A. Ideal beam without imperfections: Critical moment M cr

Size: px
Start display at page:

Download "A. Ideal beam without imperfections: Critical moment M cr"

Transcription

1

2 Beam in bending: Ideal beam without imperfections: characteristic is critical moment M cr Real beam with imperfections characteristic is resistance of beam M b,rd

3 A. Ideal beam without imperfections: Critical moment M cr

4 Elastic critical moment M cr fork boundary conditions, uniform bending moment M, uniform nonwarping cross-section: warping stiffness EI w = 0 knm 4 M cr EI L z GI t EI z bending stiffness GI t torsional stiffness L span

5 Lateral Torsional Buckling

6 Positive influence of warping stiffness on M cr Rectangular cross-section I w 0 m 6 I w = b 3 h 3 /36 Double symmetric cross-section M cr EI L z GI t M cr EI z ( GI t L 2 2 EI w / L )

7 Positive influence of vertical deflection on M cr, ) / ( 2 2 t z cr L L EI GI EI M w 1 t w z t y z y z GI L EI EI GI I I I I

8 Broude 1953 in Russia, Trahair cca 20 years later in Australia

9 M cr for any boundary conditions and any type of loading 1958 Mrázik, obtained coefficients for 11 cases: 1960 Clark, Hill, colected coefficients for 21 cases:

10 M cr for any boundary conditions and any type of loading 1974 Djalaly, obtained coefficients for 37 cases: ENV :1992 a ENV :1998

11 Relations between cofficients of different formulae

12 Formulae from ČSN and STN cl. H.2: loading prependicular to axis of symmetry It is simplification of Mráziks formula

13

14 Formulae from ČSN and STN cl. H.6: loading in the direction of symmetry axis e, a c are used with sign + or -

15 Formulae from ČSN and STN cl. H.6: loading in direction of symmetry axis It is again simplification of Mrazics formula

16 k c 1

17 Relations between cofficients of different formulae

18 M cr according to DIN

19 M cr 2 EW y, el 2

20

21 Not correct things in European prestandards ENV 1993, ENV 1999 Some coefficients C i are incorrect (e.g. instead of C 1 =0.411 it is used C 1 =1.73,etc.) No information is given about used torsion boundary conditions (k w =1) in the cases of end moments No information is given about used lateral bending boundary conditions (fixed is left beam end)

22 Not correct things in European prestandards ENV 1993, ENV 1999 No definition of M cr location (location is in middle of span) Influence of torsion stiffness and warping stiffness are not taken into account in calculation of C 1 coefficients For beams with nonsymmetric crosssections under nonsymmetric bending end moments are C i coefficients incorrect

23 ENV , ENV

24 ENV , ENV

25

26

27 pren : October 2001

28 prenv : October 2001 EN no formulae for calculation of M cr EN and NA to STN EN contain our proposals how to calculate M cr

29 EN and NA to STN EN

30 For symmetric cross-section to axis y-y is z j = 0 C1, C2, C3 are cofficients depending on type of loading and boundary conditions

31 In STN positive axis z goes down, in STN EN goes up!!! a) Loading in the direction of symmetry axis

32 Loading perpendicular to axis of symmetry: b) single symmetric, c) double- or point-symmetric

33

34

35

36 For any ratio of end moments when k z =1

37

38

39

40

41

42

43 Calculation of M cr with the help of computer programs (no limitation) DRILL (emeritus Prof. Friemann, TU Darmstadt) BT II (Prof. Ostrerrieder) IBDSQ (Dickel, Prof. Rothert, ) RSTAB (Dlubal) CalcMcr (Baláž) LTBeam (CTICM Paris) ALPHAcr (Lennert, TU Graz) many others

44 B. Real beam with imperfections: Resistance of beam M b,rd

45 When it is not necessary to verify LTB of beam? beam flange in compression is lateraly supported beam has closed profile (big torsional stiffness) beam is loaded in direction of minor stiffness

46 OSIKA Die Espe BRZOZA Die Birke

47 Structure magazine, February 2008

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72 k c 1

73 Interval in which increasing of reduction coefficient χ LT by factor f is effective

74

75

76

77

78 Obr.3

79

80 Theory of the 2. order of beams with imperfection

81

82

83

84 Obr.2

85 Obr. 3

86 Reduction factors χlt Eurocode: Perry Robertson formula DIN : Merchant Rankine formula

87

88

89

90

91

92

93

94 Resistance of cross-section

95

96

97

98

99

100

101 a0 ( ) a0 ( ) a0 ( )

