBRATION OF VEHICLE EFFECTS ON EXISTING BRIDGE PERFORMANCE

A RELIABILITY BASED SIMULATION, MONITORING AND CODE CALIBRATION OF VEHICLE EFFECTS ON EXISTING BRIDGE PERFORMANCE A RELIABILITY BASED SIMULATION, MONITORING AND CODE CALIBRATION OF VEHICLE EFFECTS ON EXISTING BRIDGE PERFORMANCE C.S. Cai 1, Wei Zhang 1, Miao Xia 1 and Lu Deng 1 Dept. of Civil and Environmental Engineering,

More information

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson

Singly Symmetric Combination Section Crane Girder Design Aids. Patrick C. Johnson Singly Symmetric Combination Section Crane Girder Design Aids by Patrick C. Johnson PCJohnson@psu.edu The Pennsylvania State University Department of Civil and Environmental Engineering University Park,

More information

Lecture-08 Gravity Load Analysis of RC Structures

Lecture-08 Gravity Load Analysis of RC Structures Lecture-08 Gravity Load Analysis of RC Structures By: Prof Dr. Qaisar Ali Civil Engineering Department UET Peshawar www.drqaisarali.com 1 Contents Analysis Approaches Point of Inflection Method Equivalent

More information

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION

DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION October 1-17,, Beijing, China DYNAMIC ANALYSIS OF PILES IN SAND BASED ON SOIL-PILE INTERACTION Mohammad M. Ahmadi 1 and Mahdi Ehsani 1 Assistant Professor, Dept. of Civil Engineering, Geotechnical Group,

More information

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results

Chapter 4. Test results and discussion. 4.1 Introduction to Experimental Results Chapter 4 Test results and discussion This chapter presents a discussion of the results obtained from eighteen beam specimens tested at the Structural Technology Laboratory of the Technical University

More information

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance

Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Impact of Existing Pavement on Jointed Plain Concrete Overlay Design and Performance Michael I. Darter, Jag Mallela, and Leslie Titus-Glover 1 ABSTRACT Concrete overlays are increasingly being constructed

More information

Bond-Slip Characteristics between Cold-Formed Metal and Concrete

Bond-Slip Characteristics between Cold-Formed Metal and Concrete Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (2014) - 22nd International Specialty Conference on Cold-Formed Steel Structures

More information

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in

Sabah Shawkat Cabinet of Structural Engineering Walls carrying vertical loads should be designed as columns. Basically walls are designed in Sabah Shawkat Cabinet of Structural Engineering 17 3.6 Shear walls Walls carrying vertical loads should be designed as columns. Basically walls are designed in the same manner as columns, but there are

More information

Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes. Paper by Amir Z. Fam and Sami H. Rizkalla

Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes. Paper by Amir Z. Fam and Sami H. Rizkalla DISCUSSION Disc. 98-S43/From the July-Aug. 21 ACI Structural Journal, p. 451 Confinement Model for Axially Loaded Concrete Confined by Circular Fiber-Reinforced Polymer Tubes. Paper by Amir Z. Fam and

More information

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608

Edward C. Robison, PE, SE. 02 January Architectural Metal Works ATTN: Sean Wentworth th ST Emeryville, CA 94608 Edward C. Robison, PE, SE ks ATTN: Sean Wentworth 1483 67 th ST Emeryville, CA 94608 02 January 2013 SUBJ: 501 CORTE MADERA AVE, CORTE MADERA, CA 94925 BALCONY GUARD BASE PLATE MOUNTS The guards for the

More information

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members

RESEARCH REPORT RP02-2 MARCH 2002 REVISION Committee on Specifications for the Design of Cold-Formed Steel Structural Members research report Web Crippling and Bending Interaction of Cold-Formed Steel Members RESEARCH REPORT RP02-2 MARCH 2002 REVISION 2006 Committee on Specifications for the Design of Cold-Formed Steel Structural

More information

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS

APPENDIX D COMPARISON OF CURVED STEEL I-GIRDER BRIDGE DESIGN SPECIFICATIONS APPENIX COMPARISON O CURVE STEEL I-GIRER BRIGE ESIGN SPECIICATIONS (This page is intentionally left blank.) TABLE O CONTENTS LIST O IGURES... -iv LIST O TABLES... -vi 1 OBJECTIVE... -1 METHOOLOGY... -1

