Fermionic tensor networks

Size: px
Start display at page:

Download "Fermionic tensor networks"

Transcription

1 Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank Verstraete ETH/EPFL: Bela Bauer, Matthias Troyer, Frederic Mila Acknowledgments: Luca Tagliacozzo, Robert Pfeifer P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, PRA 81, (R) (2010) P. Corboz, G. Vidal, Phys. Rev. B 80, (2009) P. Corboz, R. Orus, B. Bauer, G. Vidal. PRB 81, (2010) P. Corboz, J. Jordan, G. Vidal, arxiv:1008:3937

2 Attack the sign problem sign problem cost exp( N k B T )

3 Overview: tensor networks in 1D and 2D 1D MPS Matrix-product state 1D MERA Multi-scale entanglement renormalization ansatz Related to the famous densitymatrix renormalization group (DMRG) method i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 i 15 i 16 i 17 i 18 and more 1D tree tensor network... 2D (i)peps (infinite) projected pair-entangled state 2D MERA and more 2D tree tensor network String-bond states Entangledplaquette states...

4 Fermions in 2D & tensor networks Simulate fermions in 2D? Before April 2009: NO! Since April 2009: YES! P. Corboz, G. Evenbly, F. Verstraete, G. Vidal, arxiv:0904:4151 C. V. Kraus, N. Schuch, F. Verstraete, J. I. Cirac, arxiv: C. Pineda, T. Barthel, J. Eisert, arxiv: P. Corboz, G. Vidal, Phys. Rev. B 80, (2009) T. Barthel, C. Pineda, J. Eisert, PRA 80, (2009) Q.-Qian Shi, S.-Hao Li, J-Hui Zhao, H-Qiang Zhou, arxiv: P. Corboz, R. Orus, B.Bauer, G. Vidal, PRB 81, (2010) S.-Hao Li, Q.-Qian Shi, H-Qiang Zhou, arxiv:1001:3343 I. Pizorn, F. Verstraete. arxiv: Z.-C. Gu, F. Verstraete, X.-G. Wen. arxiv:

5 Outline Short introduction to tensor networks Idea: efficient representation of quantum many-body states Examples: Tree Tensor Network, MERA, MPS, PEPS Fermionic systems in 2D & tensor networks Simple rules Computational cost compared to bosonic systems Results (ipeps) & comparison with other methods Free and interacting spinless fermions t-j model Summary: What s the status?

6 Tensor networks: Efficient representation of QMB states 6 site system Ψ = Tensor/multidimensional array Big tensor i 1 i 2 i 3 i 4 i 5 i 6 Ψ i1 i 2 i 3 i 4 i 5 i 6 i 1 i 2 i 3 i 4 i 5 i 6 D j1 j 2 j 3 j 1 j 2 j 3 possible?? B j 2 i 3 i 4 C j 3 A j 1 Ψ i1 i 2 i 3 i 4 i 5 i 6 i 5 i 6 i 1 i 2 i 3 i 4 i 5 i 6 Ψ i1 i 2 i 3 i 4 i 5 i 6 Ψ ~exp(n) many numbers vs i1 i 2 Ṽ i 1 i 2 i 3 i 4 i 5 i 6 Entanglement entropy General state S(L) L D Why is this (volume) Contraction: A j1 i1 i 2 B j 2 i 3 i 4 C j 3 j 1 j 2 j 3 Ψ Ψ poly( χ,n) numbers {, } dimension χ χ different states tensor network i 5 i 6 D j1 j 2 j 3 = Ψ i1 i 2 i 3 i 4 i 5 i Ground state (local Hamiltonian) 6 S(L) L D 1 Efficient (area law) representation! Note: Some (critical) ground states exhibit a logarithmic correction to the area law

7 Tree Tensor Network (1D) isometry L 2 τ coarsegrained lattice χ L 1 coarsegrained lattice L 0 microscopic lattice

8 The MERA (The Multi-scale Entanglement Renormalization Ansatz) G. Vidal, PRL 99, (2007), PRL 101, (2008) # relevant local states χ disentangler isometry L 2 τ coarsegrained lattice χ L 1 coarsegrained lattice χ 0 = d L 0 microscopic lattice KEY: Disentanglers reduce the amount of short-range entanglement Efficient ansatz for critical and non-critical systems in 1D

9 2D MERA (top view) Evenbly, Vidal. PRL 102, (2009) Original lattice Apply disentanglers Accounts for arealaw in 2D systems S(L) L χ τ = const Coarse-grained lattice Apply isometries

10 2D MERA represented as a 1D MERA Typical network ρ (lower half) w 1 w 2 w 3 w 4 u x u y u H ρ (upper half) Crossing lines play an important role for fermions!