102 d ( ) d ( ) d ( )

Eurocode 3 for Dummies The Opportunities and Traps

Eurocode 3 for Dummies The Opportunities and Traps Eurocode 3 for Dummies The Opportunities and Traps a brief guide on element design to EC3 Tim McCarthy Email tim.mccarthy@umist.ac.uk Slides available on the web http://www2.umist.ac.uk/construction/staff/

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 8: Description of member resistance calculator STEEL BUILDINGS IN EUROPE Multi-Store Steel Buildings Part 8: Description of member resistance calculator Multi-Store Steel Buildings Part : Description of member resistance calculator 8 - ii FOREWORD

More information

Lateral Torsional Buckling (sections class 1-3) - Column Item COx

Lateral Torsional Buckling (sections class 1-3) - Column Item COx Page /7 Lateral Torsional Buckling (sections class -3) - according to EN 993--:005 (EC3) section and eqn. numbers refer to this code (Form EC3-LTB_06-04-8.mcd - adopted) Profile chosen Profile "HEA40"

More information

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006

Made by SMH Date Aug Checked by NRB Date Dec Revised by MEB Date April 2006 Job No. OSM 4 Sheet 1 of 8 Rev B Telephone: (0144) 45 Fax: (0144) 944 Made b SMH Date Aug 001 Checked b NRB Date Dec 001 Revised b MEB Date April 00 DESIGN EXAMPLE 9 - BEAM WITH UNRESTRAINED COMPRESSION

More information

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams

STEEL BUILDINGS IN EUROPE. Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams STEEL BUILDINGS IN EUROPE Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite Beams Multi-Storey Steel Buildings Part 10: Technical Software Specification for Composite

More information

On Design Method of Lateral-torsional Buckling of Beams: State of the Art and a New Proposal for a General Type Design Method

On Design Method of Lateral-torsional Buckling of Beams: State of the Art and a New Proposal for a General Type Design Method Ŕ Periodica Polytechnica Civil Engineering 59(2), pp. 179 192, 2015 DOI: 10.3311/PPci.7837 Creative Commons Attribution RESEARCH ARTICLE On Design Method of Lateral-torsional Buckling of Beams: State of

More information

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006

Job No. Sheet 1 of 7 Rev A. Made by ER/EM Date Feb Checked by HB Date March 2006 Job No. Sheet of 7 Rev A Design Example Design of a lipped channel in a Made by ER/EM Date Feb 006 Checked by HB Date March 006 DESIGN EXAMPLE DESIGN OF A LIPPED CHANNEL IN AN EXPOSED FLOOR Design a simply

More information

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran

A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Vol:8, No:7, 214 A Parametric Study on Lateral Torsional Buckling of European IPN and IPE Cantilevers H. Ozbasaran Abstract IPN and IPE sections, which are commonly used European I shapes, are widely used

More information

Compression Members Columns II

Compression Members Columns II Compression Members Columns II 1. Introduction. Main aspects related to the derivation of typical columns buckling lengths for. Analysis of imperfections, leading to the derivation of the Ayrton-Perry

More information

STEEL MEMBER DESIGN (EN :2005)

STEEL MEMBER DESIGN (EN :2005) GEODOMISI Ltd. - Dr. Costas Sachpazis Consulting Company for App'd by STEEL MEMBER DESIGN (EN1993-1-1:2005) In accordance with EN1993-1-1:2005 incorporating Corrigenda February 2006 and April details type;

More information

C6 Advanced design of steel structures

C6 Advanced design of steel structures C6 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5) Fatigue

More information

Lateral-torsional buckling of unrestrained steel beams under fire conditions: improvement of EC3 proposal

Lateral-torsional buckling of unrestrained steel beams under fire conditions: improvement of EC3 proposal Computers and Structures 82 (24) 737 744 www.elsevier.com/locate/compstruc Lateral-torsional buckling of unrestrained steel beams under fire conditions: improvement of EC3 proposal P.M.M. Vila Real a,

More information

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016

Job No. Sheet No. Rev. CONSULTING Engineering Calculation Sheet. Member Design - Steel Composite Beam XX 22/09/2016 CONSULTING Engineering Calculation Sheet jxxx 1 Member Design - Steel Composite Beam XX Introduction Chd. 1 Grade 50 more common than Grade 43 because composite beam stiffness often 3 to 4 times non composite

More information

1C8 Advanced design of steel structures. prepared by Josef Machacek

1C8 Advanced design of steel structures. prepared by Josef Machacek 1C8 Advanced design of steel structures prepared b Josef achacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-walled steel members. 4) Torsion of members. 5)

