THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS. T.I. Zvereva, S.V. Starchenko

Size: px
Start display at page:

Download "THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS. T.I. Zvereva, S.V. Starchenko"

Transcription

1 THE RELIABILITY OF EARTH S MAGNETIC POLES IN THE MODERN, HISTORICAL AND ANCIENT MODELS T.I. Zvereva, S.V. Starchenko Pushkov institute of Terrestrial Magnetism, ionosphere and Radio wave Propagation (IZMIRAN), Moscow, Troitsk, 14219, Russia, zvereva@izmiran.ru Abstract. We used daily averaged vector magnetic field data from the CHAMP satellite to construct spherical harmonic models of the main geomagnetic field up to n = m = 1 for the period from May 21 to the end of 29 at an interval of 4 days. The Earth s magnetic poles (the points where magnetic field lines are vertical) were modelled on the Earth s surface for each half year average with Gaussian decomposition degree n from 1 till 1. Final result is that models with n = 6 are virtually indistinguishable with n =7, 8, 9, 1 models. Therefore, the spherical harmonic models for the calculation of the virtual magnetic poles should be build at least up to n=6. For this reason the majority of the available ancient (archeo/paleo) magnetic reconstructions are not suitable for magnetic poles modeling, while the historical models (e.g. gufm1) are suitable for that because they are based on real measurements allowing modeling with n=6 and more. Introduction A magnetic pole is viewed as a point on the planetary surface where the magnetic field is entirely vertical. The Earth s magnetic poles located in the North and South hemisphere wander independently of each other. They can migrate rapidly: movement of the North pole up to 63 km per year in 23 have been observed. The direct measurements of the magnetic poles are hard and so scare that the first motivation of this study was to model the magnetic poles for the last decade that is actually not properly covered. In generic planetary respect magnetic poles are determining magnetosphere shape and dynamics of its most active places cusps. However the intrinsic magnetic field of the planets is estimated not so well comparing to the Earth where having Gaussian decomposition degree n up to 13 we could perfectly model magnetic poles positions and dynamics. So, in this research we are looking for the lowest degree n at which the model properly resembles the magnetic poles modeled at the highest degree n. In the same fashion we are modeling geomagnetic field at core-mantle boundary of the Earth in order to set up the lower resolution limit for satellite magnetic measurements capable to detect at least some generic planetary dynamo properties. Data and methods The vector measurements of the magnetic field on the CHAMP German satellite ( performed from May 21 until the end of 29 were used as data. The spherical harmonic models of the Earth s magnetic field were obtained using Janovsky (1978) formulas: n+ 1 N n a m m m U(r, θ, λ) = a (g n cosmλ + h n sin mλ)pn (cosθ), n= 1m= r 1 du 1 du du X = Y = Z =, r dθ rsin θ dλ dr where U is the geomagnetic potential at a point with geographic coordinates r, θ, λ (radius, co-latitude, and longitude); X, Y, and Z are the northern, eastern and vertical (downward) field components; а is the average radius of the Earth; P m n (cosθ) are the Legendre associated functions of power n and order m in the Schmidt normalization; and g m and h m n n are constant Gaussian coefficients. The available field measurements are used to calculate the g m and h m n n coefficients, which make it possible to calculate the field at any point, e.g., to find the poles coordinates. 66

2 Average daily spherical harmonic models of the main geomagnetic field were constructed for the above period at an interval of four days. All available measurements within one day with a 1_s resolution were taken (about 86 points). The models up to n = m = 1 (the number of spherical coefficients is 12) and the time variations in each coefficient were finally obtained for the above interval. It is clear that it is not necessary to use such a discreteness of the constructed models in order to reveal the tendency in pole motion variations, and models could be constructed without such a time resolution. However, after a half year averaging and having obtained only 16 points, we partially eliminated the model errors related to the neglect of the contribution of external fields to the models by Zvereva (212). Results Gaussian coefficients for intrinsic geomagnetic field were found on each fourth day using satellite data. The magnetic poles were modeled on the Earth s surface for each half year average with Gaussian decomposition degree n from 1 till 1. The results are shown in Fig. 1-3 for the magnetic pole located in the Northern hemisphere n=3 n=2 8 n= n=1 n=2 n=3 Fig. 1. The North geomagnetic pole tracks for n = 1, 2, 3, 1 n=9 n=7 n= Fig. 2. The North geomagnetic pole tracks for n = 7, 8, 9, 1 n=9 n=8 n=7 67

3 87 86 n=5 n=4 Latitude, [deg] n= Longitude, [deg] n=6 n=5 n=4 Fig. 3. The North geomagnetic pole tracks for n = 4, 5, 6, 1 In the same fashion neglecting by the mantle conductivity we also modeled magnetic flux space-time distributions on core-mantle boundary. The maps of the Z-component of the magnetic field on core-mantle boundary for the models with n = 1, 7, 4 on Fig. 4-6 are shown. N= Fig.4. The Z/1 - component of the magnetic field on core-mantle boundary. core radius is taken equal to half the radius of the Earth. This map is constructed on the model with n = 1 for 29 N= Fig.5. The Z/1 - component of the magnetic field on core-mantle boundary. The core radius is taken equal to half the radius of the Earth. This map is constructed on the model with n = 7 for 29 68