11 MPS & PEPS 1D MPS 2D (i)peps Matrix-product state (Related to DMRG) D (infinite) projected pair-entangled state D Physical indices (lattices sites) S. R. White, PRL 69, 2863 (1992) Fannes et al., CMP 144, 443 (1992) Östlund, Rommer, PRL 75, 3537 (1995) F. Verstraete, J. I. Cirac, cond-mat/ Reproduces area-law in 1D S(L) =const Reproduces area-law in 2D S(L) L

12 Summary: Tensor network algorithms Structure (ansatz) Find the best (ground) state Ψ Compute observables Ψ O Ψ iterative optimization of individual tensors (energy minimization) imaginary time evolution Contraction of the tensor network exact / approximate

13 Bosons vs Fermions Ψ B (x 1,x 2 )=Ψ B (x 2,x 1 ) symmetric! Ψ F (x 1,x 2 )= Ψ F (x 2,x 1 ) antisymmetric! ˆbiˆbj = ˆb jˆbi operators commute ĉ i ĉ j = ĉ j ĉ i operators anticommute Crossings in a tensor network =+ ignore crossings take care!

14 The swap tensor # Fermions even even odd even even odd odd odd Parity RULE: Parity P of a state: { P = +1 P = 1 (even parity), even number of particles (odd parity), odd number of particles Replace crossing by swap tensor B i 1 i 2 j 2 j 1 B i 1i 2 j 2 j 1 = δ i1,j 1 δ i2,j 2 S(P (i 1 ),P(i 2 )) S(P (i 1 ),P(i 2 )) = 1 +1 if P (i 1 )=P (i 2 )= 1 otherwise Use parity preserving tensors: T i1 i 2...i M =0 if P (i 1 )P (i 2 )...P(i M ) = 1

15 Example Bosonic tensor network Fermionic tensor network EASY!!!

16 Fermionic operator networks State of 4 site system Ψ = i 1 i 2 i 3 i 4 Ψ i1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 { 0, 1} Bosons Tensor Ψ i1 i 2 i 3 i 4 j 1 j 2 A j 1 i1 i 2 D j1 j 2 B j 2 i 3 i 4 bosonic tensor network Contract i 1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 Fermions Tensor + fermionic ops ˆΨ i 1 i 2 i 3 i 4 i 1 i 2 i 3 i 4 ˆD fermionic j 1 j 2 operator  ˆB network Contract + operator calculus  = A j 1 i1 i 2 i 1 i 2 j 1 = A j 1 i1 i 2 ĉ i 1 1 ĉ i ĉj 1 1

17 Fermionic operator network Use anticommutation rules to evaluate fermionic operator network: Easy solution: Map it to a tensor network by replacing crossings by swap tensors

18 Cost of fermionic tensor networks?? ρ (lower half) w 1 w 2 w 3 w 4 u x u y u First thought: Many crossings many more tensors larger computational cost?? H NO! Same computational cost ρ (upper half)

19 The jump move = Jumps over tensors leave the tensor network invariant Follows form parity preserving tensors [ ˆT,ĉ k ]=0, if k/ sup[ ˆT ] Allows us to simplify the tensor network Final cost is the same as in a bosonic tensor network

20 Example of the jump move absorb now contract as usual! absorb

21 Message: Taking fermionic statistics into account is easy! Replace crossings by swap tensors & use parity preserving tensors Computational cost does not depend a priori on the particle statistics, but on the amount of entanglement in the system!