More information

Fundamentals of Structural Design Part of Steel Structures

Fundamentals of Structural Design Part of Steel Structures Fundamentals of Structural Design Part of Steel Structures Civil Engineering for Bachelors 133FSTD Teacher: Zdeněk Sokol Office number: B619 1 Syllabus of lectures 1. Introduction, history of steel structures,

More information

EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAMS IN BENDING

EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAMS IN BENDING Advanced Steel Construction Vol. 4, No. 3, pp. 43-59 (008) 43 EFFECT OF END CONNECTION RESTRAINTS ON THE STABILITY OF STEEL BEAS IN BENDING S. Amara,*, D.E. Kerdal and J.P. Jaspart 3 Department of Civil

More information

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES

NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES 8 th GRACM International Congress on Computational Mechanics Volos, 12 July 15 July 2015 NUMERICAL EVALUATION OF THE ROTATIONAL CAPACITY OF STEEL BEAMS AT ELEVATED TEMPERATURES Savvas Akritidis, Daphne

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 0 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic Loads

More information

Bridge deck modelling and design process for bridges

Bridge deck modelling and design process for bridges EU-Russia Regulatory Dialogue Construction Sector Subgroup 1 Bridge deck modelling and design process for bridges Application to a composite twin-girder bridge according to Eurocode 4 Laurence Davaine

More information

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling

to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling to introduce the principles of stability and elastic buckling in relation to overall buckling, local buckling In the case of elements subjected to compressive forces, secondary bending effects caused by,

More information

Advanced Analysis of Steel Structures

Advanced Analysis of Steel Structures Advanced Analysis of Steel Structures Master Thesis Written by: Maria Gulbrandsen & Rasmus Petersen Appendix Report Group B-204d M.Sc.Structural and Civil Engineering Aalborg University 4 th Semester Spring

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode 3 Module 7 : Worked Examples Lecture 20 : Simple braced frame Contents: 1. Simple Braced Frame 1.1 Characteristic

More information

Introduction to Structural Member Properties

Introduction to Structural Member Properties Introduction to Structural Member Properties Structural Member Properties Moment of Inertia (I): a mathematical property of a cross-section (measured in inches 4 or in 4 ) that gives important information

More information

Properties of Sections

Properties of Sections ARCH 314 Structures I Test Primer Questions Dr.-Ing. Peter von Buelow Properties of Sections 1. Select all that apply to the characteristics of the Center of Gravity: A) 1. The point about which the body

More information

3. Stability of built-up members in compression

3. Stability of built-up members in compression 3. Stability of built-up members in compression 3.1 Definitions Build-up members, made out by coupling two or more simple profiles for obtaining stronger and stiffer section are very common in steel structures,

More information

This procedure covers the determination of the moment of inertia about the neutral axis.

This procedure covers the determination of the moment of inertia about the neutral axis. 327 Sample Problems Problem 16.1 The moment of inertia about the neutral axis for the T-beam shown is most nearly (A) 36 in 4 (C) 236 in 4 (B) 136 in 4 (D) 736 in 4 This procedure covers the determination

More information

Metal Structures Lecture XIII Steel trusses

Metal Structures Lecture XIII Steel trusses Metal Structures Lecture XIII Steel trusses Contents Definition #t / 3 Geometry and cross-sections #t / 7 Types of truss structures #t / 15 Calculations #t / 29 Example #t / 57 Results of calculations

More information

Design of Beams (Unit - 8)

Design of Beams (Unit - 8) Design of Beams (Unit - 8) Contents Introduction Beam types Lateral stability of beams Factors affecting lateral stability Behaviour of simple and built - up beams in bending (Without vertical stiffeners)

More information

T2. VIERENDEEL STRUCTURES

T2. VIERENDEEL STRUCTURES T2. VIERENDEEL STRUCTURES AND FRAMES 1/11 T2. VIERENDEEL STRUCTURES NOTE: The Picture Window House can be designed using a Vierendeel structure, but now we consider a simpler problem to discuss the calculation

More information

UNIT III DEFLECTION OF BEAMS 1. What are the methods for finding out the slope and deflection at a section? The important methods used for finding out the slope and deflection at a section in a loaded

More information

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS

ON THE DESIGN CURVES FOR BUCKLING PROBLEMS EUROSTEEL 008, 3-5 September 008, Gra, Austria O THE DESIG CURVES FOR BUCKLIG PROBLES Jósef Salai a, Ferenc Papp b a KÉSZ Ltd., Budapest, Hungar b Budapest Universit of technolog and Economics, Department