4 N= Fig.6. The Z/1 - component of the magnetic field on core-mantle boundary. The core radius is taken equal to half the radius of the Earth. This map is constructed on the model with n = 4 for 29 Final result is that models with n = 7 are virtually indistinguishable with n = 8, 9, 1 models, while magnetosphere and geodynamo related integral properties start to converge at n=5 already. Thus planetary magnetic field should at least be known up to n=6 degree in order to make plausible conclusions about related to the dip poles magnetosphere properties and related to the magnetic fluxes hydromagnetic dynamo features. Discussion Up to five centuries buck from the present time many direct geomagnetic measurements were performed (Bondar et al., 22; Jackson et al., 2) first by marine explorers and then in the specially designed observatories started by Gauss and Weber in 1 s. Those measurements quality and quantity allow geomagnetic modelling with Gaussian coefficients n sufficiently more than 5 as, for example that was done in gufm1 model by Jackson et al. (2). Therefore the geomagnetic pole position could be successfully modelled up to the beginning of 16th century, while it was not done properly yet. Besides the geomagnetic intensity measurements are started in 1 s only. So, it is not clear are the previous data enough reliable for such pole modelling or not? Going deeper in time we start to experience difficulties with the number and especially with the quality of the geomagnetic data. Archeomagnetic records operate with millenniums time-scale, but they could hardly reach n=4 as it is in the model by Korte et al. (25). Millions years paleomagnetic models are obviously even worst with their highest n=2, e.g. see Hatekayama and Kono (22). For this reason such ancient (archeo/paleo) magnetic reconstructions are not suitable for magnetic poles modeling at the Earth s surface. However, the magnetosphere and its cusps are forming many thousands kilometers above this surface. The magnetic poles at those positions should be much smaller affected by the higher n spherical harmonics. Thus archeomagnetic or even paleomagnetic models could become suitable for such super-higher altitude dip pole modelling and this is the subject for our future researches. Conclusion The Earth models with n about 7 are virtually indistinguishable with models, while magnetosphere and dynamo related polar properties start to converge at n=m=5 already. Therefore, the spherical harmonic models for the calculation of the virtual magnetic poles should be build at least up to n=6. For this reason the majority of the available ancient (archeo/paleo) magnetic reconstructions are not suitable for magnetic poles modeling at the Earth s surface, while the historical (up to 16th century) models are suitable when they are based on real measurements allowing modeling with n=6 and more. 69

5 References Bondar, T.N., Golovkov V.P., Yakovleva S.V. (22) Spatial-temporary model of the secular variation of geomagnetic field from 1 till 2, Geomagnetism and Aeronomy 42, 1-7. Jackson, A., Jonkers, A.R.T., Walker, M.R. (2) Four centuries of geomagnetic secular variation from historical records, Philos. Trans. R. Soc. Lond. 358, Janovsky, B.M. (1978) Terrestrial magnetism, Leningrad: Leningrad State University, 4 p. Hatekayama, T., Kono, M. (22) Geomagnetic field model for the last 5 My: time-averaged field and secular variation, Phys. Earth Planet. Inter., 133, Korte, M., Genevey A., Constable C. G., Frank, U., Schnepp, E. (25) Continuous geomagnetic field models for the past 7 millenia: 1. A new global data compilation, Geochem. Geophys. Geosyst. 6(2), Q2H15, doi:1.129/24gc8. Zvereva, T.I. (212) Motion of the Earth s Magnetic Poles in the Last Decade, Geomagnetism and Aeronomy 52, , doi: /S

Originally published as:

Originally published as: Originally published as: Mandea, M., Olsen, N. (2009): Geomagnetic and Archeomagnetic Jerks: Where Do We Stand?. - Eos, Transactions, American Geophysical Union, 90, 24, 208-208 From geomagnetic jerks

More information

The geomagnetic dipole moment over the last 7000 years new results from a global model

The geomagnetic dipole moment over the last 7000 years new results from a global model Earth and Planetary Science Letters 236 (25) 348 358 www.elsevier.com/locate/epsl The geomagnetic dipole moment over the last 7 years new results from a global model M. Korte a, *, C.G. Constable b a GeoForschungsZentrum

More information

International Geomagnetic Reference Field the eighth generation

International Geomagnetic Reference Field the eighth generation Earth Planets Space, 52, 1119 1124, 2000 International Geomagnetic Reference Field the eighth generation Mioara Mandea 1 and Susan Macmillan 2 1 Institut de Physique du Globe de Paris, B.P. 89, 4 Place

More information

Chapter 4 Multipole model of the Earth's magnetic field

Chapter 4 Multipole model of the Earth's magnetic field Chapter 4 Multipole model of the Earth's magnetic field 1 Previously A measurement of the geomagnetic field at any given point and time consists of a superposition of fields from different sources: Internal

More information

Unusual behaviour of the IGRF during the period

Unusual behaviour of the IGRF during the period Earth Planets Space, 52, 1227 1233, 2000 Unusual behaviour of the IGRF during the 1945 1955 period Wen-yao Xu Institute of Geophysics, Chinese Academy of Sciences, Beijing 100101, China (Received February

More information

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models

(ii) Observational Geomagnetism. Lecture 5: Spherical harmonic field models (ii) Observational Geomagnetism Lecture 5: Spherical harmonic field models Lecture 5: Spherical harmonic field models 5.1 Introduction 5.2 How to represent functions on a spherical surface 5.3 Spherical

More information

The Magnetic Field of the Earth

The Magnetic Field of the Earth The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle RONALD T. MERRILL Department of Geophysics University of Washington Seattle, Washington MICHAEL W. McELHINNY Gondwana Consultants