More information

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola

MECHANICS OF MATERIALS. Prepared by Engr. John Paul Timola MECHANICS OF MATERIALS Prepared by Engr. John Paul Timola Mechanics of materials branch of mechanics that studies the internal effects of stress and strain in a solid body. stress is associated with the

More information

Experimental Investigation of Steel Pipe Pile to Concrete Cap Connections

Experimental Investigation of Steel Pipe Pile to Concrete Cap Connections Brigham Young University BYU ScholarsArchive All Theses and Dissertations 211-4-19 Experimental Investigation of Steel Pipe Pile to Concrete Cap Connections Ryan S. Eastman Brigham Young University - Provo

More information

Design of Reinforced Soil Walls By Lrfd Approach

Design of Reinforced Soil Walls By Lrfd Approach IOSR Journal of Mechanical and Civil Engineering (IOSR-JMCE) ISSN: 2278-1684, PP: 16-26 www.iosrjournals.org Design of Reinforced Soil Walls By Lrfd Approach A.D. Maskar 1, N.T. Suryawanshi 2 1 Assistant

More information

Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading

Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading Constitutive Modeling of Reinforced Concrete Panel Behavior under Cyclic Loading K. Orakcal & D. Ulugtekin Bogazici University, Istanbul, Turkey L. M. Massone University of Chile, Santiago, Chile SUMMARY:

More information

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils

LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils LRFD Calibration of Axially-Loaded Concrete Piles Driven into Louisiana Soils Louisiana Transportation Conference February 10, 2009 Sungmin Sean Yoon, Ph. D., P.E. (Presenter) Murad Abu-Farsakh, Ph. D.,

More information

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado

FHWA/IN/JTRP-2008/5. Final Report. Dongwook Kim Rodrigo Salgado FHWA/IN/JTRP-2008/5 Final Report LIMIT STATES AND LOAD AND RESISTANCE DESIGN OF SLOPES AND RETAINING STRUCTURES Dongwook Kim Rodrigo Salgado January 2009 INDOT Research TECHNICAL Summary Technology Transfer

More information

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC.

DIVISION: METALS SECTION: METAL FASTENINGS SECTION: STEEL DECKING REPORT HOLDER: PNEUTEK, INC. ICC ES Report ICC ES () 7 () www.icc es.org Most Widely Accepted and Trusted ESR 1 Reissued /1 This report is subject to renewal /. DIVISION: METALS SECTION: METAL FASTENINGS SECTION: 1 STEEL ING REPORT

More information

System Capacity of Vintage Reinforced Concrete Moment Frame Culverts with No Overlay

System Capacity of Vintage Reinforced Concrete Moment Frame Culverts with No Overlay DCT 252 System Capacity of Vintage Reinforced Concrete Moment Frame Culverts with No Overlay By Timothy Porter Thomas Schumacher August, 2015 Delaware Center for Transportation University of Delaware 355

More information

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam

Finite Element Analysis of FRP Debonding Failure at the Tip of Flexural/Shear Crack in Concrete Beam Marquette University e-publications@marquette Civil and Environmental Engineering Faculty Research and Publications Civil and Environmental Engineering, Department of 12-1-2013 Finite Element Analysis

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

Evaluation of Flexural Stiffness for RC Beams During Fire Events

Evaluation of Flexural Stiffness for RC Beams During Fire Events 3 rd International Structural Specialty Conference 3 ième conférence internationale spécialisée sur le génie des structures Edmonton, Alberta June 6-9, 202 / 6 au 9 juin 202 Evaluation of Flexural Stiffness

More information

FE analysis of steel-concrete composite structure with partial interactions

FE analysis of steel-concrete composite structure with partial interactions FE analysis of steel-concrete composite structure with partial interactions WonHo Lee 1), SeoJun Ju 2) and Hyo-Gyoung Kwa 3) 1), 2) 3) Department of Civil Engineering, KAIST, Daejeon 34141, Korea 1) wonho.lee@aist.ac.r

More information

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements

Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Interaction Diagram - Dumbbell Concrete Shear Wall Unsymmetrical Boundary Elements Investigate the capacity for the irregular

More information

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS

THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS THE STRUCTURAL DESIGN OF PILE FOUNDATIONS BASED ON LRFD FOR JAPANESE HIGHWAYS Hideaki Nishida 1,Toshiaki Nanazawa 2, Masahiro Shirato 3, Tetsuya Kohno 4, and Mitsuaki Kitaura 5 Abstract One of the motivations