More information

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES

BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES ROCZNIKI INŻYNIERII BUDOWLANEJ ZESZYT 16/016 Komisja Inżynierii Budowlanej Oddział Polskiej Akademii Nauk w Katowicach BUCKLING OF VARIABLE CROSS-SECTIONS COLUMNS IN THE BRACED AND SWAY PLANE FRAMES Ružica

More information

DESIGN OF FIXED CIRCULAR ARCHES WITH TUBE CROSS-SECTIONS UNDER CONCENTRATED LOADS ACCORDING TO EC3

DESIGN OF FIXED CIRCULAR ARCHES WITH TUBE CROSS-SECTIONS UNDER CONCENTRATED LOADS ACCORDING TO EC3 EUROSTEEL 8, 3-5 September 8, Graz, Austria 785 DESIGN OF FIXED CIRCULAR ARCHES WITH TUBE CROSS-SECTIONS UNDER CONCENTRATED LOADS ACCORDING TO EC3 C.A. Dimopoulos a, C.J. Gantes a a National Technical

More information

Chapter 6: Cross-Sectional Properties of Structural Members

Chapter 6: Cross-Sectional Properties of Structural Members Chapter 6: Cross-Sectional Properties of Structural Members Introduction Beam design requires the knowledge of the following. Material strengths (allowable stresses) Critical shear and moment values Cross

More information

DESIGN OF BEAMS AND SHAFTS

DESIGN OF BEAMS AND SHAFTS DESIGN OF EAMS AND SHAFTS! asis for eam Design! Stress Variations Throughout a Prismatic eam! Design of pristmatic beams! Steel beams! Wooden beams! Design of Shaft! ombined bending! Torsion 1 asis for

More information

Steel Frame Design Manual

Steel Frame Design Manual Steel Frame Design Manual Eurocode 3-1:2005 with 8:2004 Eurocode 3-1:2005 with Eurocode 8:2004 Steel Frame Design Manual for ETABS 2016 ISO ETA122815M13 Rev 0 Proudly developed in the United States of

More information

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar

Design of Steel Structures Prof. S.R.Satish Kumar and Prof. A.R.Santha Kumar 5.4 Beams As stated previousl, the effect of local buckling should invariabl be taken into account in thin walled members, using methods described alread. Laterall stable beams are beams, which do not

More information

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS

THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS EUROSTEEL 2002, Coimbra, 19-20 September 2002, p.987-996 THE EC3 CLASSIFICATION OF JOINTS AND ALTERNATIVE PROPOSALS Fernando C. T. Gomes 1 ABSTRACT The Eurocode 3 proposes a classification of beam-to-column

More information

FLOW CHART FOR DESIGN OF BEAMS

FLOW CHART FOR DESIGN OF BEAMS FLOW CHART FOR DESIGN OF BEAMS Write Known Data Estimate self-weight of the member. a. The self-weight may be taken as 10 percent of the applied dead UDL or dead point load distributed over all the length.

More information

Advanced Structural Analysis EGF Section Properties and Bending

Advanced Structural Analysis EGF Section Properties and Bending Advanced Structural Analysis EGF316 3. Section Properties and Bending 3.1 Loads in beams When we analyse beams, we need to consider various types of loads acting on them, for example, axial forces, shear

More information

= = = 1,000 1,000 1,250. g M0 g M1 g M2 = = = 1,100 1,100 1,250 [ ] 1 0,000 8,000 HE 140 B 0,0. [m] Permanent Permanent Variable Variable Variable

= = = 1,000 1,000 1,250. g M0 g M1 g M2 = = = 1,100 1,100 1,250 [ ] 1 0,000 8,000 HE 140 B 0,0. [m] Permanent Permanent Variable Variable Variable Project Job name Part Author Date Steel Products and Solutions Standard 29.01.2018 Standard EN 199311, EN 199314/Czech Rep.. Factors for steel structures Section capacity Section resistance when checking

More information

Lecture 15 Strain and stress in beams

Lecture 15 Strain and stress in beams Spring, 2019 ME 323 Mechanics of Materials Lecture 15 Strain and stress in beams Reading assignment: 6.1 6.2 News: Instructor: Prof. Marcial Gonzalez Last modified: 1/6/19 9:42:38 PM Beam theory (@ ME

More information

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory.