More information

EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES

EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES EXTREMELY QUIET 2009 STATE OF GEOMAGNETIC FIELD AS A REFERENCE LEVEL FOR AMPLITUDE OF THE LOCAL GEOMAGNETIC DISTURBANCES A.E. Levitin, L.I. Gromova, S.V. Gromov, L.A. Dremukhina Pushkov Institute of Terrestrial

More information

Westward drift in secular variation of the main geomagnetic field inferred from IGRF

Westward drift in secular variation of the main geomagnetic field inferred from IGRF Earth Planets Space, 55, 131 137, 2003 Westward drift in secular variation of the main geomagnetic field inferred from IGRF Zi-Gang Wei and Wen-Yao Xu Institute of Geology and Geophysics, Chinese Academy

More information

CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES

CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES CHALLENGES TO THE SWARM MISSION: ON DIFFERENT INTERNAL SHA MAGNETIC FIELD MODELS OF THE EARTH IN DEPENDENCE ON SATELLITE ALTITUDES Wigor A. Webers Helmholtz- Zentrum Potsdam, Deutsches GeoForschungsZentrum,

More information

Magnetic poles and dipole tilt variation over the past decades to millennia

Magnetic poles and dipole tilt variation over the past decades to millennia Earth Planets Space, 6, 937 948, 28 Magnetic poles and dipole tilt variation over the past decades to millennia M. Korte and M. Mandea GeoForschungsZentrum Potsdam, elegrafenberg, 14473 Potsdam, Germany

More information

Chapter 6 Local and regional magnetic field measurements and models

Chapter 6 Local and regional magnetic field measurements and models Chapter 6 Local and regional magnetic field measurements and models 1 Previously For the global spherical harmonic expansion model of the Earth's magnetic field (e.g., IGRF), the maximum degree is typically

More information

Korte, M., Mandea, M. (2008): Magnetic poles and dipole tilt variation over the past decades to millennia. - Earth Planets and Space, 60, 9,

Korte, M., Mandea, M. (2008): Magnetic poles and dipole tilt variation over the past decades to millennia. - Earth Planets and Space, 60, 9, Originally published as: Korte, M., Mandea, M. (28): Magnetic poles and dipole tilt variation over the past decades to millennia. - Earth Planets and Space, 6, 9, 937-948 http://www.terrapub.co.jp/journals/eps/pdf/28/69/69937.pdf

More information

The evolution of the core-surface flow over the last seven thousands years

The evolution of the core-surface flow over the last seven thousands years JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jb005024, 2008 The evolution of the core-surface flow over the last seven thousands years I. Wardinski 1 and M. Korte 1 Received 1 March 2007;

More information

Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements

Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements PUBLS. INST. GEOPHYS. POL. ACAD. SC., C-99 (398), 2007 Correlation Between IGRF2000 Model and Measured Geomagnetic Data on the Territory of the Republic of Macedonia from 2003 and 2004 Measurements Sanja

More information

IGRF-12 GFZ candidates

IGRF-12 GFZ candidates IGRF-12 GFZ candidates V. Lesur 1, M. Rother 1, I. Wardinski 1, R. Schachtschneider 1, M. Hamoudi 2, A. Chambodut 3 October 1, 2014 1 Helmholtz Centre Potsdam, GFZ German Research centre for Geosciences,

More information

Centennial to millennial geomagnetic secular variation

Centennial to millennial geomagnetic secular variation Geophys. J. Int. (2006) 167, 43 52 doi: 10.1111/j.1365-246X.2006.03088.x Centennial to millennial geomagnetic secular variation M. Korte 1 and C. G. Constable 2 1 GeoForschungsZentrum Potsdam, Telegrafenberg,

More information

The International Geomagnetic Reference Field. Introduction. Scope of the IGRF. Applications and Availability. Inception and development

The International Geomagnetic Reference Field. Introduction. Scope of the IGRF. Applications and Availability. Inception and development The International Geomagnetic Reference Field Susan Macmillan 1 and Christopher Finlay 2 1 British Geological Survey, Murchison House, West Mains Road, Edinburgh, EH9 3LA, UK 2 Institut für Geophysik,

More information

POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005

POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005 POLYNOMIAL MODELLING OF SOUTHERN AFRICAN SECULAR VARIATION OBSERVATIONS SINCE 2005 P. Kotzé 1*, M. Korte 2, and M. Mandea 2,3 *1 Hermanus Magnetic Observatory, Hermanus, South Africa Email: pkotze@hmo.ac.za

More information

Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm

Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm Geomagnetic Field Modeling Lessons learned from Ørsted and CHAMP and prospects for Swarm Nils Olsen RAS Discussion Meeting on Swarm October 9 th 2009 Nils Olsen (DTU Space) Ørsted, CHAMP, and Swarm 1 /

More information

Space Weather Fundamentals. Earth s Magnetic Field

Space Weather Fundamentals. Earth s Magnetic Field This article was downloaded by: 10.3.98.93 On: 04 Apr 2019 Access details: subscription number Publisher: CRC Press Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office:

More information

GEOMAGNETIC TEMPORAL SPECTRUM

GEOMAGNETIC TEMPORAL SPECTRUM Geomagnetic Temporal Spectrum Catherine Constable 1 GEOMAGNETIC TEMPORAL SPECTRUM Catherine Constable Institute of Geophysics and Planetary Physics Scripps Institution of Oceanography University of California

More information

Lecture 4. Things we might want to know about the geomagnetic field. Components of the geomagnetic field. The geomagnetic reference field