More information

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas

Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas San Miguel de Tucuman, Argentina September 14 th, 2011 Seminary on Análisis Computacional del Comportamiento de Falla de Hormigón Reforzado con Fibras Metálicas Antonio Caggiano 1, Guillermo Etse 2, Enzo

More information

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data

Experiences in an Undergraduate Laboratory Using Uncertainty Analysis to Validate Engineering Models with Experimental Data Experiences in an Undergraduate Laboratory Using Analysis to Validate Engineering Models with Experimental Data W. G. Steele 1 and J. A. Schneider Abstract Traditionally, the goals of engineering laboratory

More information

A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia

A Thesis presented to the Faculty of the Graduate School at the University of Missouri-Columbia LRFD for Settlement Analyses of Shallow Foundations and Embankments ------ Developed Resistance Factors for Consolidation Settlement Analyses A Thesis presented to the Faculty of the Graduate School at

More information

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011

NCHRP LRFD Design Specifications for Shallow Foundations TRB AFS30 Committee Meeting January 26, 2011 Geotechnical Engineering Research Laboratory Dept. of Civil and Environmental Engineering University of Massachusetts Lowell. NCHRP 24-31 LRFD Design Specifications for Shallow Foundations TRB AFS3 Committee

More information

1/2. E c Part a The solution is identical for grade 40 and grade 60 reinforcement. P s f c n A s lbf. The steel carries 13.3 percent of the load

1/2. E c Part a The solution is identical for grade 40 and grade 60 reinforcement. P s f c n A s lbf. The steel carries 13.3 percent of the load 1/2 3.1. A 16 20 in. column is made of the same concrete and reinforced with the same six No. 9 (No. 29) bars as the column in Examples 3.1 and 3.2, except t hat a steel with yield strength f y = 40 ksi

More information

RELIABILITY MODELS FOR COMBINATIONS OF EXTREME EVENTS

RELIABILITY MODELS FOR COMBINATIONS OF EXTREME EVENTS 17 CHAPTER 2 RELIABILITY MODELS FOR COMBINATIONS OF EXTREME EVENTS This chapter describes the models used to perform the reliability analysis of bridges subjected to extreme load events and their combinations.

More information

Load Resistance Factor Design (LRFD) and Allowable Stress Design

Load Resistance Factor Design (LRFD) and Allowable Stress Design Michigan Bridge Conference - 2009 Load Resistance Factor Design (LRFD) and Allowable Stress Design Different Ways of Looking at the Same Thing (ASD) CG Gilbertson Michigan Tech Uncertainties in Design

More information

County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007. For prestr. beams, assume 12" top flange, therefore take 4" from CL Gird.

County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007. For prestr. beams, assume 12 top flange, therefore take 4 from CL Gird. County: Any Design: BRG Date: 9/2007 Hwy: Any Ck Dsn: BRG Date: 9/2007 SLAB DESIGN EXAMPLE Design: Using AASHTO LRFD Bridge Design Specifications - 4 th Ed. and TxDOT LRFD Bridge Design Manual 8" Slab

More information

Serviceability Deflection calculation

Serviceability Deflection calculation Chp-6:Lecture Goals Serviceability Deflection calculation Deflection example Structural Design Profession is concerned with: Limit States Philosophy: Strength Limit State (safety-fracture, fatigue, overturning

More information

MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE

MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE Journal of Marine Science and Technology, Vol., No., pp. -8 () MODELING THE EFFECTIVE ELASTIC MODULUS OF RC BEAMS EXPOSED TO FIRE Jui-Hsiang Hsu*, ***, Cherng-Shing Lin**, and Chang-Bin Huang*** Key words:

More information

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder

PLATE GIRDERS II. Load. Web plate Welds A Longitudinal elevation. Fig. 1 A typical Plate Girder 16 PLATE GIRDERS II 1.0 INTRODUCTION This chapter describes the current practice for the design of plate girders adopting meaningful simplifications of the equations derived in the chapter on Plate Girders

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

AISC LRFD Beam Design in the RAM Structural System

AISC LRFD Beam Design in the RAM Structural System Model: Verification11_3 Typical Floor Beam #10 W21x44 (10,3,10) AISC 360-05 LRFD Beam Design in the RAM Structural System Floor Loads: Slab Self-weight: Concrete above flute + concrete in flute + metal