Part IB EXPERIMENTAL ENGINEERING MODEL STRUCTURES. 1. To compare the behaviour of various different linear-elastic structures with simple theory. Part IB EXPERIMENTAL ENGINEERING SUBJECT: INTEGRATED COURSEWORK LOCATION: STRUCTURES TEACHING LAB EXPERIMENT: A2 (SHORT) MODEL STRUCTURES OBJECTIVES 1. To compare the behaviour of various different linear-elastic

More information

Solving Lateral Beam Buckling Problems by Means of Solid Finite Elements and Nonlinear Computational Methods

Solving Lateral Beam Buckling Problems by Means of Solid Finite Elements and Nonlinear Computational Methods International Journal of athematical and Computational ethods Solving Lateral Beam Buckling Problems b eans of Solid Finite Elements and Nonlinear Computational ethods JAN VALEŠ ZDENĚK KALA JOSEF ARTINÁSEK

More information

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS

APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan White Design APOLLO SALES LTD PUBLIC ACCESS SCAFFOLD STEP DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. Feb 2014 Somerset House 11 Somerset Place GLASGOW G3 7JT

More information

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC.

PURE BENDING. If a simply supported beam carries two point loads of 10 kn as shown in the following figure, pure bending occurs at segment BC. BENDING STRESS The effect of a bending moment applied to a cross-section of a beam is to induce a state of stress across that section. These stresses are known as bending stresses and they act normally

More information

ADVANCED DESIGN OF STEEL AND COMPOSITE STRUCTURES

ADVANCED DESIGN OF STEEL AND COMPOSITE STRUCTURES ADVANCED DESIGN OF STEEL AND COMPOSITE STRUCTURES Aldina Santiago Lecture B.3: 22/2/2017 European Erasmus Mundus 520121-1-2011-1-CZ-ERA MUNDUS-EMMC CONTENTS Module B Design of industrial buildings using

More information

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon.

Materials: engineering, science, processing and design, 2nd edition Copyright (c)2010 Michael Ashby, Hugh Shercliff, David Cebon. Modes of Loading (1) tension (a) (2) compression (b) (3) bending (c) (4) torsion (d) and combinations of them (e) Figure 4.2 1 Standard Solution to Elastic Problems Three common modes of loading: (a) tie

More information

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4).

SUMMARY FOR COMPRESSION MEMBERS. Determine the factored design loads (AISC/LRFD Specification A4). SUMMARY FOR COMPRESSION MEMBERS Columns with Pinned Supports Step 1: Step : Determine the factored design loads (AISC/LRFD Specification A4). From the column tables, determine the effective length KL using

More information

A.R. Tusnin, M. Prokic. Behavior of symmetric steel I-sections under combined bending and torsion actions in inelastic range

A.R. Tusnin, M. Prokic. Behavior of symmetric steel I-sections under combined bending and torsion actions in inelastic range A.R. Tusnin, M. Prokic Behavior of smmetric steel Isections under combined bending and torsion actions in inelastic range In European codes and Russian standards for design of steel structures, calculation

More information

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS

APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS Alan White Design APOLLO SCAFFOLDING SERVICES LTD SPIGOT CONNECTION TO EUROCODES DESIGN CHECK CALCULATIONS Alan N White B.Sc., M.Eng., C.Eng., M.I.C.E., M.I.H.T. JUL 2013 Somerset House 11 Somerset Place

More information

3.5 Reinforced Concrete Section Properties

3.5 Reinforced Concrete Section Properties CHAPER 3: Reinforced Concrete Slabs and Beams 3.5 Reinforced Concrete Section Properties Description his application calculates gross section moment of inertia neglecting reinforcement, moment of inertia

More information

CIVL473 Fundamentals of Steel Design

CIVL473 Fundamentals of Steel Design CIVL473 Fundamentals of Steel Design CHAPTER 4 Design of Columns- embers with Aial Loads and oments Prepared B Asst.Prof.Dr. urude Celikag 4.1 Braced ultistore Buildings - Combined tension and oments Interaction

More information

COLUMNS: BUCKLING (DIFFERENT ENDS)

COLUMNS: BUCKLING (DIFFERENT ENDS) COLUMNS: BUCKLING (DIFFERENT ENDS) Buckling of Long Straight Columns Example 4 Slide No. 1 A simple pin-connected truss is loaded and supported as shown in Fig. 1. All members of the truss are WT10 43

More information

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6.