22 Computational cost Leading cost: O(D k ) MPS: k =3 PEPS: k D MERA: k = 16 polynomial scaling but large exponent! How large does have to be? D It depends on the amount of entanglement in the system! χ Bond dimension: D i 1 i 2 i 3 i 4 i 5 i 6 i 7 i 8 i 9 i 10 i 11 i 12 i 13 i 14 i 15 i 16 i 17 i 18

23 Classification by entanglement Entanglement low high gapped systems gapless systems systems with 1D fermi surface S(L) L log L band insulators, valence-bond crystals, s-wave superconductors,... Heisenberg model, p-wave superconductors, Dirac Fermions,... free Fermions, Fermi-liquid type phases, bose-metals?

24 Overview: Results / benchmarks Free spinless fermions Finite systems (MERA, TTN) Finite systems (PEPS) Infinite systems (ipeps) Interacting spinless fermions Finite systems (MERA, TTN) Finite systems (PEPS) Phase diagram of t-v model (ipeps) t-j model Benchmark (ipeps) Phase diagram (ipeps) Corboz, Evenbly, Verstraete, Vidal, PRA 81, (R) (2010), Corboz, Vidal, PRB 80, (2009) Pineda, Barthel, Eisert, arxiv: Kraus, Schuch, Verstraete, Cirac, arxiv: Pizorn, Verstraete. arxiv: Z.-C. Gu, F. Verstraete, X.-G. Wen. arxiv: Corboz, Orus, Bauer, Vidal, PRB 81, (2010) Shi, Li, Zhao, Zhou, arxiv: Li, Shi, Zhou, arxiv:1001:3343

25 Non-interacting spinless fermions: infinite systems (ipeps) H free = rs [c rc s + c sc r γ(c rc s + c s c r )] 2λ r c rc r γ 2 critical gapped Relative error of energy γ=0 D=2 γ=0 D=4 γ=1 D=2 γ=1 D=4 γ=2 D=2 γ=2 D=4 D: bond dimension 1 1D Fermi surface λ Li et al., PRB 74, (2006) λ fast convergence with D in gapped phases slow convergence in phase with 1D Fermi surface

26 Correlators C(r) γ=1, λ=1 (critical) exact D=2 D=4 D= x 10 3 γ=1, λ=3 (gapped) C(r) C(r,D) C ex (r) r r

27 Phase diagram of interacting spinless fermions (ipeps) Ĥ = t i,j ĉ i ĉj + H.c. µ i ĉ i ĉi + V i,j ĉ i ĉiĉ jĉj Restricted Hartree-Fock (HF) results: Woul&Langmann. J. Stat Phys. 139, 1033 (2010) metal (gapless) charge-density-wave (CDW, gapped) metal (gapless) 1st order PT 1st order PT metal (gapless) phase separation CDW phase separation metal (gapless) n (filling)

28 ipeps vs Hartree-Fock Woul, Langmann. J. Stat Phys. 139, 1033 (2010) Corboz, Orus, Bauer, Vidal. PRB 81, (2010) 3 unstable phase separation region unstable phase separation region HF D=4 D=6 V 2 CDW line 1 metal metal n qualitative agreement Phase boundary moves away from HF result with increasing D

29 ipeps vs Hartree-Fock Woul, Langmann. J. Stat Phys. 139, 1033 (2010) Corboz, Orus, Bauer, Vidal. PRB 81, (2010) V =2 crossing of the energy of the two phases E s HF metal HF CDW D=4 metal D=4 CDW D=6 metal D=6 CDW µ D=4 result ~ HF result D=6: lower (better) energies in the metal phase

30 Adding a next-nearest neighbor hopping Ĥ = t i,j ĉ i ĉj + H.c. µ i ĉ i ĉi + V i,j ĉ i ĉiĉ jĉj Corboz, Jordan, Vidal, arxiv:1008:3937 t i,j ĉ iσĉjσ + H.c. Hartree-Fock phase diagram: Woul, Langmann. J. Stat Phys. 139, 1033 (2010) V =2 a) t = 0.4 metal PS CDW (1) 0.368(1) 0.5 n metal PS CDW Is b) there a stable doped CDW phase beyond Hartree-Fock? n D=4 D=6 D=8 NO... (at least not for these parameters)

31 0.5 Adding a next-nearest neighbor hopping E s <n> S HF metal HF CDW D=4 metal D=4 CDW D=6 metal D=6 CDW D=8 metal D=8 CDW Corboz, Jordan, Vidal, arxiv:1008:3937 n * =0.350(3) n * =0.343(3) doped CDW region n * =0.307(3) µ