Lecture 4. Things we might want to know about the geomagnetic field. Components of the geomagnetic field. The geomagnetic reference field Lecture 4 Things we might want to know about the geomagnetic field Components of the geomagnetic field The geomagnetic reference field All sorts of magnetic poles observables Things we might want to know

More information

Space weather studies in the Russian Academy of Sciences S.A. Bogachev, V.D. Kuznetsov, L.M Zelenyi. Russian Academy of Sciences, Russian Federation

Space weather studies in the Russian Academy of Sciences S.A. Bogachev, V.D. Kuznetsov, L.M Zelenyi. Russian Academy of Sciences, Russian Federation Space weather studies in the Russian Academy of Sciences S.A. Bogachev, V.D. Kuznetsov, L.M Zelenyi Russian Academy of Sciences, Russian Federation Introduction Russian Academy of Sciences (RAS) is the

More information

Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D.

Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D. J. Geomag. Geoelectr., 38, 715-720, 1986 Global Models of the Magnetic Field in Historical Times: Augmenting Declination Observations with Archeo- and Paleo- Magnetic Data D. GUBBINS Bullard Laboratories,

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K Article Volume 6, Number

More information

The Earth's Magnetism

The Earth's Magnetism Roberto Lanza Antonio Meloni The Earth's Magnetism An Introduction for Geologists With 167 Figures and 6 Tables 4y Springer Contents 1 The Earth's Magnetic Field 1 1.1 Observations and Geomagnetic Measurements

More information

SIO229 PART II: GEOMAGNETISM

SIO229 PART II: GEOMAGNETISM SIO229 PART II: GEOMAGNETISM 1. INTRODUCTION Geomagnetism, the study of Earth s magnetic field, has a long history and has revealed much about the way the Earth works. As we shall see, the existence and

More information

GE SPACE. Geomagnetic Earth Observation from SPAce

GE SPACE. Geomagnetic Earth Observation from SPAce GE SPACE Geomagnetic Earth Observation from SPAce Fit to NERC s Science Priorities Understanding the complex interactions and feedbacks within the Earth system over a range of space and time scales Fit

More information

GRACE Gravity Model GGM02

GRACE Gravity Model GGM02 GRACE Gravity Model GGM02 The GGM02S gravity model was estimated with 363 days (spanning April 2002 through December 2003) of GRACE K-band range-rate, attitude, and accelerometer data. No Kaula constraint,

More information

The Magnetic Field of the Earth. Paleomagnetism, the Core, and the Deep Mantle

The Magnetic Field of the Earth. Paleomagnetism, the Core, and the Deep Mantle The Magnetic Field of the Earth Paleomagnetism, the Core, and the Deep Mantle This is Volume 63 in the INTERNATIONAL GEOPHYSICS SERIES A series of monographs and textbooks Edited by RENATA DMOWSKA and

More information

Positions of Structures of Planetary Magnetospheres as Determined by Eccentric Tilted Dipole Model

Positions of Structures of Planetary Magnetospheres as Determined by Eccentric Tilted Dipole Model WDS'14 Proceedings of Contributed Papers Physics, 337 341, 2014. ISBN 978-80-7378-276-4 MATFYZPRESS Positions of Structures of Planetary Magnetospheres as Determined by Eccentric Tilted Dipole Model D.

More information

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds

Pacific Secular Variation A result of hot lower mantle. David Gubbins School of Earth Sciences University of Leeds Pacific Secular Variation A result of hot lower mantle David Gubbins School of Earth Sciences University of Leeds Thermal Core-Mantle Interaction (hot) (cold) Lateral variations in heat flux boundary condition

More information

Modelling the southern African geomagnetic field secular variation using ground survey data for 2005

Modelling the southern African geomagnetic field secular variation using ground survey data for 2005 P. B. KOTZÉ, M. MANDEA AND M. KORTE 187 Modelling the southern African geomagnetic field secular variation using ground survey data for 2005 P. B. Kotzé Hermanus Magnetic Observatory, Hermanus, South Africa

More information

Originally published as:

Originally published as: Originally published as: Lesur, V., Wardinski, I., Asari, S., Minchev, B., Mandea, M. (2010): Modelling the Earth s core magnetic field under flow constraints. - Earth Planets and Space, 62, 6, 503-516

More information

The Earth is a Rotating Sphere

The Earth is a Rotating Sphere The Earth is a Rotating Sphere The Shape of the Earth Earth s Rotation ( and relative movement of the Sun and Moon) The Geographic Grid Map Projections Global Time The Earth s Revolution around the Sun

More information

SIO 229 Part II Geomagnetism. Lecture 1 Introduction to the geomagnetic field

SIO 229 Part II Geomagnetism. Lecture 1 Introduction to the geomagnetic field SIO 229 Part II Geomagnetism Lecture 1 Introduction to the geomagnetic field Why study Earth's magnetic field Schematic picture of Earth's magnetic field interacting with the solar wind (credit: NASA)

More information

When did Earth s magnetic field start and how has it contributed to the preservation of life? J. A. Tarduno 1,2, 1 Dept Earth & Environmental Sciences

When did Earth s magnetic field start and how has it contributed to the preservation of life? J. A. Tarduno 1,2, 1 Dept Earth & Environmental Sciences When did Earth s magnetic field start and how has it contributed to the preservation of life? J. A. Tarduno 1,2, 1 Dept Earth & Environmental Sciences, University of Rochester, New York 2 Dept Physics