If you take CT5143 instead of CT4143 then write this at the first of your answer sheets and skip problem 4 and 6. Delft University of Technology Faculty of Civil Engineering and Geosciences Structural Mechanics Section Write your name and study number at the top right-hand of your work. Exam CT4143 Shell Analysis

More information

Effective stress method to be used in beam finite elements to take local instabilities into account

Effective stress method to be used in beam finite elements to take local instabilities into account Effective stress method to be used in beam finite elements to take local instabilities into account JEAN-MARC FRANSSEN, BAPTISTE COWEZ and THOMAS GERNAY ArgencoDepartment University of Liège Chemin des

More information

SECTION 7 DESIGN OF COMPRESSION MEMBERS

SECTION 7 DESIGN OF COMPRESSION MEMBERS SECTION 7 DESIGN OF COMPRESSION MEMBERS 1 INTRODUCTION TO COLUMN BUCKLING Introduction Elastic buckling of an ideal column Strength curve for an ideal column Strength of practical column Concepts of effective

More information

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd

Chapter Objectives. Copyright 2011 Pearson Education South Asia Pte Ltd Chapter Objectives To generalize the procedure by formulating equations that can be plotted so that they describe the internal shear and moment throughout a member. To use the relations between distributed

More information

2 marks Questions and Answers

2 marks Questions and Answers 1. Define the term strain energy. A: Strain Energy of the elastic body is defined as the internal work done by the external load in deforming or straining the body. 2. Define the terms: Resilience and

More information

1C8 Advanced design of steel structures. prepared by Josef Machacek

1C8 Advanced design of steel structures. prepared by Josef Machacek 1C8 Advanced design of steel structures prepared b Josef Machacek List of lessons 1) Lateral-torsional instabilit of beams. ) Buckling of plates. 3) Thin-alled steel members. ) Torsion of members. 5) Fatigue

More information

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes

Influence of residual stresses in the structural behavior of. tubular columns and arches. Nuno Rocha Cima Gomes October 2014 Influence of residual stresses in the structural behavior of Abstract tubular columns and arches Nuno Rocha Cima Gomes Instituto Superior Técnico, Universidade de Lisboa, Portugal Contact:

More information

LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES

LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES LOAD BEARING CAPACITY OF SPLICED COLUMNS WITH SINGLE ROW BOLTED BUTT-PLATES J.C.D. Hoenderkamp, H. H. Snijder Eindhoven University of Technology, The Netherlands j.c.d.hoenderkamp@tue.nl h.h.snijder@tue.nl

More information

5. Buckling analysis of plane structures: simplified methods

5. Buckling analysis of plane structures: simplified methods 5. Buckling analysis of plane structures: simplified methods The present chapter addresses the basic concepts of stability analysis of (plane) frames; definition of structures is firstly considered with

More information

The Analysis of Restrained Purlins Using Generalised Beam Theory

The Analysis of Restrained Purlins Using Generalised Beam Theory Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (1994) - 12th International Specialty Conference on Cold-Formed Steel Structures

More information

Design of reinforced concrete sections according to EN and EN

Design of reinforced concrete sections according to EN and EN Design of reinforced concrete sections according to EN 1992-1-1 and EN 1992-2 Validation Examples Brno, 21.10.2010 IDEA RS s.r.o. South Moravian Innovation Centre, U Vodarny 2a, 616 00 BRNO tel.: +420-511

More information

Unit 15 Shearing and Torsion (and Bending) of Shell Beams

Unit 15 Shearing and Torsion (and Bending) of Shell Beams Unit 15 Shearing and Torsion (and Bending) of Shell Beams Readings: Rivello Ch. 9, section 8.7 (again), section 7.6 T & G 126, 127 Paul A. Lagace, Ph.D. Professor of Aeronautics & Astronautics and Engineering

More information

Mechanics of Solids notes

Mechanics of Solids notes Mechanics of Solids notes 1 UNIT II Pure Bending Loading restrictions: As we are aware of the fact internal reactions developed on any cross-section of a beam may consists of a resultant normal force,

More information

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy

Stress Analysis Lecture 4 ME 276 Spring Dr./ Ahmed Mohamed Nagib Elmekawy Stress Analysis Lecture 4 ME 76 Spring 017-018 Dr./ Ahmed Mohamed Nagib Elmekawy Shear and Moment Diagrams Beam Sign Convention The positive directions are as follows: The internal shear force causes a

More information

BEAMS AND PLATES ANALYSIS

BEAMS AND PLATES ANALYSIS BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels Classical beam versus typical modern vehicle beam sections Assumptions:

More information

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS

Elastic Buckling Behavior of Beams ELASTIC BUCKLING OF BEAMS Elastic Buckling Behavior of Beams CE579 - Structural Stability and Design ELASTIC BUCKLING OF BEAMS Going back to the original three second-order differential equations: 3 Therefore, z z E I v P v P 0

More information

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13

Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras. Module - 01 Lecture - 13 Finite Element Analysis Prof. Dr. B. N. Rao Department of Civil Engineering Indian Institute of Technology, Madras (Refer Slide Time: 00:25) Module - 01 Lecture - 13 In the last class, we have seen how

More information

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS

NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS NOVEL FLOWCHART TO COMPUTE MOMENT MAGNIFICATION FOR LONG R/C COLUMNS Abdul Kareem M. B. Al-Shammaa and Ehsan Ali Al-Zubaidi 2 Department of Urban Planning Faculty of Physical Planning University of Kufa

More information

DES140: Designing for Lateral-Torsional Stability in Wood Members

DES140: Designing for Lateral-Torsional Stability in Wood Members DES140: Designing for Lateral-Torsional Stability in Wood embers Welcome to the Lateral Torsional Stability ecourse. 1 Outline Lateral-Torsional Buckling Basic Concept Design ethod Examples In this ecourse,

More information

A PARAMETRIC STUDY ON BUCKLING OF R/C COLUMNS EXPOSED TO FIRE

A PARAMETRIC STUDY ON BUCKLING OF R/C COLUMNS EXPOSED TO FIRE Proceedings of the International Conference in Dubrovnik, 15-16 October 215 A PARAMETRIC STUDY ON BUCKLING OF R/C COLUMNS EXPOSED TO FIRE Lijie Wang, Robby Caspeele, Luc Taerwe Ghent University, Department

More information

VALLOUREC & MANNESMANN TUBES. Design-support for MSH sections

VALLOUREC & MANNESMANN TUBES. Design-support for MSH sections VALLOUREC & MANNESMANN TUBES Design-support for MSH sections according to Eurocode 3, DIN EN 1993-1-1: 2005 and DIN EN 1993-1-8: 2005 Design-Support for MSH sections according to Eurocode 3, DIN EN 1993-1-1:

More information

Improved Flexural Design Provisions for I-Shaped Members and Channels

Improved Flexural Design Provisions for I-Shaped Members and Channels Improved Flexural Design Provisions for I-Shaped Members and Channels DONALD W. WHITE Donald W. White is Associate Professor, Structural Engineering, Mechanics and Materials, Georgia Institute of Technology,

More information

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS

LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS LATERAL STABILITY OF BEAMS WITH ELASTIC END RESTRAINTS By John J. Zahn, 1 M. ASCE ABSTRACT: In the analysis of the lateral buckling of simply supported beams, the ends are assumed to be rigidly restrained

More information

Design of Compression Members

Design of Compression Members Design of Compression Members 2.1 Classification of cross sections Classifying cross-sections may mainly depend on four critical factors: 1- Width to thickness (c/t) ratio. 2- Support condition. 3- Yield

More information

Finite Element Modelling with Plastic Hinges

Finite Element Modelling with Plastic Hinges 01/02/2016 Marco Donà Finite Element Modelling with Plastic Hinges 1 Plastic hinge approach A plastic hinge represents a concentrated post-yield behaviour in one or more degrees of freedom. Hinges only

More information

MINLP optimization of the single-storey industrial building steel structure

MINLP optimization of the single-storey industrial building steel structure High Performance Structures and Materials III 643 MINLP optimization of the single-storey industrial building steel structure T. Žula, U. Klanšek & S. Kravanja University of Maribor, Faculty of Civil Engineering,

More information

1 Introduction Scope Normative references Terms and definitions Symbols Terminology and conventions for dimensions 8 2 B

1 Introduction Scope Normative references Terms and definitions Symbols Terminology and conventions for dimensions 8 2 B 1 Introduction 5 1.1 Scope 5 1.2 Normative references 5 1.3 Terms and definitions 6 1.4 Symbols 7 1.5 Terminology and conventions for dimensions 8 2 Basis of design 11 3 Materials 12 3.1 General 12 3.2

More information

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES)

TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Page1 TORSION INCLUDING WARPING OF OPEN SECTIONS (I, C, Z, T AND L SHAPES) Restrained warping for the torsion of thin-wall open sections is not included in most commonly used frame analysis programs. Almost

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

Verification Examples. FEM-Design. version

Verification Examples. FEM-Design. version FEM-Design 6.0 FEM-Design version. 06 FEM-Design 6.0 StruSoft AB Visit the StruSoft website for company and FEM-Design information at www.strusoft.com Copyright 06 by StruSoft, all rights reserved. Trademarks