More information

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6

1. ARRANGEMENT. a. Frame A1-P3. L 1 = 20 m H = 5.23 m L 2 = 20 m H 1 = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m. b. Frame P3-P6 Page 3 Page 4 Substructure Design. ARRANGEMENT a. Frame A-P3 L = 20 m H = 5.23 m L 2 = 20 m H = 8.29 m L 3 = 20 m H 2 = 8.29 m H 3 = 8.39 m b. Frame P3-P6 L = 25 m H 3 = 8.39 m L 2 = 3 m H 4 = 8.5 m L

More information

DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION. ALTERNATIVE MODELS for SHEAR ANALYSIS

DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION. ALTERNATIVE MODELS for SHEAR ANALYSIS DIAGONAL TENSION RC BEAM without SHEAR REINFORCEMENT RC BEAM with WEB REINFORCEMENT KCI CODE PROVISION DEEP BEAMS ALTERNATIVE MODELS for SHEAR ANALYSIS SHEAR FRICTION DESIGN METHOD &DESIGN 447.327 Theory

More information

3.4 Reinforced Concrete Beams - Size Selection

3.4 Reinforced Concrete Beams - Size Selection CHAPER 3: Reinforced Concrete Slabs and Beams 3.4 Reinforced Concrete Beams - Size Selection Description his application calculates the spacing for shear reinforcement of a concrete beam supporting a uniformly

More information

EXPERIMENTAL MEASUREMENTS ON TEMPERATURE GRADIENTS IN CONCRETE BOX-GIRDER BRIDGE UNDER ENVIRONMENTAL LOADINGS

EXPERIMENTAL MEASUREMENTS ON TEMPERATURE GRADIENTS IN CONCRETE BOX-GIRDER BRIDGE UNDER ENVIRONMENTAL LOADINGS EXPERIMENTAL MEASUREMENTS ON TEMPERATURE GRADIENTS IN CONCRETE BOX-GIRDER BRIDGE UNDER ENVIRONMENTAL LOADINGS S. R. Abid 1, N. Tayşi 2, M. Özakça 3 ABSTRACT The effect of the fluctuation of air temperature

More information

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS

SERVICEABILITY OF BEAMS AND ONE-WAY SLABS CHAPTER REINFORCED CONCRETE Reinforced Concrete Design A Fundamental Approach - Fifth Edition Fifth Edition SERVICEABILITY OF BEAMS AND ONE-WAY SLABS A. J. Clark School of Engineering Department of Civil

More information

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown.

D : SOLID MECHANICS. Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. D : SOLID MECHANICS Q. 1 Q. 9 carry one mark each. Q.1 Find the force (in kn) in the member BH of the truss shown. Q.2 Consider the forces of magnitude F acting on the sides of the regular hexagon having

More information

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore.

This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. This document is downloaded from DR-NTU, Nanyang Technological University Library, Singapore. Title Truss Model for Shear Strength of Structural Concrete Walls Author(s) Citation Chandra, Jimmy; Chanthabouala,

More information

Task 1 - Material Testing of Bionax Pipe and Joints

Task 1 - Material Testing of Bionax Pipe and Joints Task 1 - Material Testing of Bionax Pipe and Joints Submitted to: Jeff Phillips Western Regional Engineer IPEX Management, Inc. 20460 Duncan Way Langley, BC, Canada V3A 7A3 Ph: 604-534-8631 Fax: 604-534-7616

More information

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading

Tension zone applications, i.e., cable trays and strut, pipe supports, fire sprinklers Seismic and wind loading General Information Mechanical Anchors General Information Power-Stud + SD1 Wedge Expansion Anchor Product Description The Power-Stud+ SD1 anchor is a fully threaded, torque-controlled, wedge expansion

More information

Anchor Bolt Design (Per ACI and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12)

Anchor Bolt Design (Per ACI and Design of Reinforcement in Concrete Pedestals CSA Today, Vol III, No. 12) Anchor Bolt Design (Per ACI 318-08 and "Design of Reinforcement in Concrete Pedestals" CSA Today, Vol III, No. 12) Design Assumptions: Base Units and Design 1. Tension is equally distributed among all