More information

The Magnetic Sun. CESAR s Booklet

The Magnetic Sun. CESAR s Booklet The Magnetic Sun CESAR s Booklet 1 Introduction to planetary magnetospheres and the interplanetary medium Most of the planets in our Solar system are enclosed by huge magnetic structures, named magnetospheres

More information

INVESTIGATIONS OF THE STRUCTURE OF THE DIURNAL VARIATIONS OF GEOMAGNETIC FIELD

INVESTIGATIONS OF THE STRUCTURE OF THE DIURNAL VARIATIONS OF GEOMAGNETIC FIELD Geologica Macedonica, Vol. 26, No. 1, pp. 37 51 (2012) GEOME 2 ISSN 0352 1206 Manuscript received: May 6, 2012 UDC: 556.385 Accepted: October 10, 2012 Original scientific paper INVESTIGATIONS OF THE STRUCTURE

More information

S. Maus 1, C. Manoj 1, J. Rauberg 2, I. Michaelis 2, and H. Lühr 2. Earth Planets Space, 62, , 2010

S. Maus 1, C. Manoj 1, J. Rauberg 2, I. Michaelis 2, and H. Lühr 2. Earth Planets Space, 62, , 2010 Earth Planets Space, 62, 729 735, 2010 NOAA/NGDC candidate models for the 11th generation International Geomagnetic Reference Field and the concurrent release of the 6th generation Pomme magnetic model

More information

THE CONNECTION OF SECULAR VARIATION OF SOLAR ACTIVITY, ATMOSPHERE CIRCULATION AND AIR TEMPERATURE OF NORTHERN HEMISPHERE

THE CONNECTION OF SECULAR VARIATION OF SOLAR ACTIVITY, ATMOSPHERE CIRCULATION AND AIR TEMPERATURE OF NORTHERN HEMISPHERE THE CONNECTION OF SECULAR VARIATION OF SOLAR ACTIVITY, ATMOSPHERE CIRCULATION AND AIR TEMPERATURE OF NORTHERN HEMISPHERE T.E.Val chuk 1, N.K.Kononova 2 1 Pushkov Institute of Terrestrial Magnetism, Ionosphere

More information

VARIATIONS IN THE EARTH S ROTATION PERIOD AND VIRTUAL DIPOLE MOMENT IN GEOLOGICAL HISTORY. V.A. Zemtsov

VARIATIONS IN THE EARTH S ROTATION PERIOD AND VIRTUAL DIPOLE MOMENT IN GEOLOGICAL HISTORY. V.A. Zemtsov VARIATIONS IN THE EARTH S ROTATION PERIOD AND VIRTUAL DIPOLE MOMENT IN GEOLOGICAL HISTORY V.A. Zemtsov Institute of Geology, Karelian Research Centre, RAS, Petrozavodsk, Pushkinskaya St., 11, 185910, Russia,

More information

Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks

Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 37,, doi:10.1029/2009gl042019, 2010 Core field acceleration pulse as a common cause of the 2003 and 2007 geomagnetic jerks A. Chulliat, 1

More information

On the climate of the solar-terrestrial space

On the climate of the solar-terrestrial space On the climate of the solar-terrestrial space Crisan Demetrescu, Venera Dobrica, Georgeta Maris Muntean, Institute of Geodynamics, Romanian Academy, Bucharest, Romania, crisan@geodin.ro Katya Georgieva,

More information

Components of the lunar gravitational tide in the terrestrial atmosphere and geomagnetic field

Components of the lunar gravitational tide in the terrestrial atmosphere and geomagnetic field Pertsev N. 1, Dalin P. 2, Perminov V. 1 1- Obukhov Institute of Atmospheric Physics, Moscow, Russia 2- Swedish Institute of Space Physics, Kiruna, Sweden Components of the lunar gravitational tide in the

More information

Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day

Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day Conductivity of the Subcontinental Upper Mantle: An Analysis Using Quiet-Day Geomagnetic Records of North America Wallace H. CAMPBELL* and Robert S. ANDERSSEN** *U.S. Geological Survey, Denver Federal

More information

MAGNETIC POLES AND CLIMATE

MAGNETIC POLES AND CLIMATE MAGNETIC POLES AND CLIMATE Reno, NV June 25, 2009 1 The strength of the Earth s magnetic field varies tremendously around the world. The following figure shows the magnetic field intensity around the world,

More information

is the coefficient of degree 2, order 0 of the non-dimensional spherical harmonic

is the coefficient of degree 2, order 0 of the non-dimensional spherical harmonic Materials and Methods J is the coefficient of degree, order 0 of the non-dimensional spherical harmonic representation of the mass distribution of the Earth system. It is directly related to the diagonal

More information

Lecture 15: The ancient geomagnetic field. Why study the ancient field. Paleosecular variation: the Holocene. past 5 Myr. Excursions and reversals

Lecture 15: The ancient geomagnetic field. Why study the ancient field. Paleosecular variation: the Holocene. past 5 Myr. Excursions and reversals Lecture 15: The ancient geomagnetic field Why study the ancient field Paleosecular variation: the Holocene past 5 Myr Excursions and reversals 1 Why study the ancient geomagnetic field The geomagnetic

More information

NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA)

NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA) УДК 550.384 NEW ARCHEOINTENSITY RESULTS ON A BAKED-CLAY TILE COLLECTION FROM THE NEW JERUSALEM MONASTERY (MOSCOW REGION, RUSSIA) N.V. Salnaia 1, Y. Gallet 2, A. Genevey 3, O.N. Glazunova 4, D.A. Gavryushkin

More information

Improved basis functions for dynamic calibration of semi-empirical thermospheric models

Improved basis functions for dynamic calibration of semi-empirical thermospheric models Improved basis functions for dynamic calibration of semi-empirical thermospheric models Eric K. Sutton, Samuel B. Cable, Chin S. Lin Air Force Research Laboratory Frank A. Marcos Boston College ABSTRACT

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Last Class Almanacs: Paper and electronics Paper Almanacs: Nautical Almanac Electronic: Available on many web sites Homework #1 solutions 10/17/2006 12.215

More information

Geomagnetism. The Earth s Magnetic field. Magnetization of rocks. The Earth s magnetic record. Proof of continental drift.