More information

Lateral Buckling of Singly Symmetric Beams

Lateral Buckling of Singly Symmetric Beams Missouri University of Science and Technology Scholars' Mine International Specialty Conference on Cold- Formed Steel Structures (1992) - 11th International Specialty Conference on Cold-Formed Steel Structures

More information

Improvement of the interaction formulae for beam-columns in Eurocode 3

Improvement of the interaction formulae for beam-columns in Eurocode 3 Improvement of the interaction formulae for beam-columns in Eurocode 3 N. Boissonnade 1, J.-P. Jaspart 2, J.-P. uzeau 1*,. Villette 3 1 LERES / CUST, Blaise Pascal University, BP 206, 63174 AUBIÈRE Cedex,

More information

Assessment and Certification Group

Assessment and Certification Group Fire Testing & Assessment of Reactive Coatings:- Requirements to meet UK and European Approvals Presentation to StiFF, Sheffield University 22/09/2009 UK and EN Requirements: Main Differences (1) UK testing

More information

Structural Steelwork Eurocodes Development of A Trans-national Approach

Structural Steelwork Eurocodes Development of A Trans-national Approach Structural Steelwork Eurocodes Development of A Trans-national Approach Course: Eurocode Module 7 : Worked Examples Lecture 22 : Design of an unbraced sway frame with rigid joints Summary: NOTE This example

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A

QUESTION BANK DEPARTMENT: CIVIL SEMESTER: III SUBJECT CODE: CE2201 SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A DEPARTMENT: CIVIL SUBJECT CODE: CE2201 QUESTION BANK SEMESTER: III SUBJECT NAME: MECHANICS OF SOLIDS UNIT 1- STRESS AND STRAIN PART A (2 Marks) 1. Define longitudinal strain and lateral strain. 2. State

More information

Advanced Training Aluminium

Advanced Training Aluminium Advanced Training Aluminium Aluminium Code Check All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or retrieval

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

UNIT- I Thin plate theory, Structural Instability:

UNIT- I Thin plate theory, Structural Instability: UNIT- I Thin plate theory, Structural Instability: Analysis of thin rectangular plates subject to bending, twisting, distributed transverse load, combined bending and in-plane loading Thin plates having

More information

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200

= 50 ksi. The maximum beam deflection Δ max is not = R B. = 30 kips. Notes for Strength of Materials, ET 200 Notes for Strength of Materials, ET 00 Steel Six Easy Steps Steel beam design is about selecting the lightest steel beam that will support the load without exceeding the bending strength or shear strength

More information

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses

7 TRANSVERSE SHEAR transverse shear stress longitudinal shear stresses 7 TRANSVERSE SHEAR Before we develop a relationship that describes the shear-stress distribution over the cross section of a beam, we will make some preliminary remarks regarding the way shear acts within

More information

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS

A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A HIGHER-ORDER BEAM THEORY FOR COMPOSITE BOX BEAMS A. Kroker, W. Becker TU Darmstadt, Department of Mechanical Engineering, Chair of Structural Mechanics Hochschulstr. 1, D-64289 Darmstadt, Germany kroker@mechanik.tu-darmstadt.de,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad NSTTUTE OF AERONAUTCAL ENGNEERNG (Autonomous) Dundigal, Hyderabad - 00 043 AERONAUTCAL ENGNEERNG TUTORAL QUESTON BANK Course Name : ARCRAFT VEHCLES STRUCTURES Course Code : A2109 Class : B. Tech Semester

More information

Lateral torsional buckling of a spreader beam in a hoisting construction

Lateral torsional buckling of a spreader beam in a hoisting construction Eindhoven University of Technology MASTER Lateral torsional buckling of a spreader beam in a hoisting construction Ploegmakers, D.G. Award date: 2017 Link to publication Disclaimer This document contains

More information

7 Vlasov torsion theory

7 Vlasov torsion theory 7 Vlasov torsion theory P.C.J. Hoogenboom, October 006 Restrained Warping The typical torsion stresses according to De Saint Venant only occur if warping can take place freely (Fig. 1). In engineering

More information

TOPIC TRAINING CODE CHECK COLD-FORMED STEEL PROFILES

TOPIC TRAINING CODE CHECK COLD-FORMED STEEL PROFILES TOPIC TRAINING CODE CHECK COLD-FORMED STEEL PROFILES All information in this document is subject to modification without prior notice. No part of this manual may be reproduced, stored in a database or

More information