32 t-t -J model H t-j = t ijσ c iσ c jσ t ijσ c iσ c jσ + J ij(s i S j 1 4 n in j ) µ i n i Comparison with: L. Spanu, M. Lugas, F. Becca, S. Sorella. PRB 77, (2008). variational Monte Carlo (VMC) (Gutzwiller projected ansatz wf) state-of-the-art fixed node Monte Carlo (FNMC) J/t =0.4, t /t = E s How about striped phases?? need larger unit cell!! D=2 D=4 D=6 D=8 VMC N=98 VMC N=162 FNMC N=98 FNMC N=162 D=8 results in between VMC and FNMC n Corboz, Jordan, Vidal, arxiv:1008:3937

33 Summary: status This is useless! D 12 scaling is as bad as exponential! YES, we have the holy grail! We can now solve everything!

34 Summary: status Variational ansatz with no (little) bias & controllable accuracy. Accuracy depends on the amount of entanglement in the system Accurate results for gapped systems Competitive compared to other variational wave functions Systematic improvement upon mean-field solution - For which bond dimension is it converged? - Limited accuracy for gapless systems - no L log L scaling - High computational cost Combine with Monte Carlo sampling (Schuch et al, Sandvik&Vidal, Wang et al.) Exploit symmetries of a model (Singh et al, Bauer et al.) Improve optimization/contraction schemes

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Lecture 3: Tensor Product Ansatz

Lecture 3: Tensor Product Ansatz Lecture 3: Tensor Product nsatz Graduate Lectures Dr Gunnar Möller Cavendish Laboratory, University of Cambridge slide credits: Philippe Corboz (ETH / msterdam) January 2014 Cavendish Laboratory Part I:

More information

Simulation of fermionic lattice models in two dimensions with Projected Entangled-Pair States: Next-nearest neighbor Hamiltonians

Simulation of fermionic lattice models in two dimensions with Projected Entangled-Pair States: Next-nearest neighbor Hamiltonians Simulation of fermionic lattice models in two dimensions with Projected Entangled-Pair States: Next-nearest neighbor Hamiltonians of fermionic PEPS algorithms is important in order to establish their range

More information

arxiv: v2 [cond-mat.str-el] 28 Apr 2010

arxiv: v2 [cond-mat.str-el] 28 Apr 2010 Simulation of strongly correlated fermions in two spatial dimensions with fermionic Projected Entangled-Pair States arxiv:0912.0646v2 [cond-mat.str-el] 28 Apr 2010 Philippe Corboz, 1 Román Orús, 1 Bela

More information

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School T ensor N et works I ztok Pizorn Frank Verstraete University of Vienna 2010 M ichigan Quantum Summer School Matrix product states (MPS) Introduction to matrix product states Ground states of finite systems

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

An introduction to tensornetwork

An introduction to tensornetwork An introduction to tensornetwork states and MERA Sissa Journal Club Andrea De Luca 29/01/2010 A typical problem We are given: A lattice with N sites On each site a C d hilbert space A quantum hamiltonian

More information

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks. IPAM/UCLA, Sat 24 th Jan 2009 umerical Approaches to Quantum Many-Body Systems QS2009 tutorials lecture: Tensor etworks Guifre Vidal Outline Tensor etworks Computation of expected values Optimization of

More information

Tensor network renormalization

Tensor network renormalization Walter Burke Institute for Theoretical Physics INAUGURAL CELEBRATION AND SYMPOSIUM Caltech, Feb 23-24, 2015 Tensor network renormalization Guifre Vidal Sherman Fairchild Prize Postdoctoral Fellow (2003-2005)

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) 2018.10.29 ITP, Beijing Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

Tensor network renormalization

Tensor network renormalization Coogee'15 Sydney Quantum Information Theory Workshop Tensor network renormalization Guifre Vidal In collaboration with GLEN EVENBLY IQIM Caltech UC Irvine Quantum Mechanics 1920-1930 Niels Bohr Albert

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Time-dependent variational principle for quantum many-body systems