Geomagnetism. The Earth s Magnetic field. Magnetization of rocks. The Earth s magnetic record. Proof of continental drift. Geomagnetism The Earth s Magnetic field. The Earth s magnetic record Magnetization of rocks C Gary A. Glatzmaier University of California, Santa Cruz Proof of continental drift Magnetism Magnetic Force

More information

Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations

Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations Available online at www.sciencedirect.com Advances in Space Research 52 (2013) 22 29 www.elsevier.com/locate/asr Eccentric dipole approximation of the geomagnetic field: Application to cosmic ray computations

More information

Earth and Space Science

Earth and Space Science RESEARCH ARTICLE Key Points: Magnetic pole positions update for the centered & eccentric dipoles for 30 years The Earth s eccentric magnetic field is a model for the other major planets Correspondence

More information

The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2

The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 Originally published as: Lesur, V.., Wardinski, I., Hamoudi, M., Rother, M. (2010): The second generation of the GFZ Reference Internal Magnetic Model: GRIMM 2. Earth Planets and Space, 62, 10, 765 773

More information

EXPANDING KNOWLEDGE ON REAL SITUATION AT HIGH NEAR-EARTH ORBITS

EXPANDING KNOWLEDGE ON REAL SITUATION AT HIGH NEAR-EARTH ORBITS EXPANDING KNOWLEDGE ON REAL SITUATION AT HIGH NEAR-EARTH ORBITS Vladimir Agapov (1,2), Denis Zelenov (1), Alexander Lapshin (3), Zakhary Khutorovsky (4) (1) TsNIIMash, 4 Pionerskay Str., Korolev, Moscow

More information

CRAMER-RAO BOUND IN DETECTION OF REVERSALS. S.A. Ivanov, S.A. Merkuryev

CRAMER-RAO BOUND IN DETECTION OF REVERSALS. S.A. Ivanov, S.A. Merkuryev Proceedings of the 9th Intl Conf. Problems of Geocosmos (Oct 8-,, St. Petersburg, Russia) AMER-RAO BOUND IN DETECTION OF REVERSALS S.A. Ivanov, S.A. Merkuryev St. Petersburg Branch of Pushkov Institute

More information

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus

Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus Tracking Solar Eruptions to Their Impact on Earth Carl Luetzelschwab K9LA September 2016 Bonus In June 2015, the Sun emitted several M-Class flares over a 2-day period. These flares were concurrent with

More information

(This is a sample cover image for this issue. The actual cover is not yet available at this time.)

(This is a sample cover image for this issue. The actual cover is not yet available at this time.) (This is a sample cover image for this issue. The actual cover is not yet available at this time.) This article appeared in a journal published by Elsevier. The attached copy is furnished to the author

More information

What ancient scalar satellite data can tell us about the 1969 geomagnetic jerk?

What ancient scalar satellite data can tell us about the 1969 geomagnetic jerk? Earth Planets Space, 61, 885 894, 2009 What ancient scalar satellite data can tell us about the 1969 geomagnetic jerk? Y. Yahiat 1,M.Hamoudi 1, and M. Mandea 2 1 University of Sciences and Technology Houari

More information

Observation of magnetic diffusion in the Earth s outer core from Magsat, Ørsted, and CHAMP data

Observation of magnetic diffusion in the Earth s outer core from Magsat, Ørsted, and CHAMP data Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 115,, doi:10.1029/2009jb006994, 2010 Observation of magnetic diffusion in the Earth s outer core from Magsat, Ørsted, and CHAMP data A.

More information

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center

Solar Cycle Prediction and Reconstruction. Dr. David H. Hathaway NASA/Ames Research Center Solar Cycle Prediction and Reconstruction Dr. David H. Hathaway NASA/Ames Research Center Outline Solar cycle characteristics Producing the solar cycle the solar dynamo Polar magnetic fields producing

More information

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline

Lecture 14: Solar Cycle. Observations of the Solar Cycle. Babcock-Leighton Model. Outline Lecture 14: Solar Cycle Outline 1 Observations of the Solar Cycle 2 Babcock-Leighton Model Observations of the Solar Cycle Sunspot Number 11-year (average) cycle period as short as 8 years as long as 15

More information

Tracking geomagnetic impulses at the core mantle boundary

Tracking geomagnetic impulses at the core mantle boundary Earth and Planetary Science Letters 237 (25) 3 39 www.elsevier.com/locate/epsl Tracking geomagnetic impulses at the core mantle boundary Emmanuel Dormy a,b, *, Mioara Mandea a,c a Institut de Physique

More information

The Earth's Magnetic Field. Its History, Origin and Planetary Perspective

The Earth's Magnetic Field. Its History, Origin and Planetary Perspective The Earth's Magnetic Field Its History, Origin and Planetary Perspective RONALD T. MERRILL Geophysics Program University of Washington Seattle, USA MICHAEL W. McELHINNY Formerly, Research School of Earth