More information

BRIDGE RAIL DESIGN PROCEDURE EMAD BADIEE NASIM UDDIN, CHAIR IAN EDWARD HOSCH LEE MORADI

BRIDGE RAIL DESIGN PROCEDURE EMAD BADIEE NASIM UDDIN, CHAIR IAN EDWARD HOSCH LEE MORADI BRIDGE RAIL DESIGN PROCEDURE by EMAD BADIEE NASIM UDDIN, CHAIR IAN EDWARD HOSCH LEE MORADI A THESIS Submitted to the graduate faculty of The University of Alabama at Birmingham, in partial fulfillment

More information

MECHANICS OF MATERIALS Sample Problem 4.2

MECHANICS OF MATERIALS Sample Problem 4.2 Sample Problem 4. SOLUTON: Based on the cross section geometry, calculate the location of the section centroid and moment of inertia. ya ( + Y Ad ) A A cast-iron machine part is acted upon by a kn-m couple.

More information

Crack Control for Ledges in Inverted T Bent Caps

Crack Control for Ledges in Inverted T Bent Caps Crack Control for Ledges in Inverted T Bent Caps Research Report 0-1854-5 Prepared for Texas Department of Transportation Project 0-1854 By Ronnie Rong-Hua Zhu Research Associate Hemant Dhonde Research

More information

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION

FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Journal of the Chinese Institute of Engineers, Vol. 31, No., pp. 15-9 (8) 15 FLEXURAL ANALYSIS AND DESIGN METHODS FOR SRC BEAM SECTIONS WITH COMPLETE COMPOSITE ACTION Cheng-Cheng Chen* and Chao-Lin Cheng

More information

Precast Deck Joints using FRP and Ultra-High Performance Concrete

Precast Deck Joints using FRP and Ultra-High Performance Concrete Western University Scholarship@Western Electronic Thesis and Dissertation Repository January 2013 Precast Deck Joints using FRP and Ultra-High Performance Concrete Augustine K. Banson The University of

More information

Design of a Balanced-Cantilever Bridge

Design of a Balanced-Cantilever Bridge Design of a Balanced-Cantilever Bridge CL (Bridge is symmetric about CL) 0.8 L 0.2 L 0.6 L 0.2 L 0.8 L L = 80 ft Bridge Span = 2.6 L = 2.6 80 = 208 Bridge Width = 30 No. of girders = 6, Width of each girder

More information

Chapter. Materials. 1.1 Notations Used in This Chapter

Chapter. Materials. 1.1 Notations Used in This Chapter Chapter 1 Materials 1.1 Notations Used in This Chapter A Area of concrete cross-section C s Constant depending on the type of curing C t Creep coefficient (C t = ε sp /ε i ) C u Ultimate creep coefficient

More information

my!wind Ltd 5 kw wind turbine Static Stability Specification

my!wind Ltd 5 kw wind turbine Static Stability Specification my!wind Ltd 5 kw wind turbine Static Stability Specification 1 P a g e 0 3 / 0 4 / 2 0 1 4 Contents Contents... 2 List of Changes... 2 Appendixes... 2 General remarks... 3 1. Introduction... 4 2. Geometry...

More information

GeoShanghai 2010 International Conference Paving Materials and Pavement Analysis

GeoShanghai 2010 International Conference Paving Materials and Pavement Analysis Particle Shape, Type and Amount of Fines, and Moisture Affecting Resilient Modulus Behavior of Unbound Aggregates Debakanta Mishra 1, Erol Tutumluer 2, M. ASCE, Yuanjie Xiao 3 1 Graduate Research Assistant,

More information

Attachment K. Supplemental Shear Test Information

Attachment K. Supplemental Shear Test Information Attachment K. Supplemental Shear Test Information Computer Program Due to the iterative nature of shear design following the General Procedure in Article 5.8.3.4.2 of the AASHTO LRFD Bridge Specifications

More information

Design of AAC wall panel according to EN 12602

Design of AAC wall panel according to EN 12602 Design of wall panel according to EN 160 Example 3: Wall panel with wind load 1.1 Issue Design of a wall panel at an industrial building Materials with a compressive strength 3,5, density class 500, welded

More information

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS

POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS POST-PEAK BEHAVIOR OF FRP-JACKETED REINFORCED CONCRETE COLUMNS - Technical Paper - Tidarut JIRAWATTANASOMKUL *1, Dawei ZHANG *2 and Tamon UEDA *3 ABSTRACT The objective of this study is to propose a new

More information