More information

New advances in geomagnetic field modeling

New advances in geomagnetic field modeling New advances in geomagnetic field modeling Patrick Alken, Arnaud Chulliat, Manoj Nair, Brian Meyer, Rick Saltus, Adam Woods, Nir Boneh University of Colorado at Boulder, Boulder, CO National Centers for

More information

ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE

ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE ELECTRICAL CONDUCTIVITY OF THE DEEP MANTLE Jakub Velímský Department of Geophysics Faculty of Mathematics and Physics Charles University in Prague Mariánské lázně November 15. 17. 2010 J. Velímský (CUP)

More information

Solar Activity Forecasting on by Means of Artificial Neural Networks

Solar Activity Forecasting on by Means of Artificial Neural Networks Reported on EGS XXIV General Assembly, 22 April 1999, The Hague, The Netherlands Solar Activity Forecasting on 1999-2000 by Means of Artificial Neural Networks A. Dmitriev, Yu. Minaeva, Yu. Orlov, M. Riazantseva,

More information

Solar Terrestrial Influences on Climate during Geomagnetic Reversals

Solar Terrestrial Influences on Climate during Geomagnetic Reversals Solar Terrestrial Influences on Climate during Geomagnetic Reversals Glatzmaier, G.A., and P. Olson (2005), Probing the Geodynamo, Scientific American Special Edition, 15(2), 28. Robert L. McPherron Institute

More information

With a group, get a bar magnet, some plastic wrap, iron filings and a compass.

With a group, get a bar magnet, some plastic wrap, iron filings and a compass. Name: EPS 50 Lab 8: The Earth's Magnetic Field Chapter 2, p. 39-41: The Seafloor as a Magnetic Tape Recorder Chapter 7, p. 213: Paleomagnetic Stratigraphy Chapter 14, p. 396-406: Earth s Magnetic Field

More information

Earth s Magnetic Field

Earth s Magnetic Field Magnetosphere Earth s Magnetic Field The Earth acts much like a bar magnet: its magnetic field deflects compasses on the Earth s surface to point northwards. Magnetic field lines North Pole S N South Pole

More information

On the definition and calculation of a generalised McIlwain parameter

On the definition and calculation of a generalised McIlwain parameter Astrophys. Space Sci. Trans., 6, 9 17, 2010 Author(s) 2010. This work is distributed under the Creative Commons Attribution 3.0 License. Astrophysics and Space Sciences Transactions On the definition and

More information

Is Earth's magnetic field reversing?

Is Earth's magnetic field reversing? Earth and Planetary Science Letters 246 (2006) 1 16 www.elsevier.com/locate/epsl Frontiers Is Earth's magnetic field reversing? Catherine Constable a,, Monika Korte b a Institute of Geophysics and Planetary

More information

Astronomy 6570 Physics of the Planets

Astronomy 6570 Physics of the Planets Astronomy 6570 Physics of the Planets Planetary Rotation, Figures, and Gravity Fields Topics to be covered: 1. Rotational distortion & oblateness 2. Gravity field of an oblate planet 3. Free & forced planetary

More information

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives

Chapter 3 Models of the Earth. 3.1 Finding Locations on the Earth. 3.1 Objectives Chapter 3 Models of the Earth 3.1 Finding Locations on the Earth 3.1 Objectives Explain latitude and longitude. How can latitude and longitude be used to find locations on Earth? How can a magnetic compass

More information

Talks. December 2011.

Talks. December 2011. Talks Oliveira, J.S., Langlais, B., Amit, H., Pais, M.A., Modeling the magnetic field of Mercury using the Time Dependent Equivalent Source Dipole method. European Geosciences Union, Vienna, Austria, April

More information

DIRECTIONAL VARIATION OF GEOMAGNETIC CUT-OFF RIGIDITY AROUND HYDERABAD, INDIA

DIRECTIONAL VARIATION OF GEOMAGNETIC CUT-OFF RIGIDITY AROUND HYDERABAD, INDIA DIRECTIONAL VARIATION OF GEOMAGNETIC CUT-OFF RIGIDITY AROUND HYDERABAD, INDIA BY R. R. DANIEI. AND S. A. STEPHENS (Tata Institute of Fundamental Research, Bombay) Received October 15, 1965 (Communicated

More information

### dv where ρ is density, R is distance from rotation axis, and dv is

### dv where ρ is density, R is distance from rotation axis, and dv is Comments This is one of my favorite problem assignments in our Solid Earth Geophysics class, typically taken by junior and senior concentrators and by first-year graduate students. I encourage students

More information

CORRELATION OF GLOBAL CLOUDINESS WITH BURSTS IN TOTAL SOLAR IRRADIANCE

CORRELATION OF GLOBAL CLOUDINESS WITH BURSTS IN TOTAL SOLAR IRRADIANCE CORRELATION OF GLOBAL CLOUDINESS WITH BURSTS IN TOTAL SOLAR IRRADIANCE S.V. Avakyan 1,2,3, N.A.Voronin 1, S.S. Kavtrev 3 1 All-Russian Scientific Center S.I. Vavilov State Optical Institute, St. Petersburg,

More information

The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2

The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 Earth Planets Space, 62, 765 773, 2010 The second generation of the GFZ Reference Internal Magnetic Model: GRIMM-2 V. Lesur, I. Wardinski, M. Hamoudi, and M. Rother Helmholtz Centre Potsdam, GFZ German

More information

First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field

First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field GEOPHYSICAL RESEARCH LETTERS, VOL. 29, NO. 14, 10.1029/2001GL013685, 2002 First scalar magnetic anomaly map from CHAMP satellite data indicates weak lithospheric field S. Maus, M. Rother, R. Holme, H.

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer CHAOS-2 - A geomagnetic field model derived from one decade of continuous satellite data Citation for published version: Olsen, N, Mandea, M, Sabaka, TJ & Tøffner-Clausen, L

More information

Real-time experimental data of the muon hodoscope URAGAN accessible in www

Real-time experimental data of the muon hodoscope URAGAN accessible in www Journal of Physics: Conference Series PAPER OPE ACCESS Real-time experimental data of the muon hodoscope URAGA accessible in www To cite this article: I I Yashin et al 2015 J. Phys.: Conf. Ser. 632 012086

More information

North Atlantic Temperature Anomaly

North Atlantic Temperature Anomaly North Atlantic Temperature Anomaly M.A. Vukcevic To cite this version: M.A. Vukcevic. North Atlantic Temperature Anomaly. 2009. HAL Id: hal-00408886 https://hal.archives-ouvertes.fr/hal-00408886v2

More information

Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum

Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum 1045 Mountain Torques Caused by Normal-Mode Global Rossby Waves, and the Impact on Atmospheric Angular Momentum HARALD LEJENÄS Department of Meteorology, Stockholm University, Stockholm, Sweden ROLAND

More information

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms

Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms J. Astrophys. Astr. (2008) 29, 263 267 Solar and Interplanetary Disturbances causing Moderate Geomagnetic Storms Santosh Kumar, M. P. Yadav & Amita Raizada Department of P.G. Studies and Research in Physics

More information

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS

EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR ACTIVITY YEARS SINET: ETHIOP. J. SCI., 26(1):77 81, 2003 Faculty of Science, Addis Ababa University, 2003 ISSN: 0379 2897 Short communication EQUATORIAL ELECTROJET STRENGTH IN THE AFRICAN SECTOR DURING HIGH AND LOW SOLAR

More information

Solar wind origin of terrestrial water

Solar wind origin of terrestrial water Solar wind origin of terrestrial water arxiv:1102.0396v1 [astro-ph.ep] 2 Feb 2011 Hans Merkl (1) and Markus Fränz (2) (1) Am Kirchsteig 4, 92637 Weiden, Germany (2) Max-Planck-Institute for Solar System

More information

SYDNEY CHAPMAN. National Center for Atmospheric Research, Boulder, Colo., and Geophysical Institute, University of Alaska, College, Alaska, U.S.A.

SYDNEY CHAPMAN. National Center for Atmospheric Research, Boulder, Colo., and Geophysical Institute, University of Alaska, College, Alaska, U.S.A. ATMOSPHERIC TIDES SYDNEY CHAPMAN National Center for Atmospheric Research, Boulder, Colo., and Geophysical Institute, University of Alaska, College, Alaska, U.S.A. RICHARD S. LIND ZEN Dept. of Geophysical

More information

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society

G 3. AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Geosystems G 3 AN ELECTRONIC JOURNAL OF THE EARTH SCIENCES Published by AGU and the Geochemical Society Article Volume 5, Number 1 20 January 2004 Q01006, doi:10.1029/2003gc000634 ISSN: 1525-2027 Observing

More information

The Structure of the Magnetosphere

The Structure of the Magnetosphere The Structure of the Magnetosphere The earth s magnetic field would resemble a simple magnetic dipole, much like a big bar magnet, except that the solar wind distorts its shape. As illustrated below, the

More information

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions

Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Chapter 1 Earth Science Simulation Study on the Generation and Distortion Process of the Geomagnetic Field in Earth-like Conditions Project Representative Yozo Hamano Authors Ataru Sakuraba Yusuke Oishi

More information

V r : A new index to represent the variation rate of geomagnetic activity

V r : A new index to represent the variation rate of geomagnetic activity Earthq Sci (2010)23: 343 348 343 Doi: 10.1007/s11589-010-0731-9 V r : A new index to represent the variation rate of geomagnetic activity Dongmei Yang 1, Yufei He 1 Chuanhua Chen 2 and Jiadong Qian 3 1

More information

This is an author produced version of Rapid dynamics of the Earth's core.

This is an author produced version of Rapid dynamics of the Earth's core. This is an author produced version of Rapid dynamics of the Earth's core. White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/76955/ Article: Cox, GA and Brown, WJ (213) Rapid

More information

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields The earth is a huge magnetic and close to its surface it can be approximated as a bar magnet (a magnetic dipole) that is positioned

More information

Extra-terrestrial Influences on Nature s Risks

Extra-terrestrial Influences on Nature s Risks Extra-terrestrial Influences on Nature s Risks Brent Walker Session Number: WBR9 Gravitational Influences Phase Locks & Harmonic Resonances After billions of years of evolution the solar system is still

More information

Mitsubishi Electric Power Products Inc. and Duquesne Light Co.

Mitsubishi Electric Power Products Inc. and Duquesne Light Co. Mitsubishi Electric Power Products Inc. and Duquesne Light Co. Overview on Geomagnetically Induced Current Revision #00 March 2017 Presented by: Elizabeth Cook (DLC) and Wesley Terek (MEPPI) Overview on

More information

CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD

CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD CHAPTER II MATHEMATICAL BACKGROUND OF THE BOUNDARY ELEMENT METHOD For the second chapter in the thesis, we start with surveying the mathematical background which is used directly in the Boundary Element

More information