Time-dependent variational principle for quantum many-body systems Quantum Information in Quantum Many-Body Physics October 21, 2011 Centre de Recherches Mathematiques, Montréal Time-dependent variational principle for quantum many-body systems PRL 107, 070601 (2011)

More information

Rigorous free fermion entanglement renormalization from wavelets

Rigorous free fermion entanglement renormalization from wavelets Computational Complexity and High Energy Physics August 1st, 2017 Rigorous free fermion entanglement renormalization from wavelets arxiv: 1707.06243 Jutho Haegeman Ghent University in collaboration with:

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Fermionic topological quantum states as tensor networks

Fermionic topological quantum states as tensor networks order in topological quantum states as Jens Eisert, Freie Universität Berlin Joint work with Carolin Wille and Oliver Buerschaper Symmetry, topology, and quantum phases of matter: From to physical realizations,

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

Positive Tensor Network approach for simulating open quantum many-body systems

Positive Tensor Network approach for simulating open quantum many-body systems Positive Tensor Network approach for simulating open quantum many-body systems 19 / 9 / 2016 A. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert and S. Montangero PRL 116, 237201 (2016)

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Systematic! Fermionic! D>1?! Chung-Pin Chou 1, Frank Pollmann 2, Ting-Kuo Lee 1 1 Institute

More information

arxiv: v2 [quant-ph] 31 Oct 2013

arxiv: v2 [quant-ph] 31 Oct 2013 Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz arxiv:1109.5334v2 [quant-ph] 31 Oct 2013 G. Evenbly 1 and G. Vidal 2 1 The University of Queensland, Brisbane, Queensland 4072,

More information

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

Machine Learning with Tensor Networks

Machine Learning with Tensor Networks Machine Learning with Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 Beijing Jun 2017 Machine learning has physics in its DNA # " # #

More information

arxiv: v1 [cond-mat.str-el] 19 Jan 2012

arxiv: v1 [cond-mat.str-el] 19 Jan 2012 Perfect Sampling with Unitary Tensor Networks arxiv:1201.3974v1 [cond-mat.str-el] 19 Jan 2012 Andrew J. Ferris 1, 2 and Guifre Vidal 1, 3 1 The University of Queensland, School of Mathematics and Physics,

More information

Efficient description of many body systems with prjected entangled pair states

Efficient description of many body systems with prjected entangled pair states Efficient description of many body systems with prjected entangled pair states J. IGNACIO CIRAC Workshop on Quantum Information Science and many-body systems, National Cheng Kung University, Tainan, Taiwan,

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

arxiv: v1 [quant-ph] 6 Jun 2011

arxiv: v1 [quant-ph] 6 Jun 2011 Tensor network states and geometry G. Evenbly 1, G. Vidal 1,2 1 School of Mathematics and Physics, the University of Queensland, Brisbane 4072, Australia 2 Perimeter Institute for Theoretical Physics,

More information

arxiv: v1 [quant-ph] 18 Jul 2017

arxiv: v1 [quant-ph] 18 Jul 2017 Implicitly disentangled renormalization arxiv:1707.05770v1 [quant-ph] 18 Jul 017 Glen Evenbly 1 1 Département de Physique and Institut Quantique, Université de Sherbrooke, Québec, Canada (Dated: July 19,

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

The Mott Metal-Insulator Transition

The Mott Metal-Insulator Transition Florian Gebhard The Mott Metal-Insulator Transition Models and Methods With 38 Figures Springer 1. Metal Insulator Transitions 1 1.1 Classification of Metals and Insulators 2 1.1.1 Definition of Metal

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 7 - JGU Mainz Vorstellung der Arbeitsgruppen WS 15-16 recent developments in control of quantum objects (e.g., cold atoms, trapped ions) General Framework

More information

Excursion: MPS & DMRG

Excursion: MPS & DMRG Excursion: MPS & DMRG Johannes.Schachenmayer@gmail.com Acronyms for: - Matrix product states - Density matrix renormalization group Numerical methods for simulations of time dynamics of large 1D quantum

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

Quantum Hamiltonian Complexity. Itai Arad

Quantum Hamiltonian Complexity. Itai Arad 1 18 / Quantum Hamiltonian Complexity Itai Arad Centre of Quantum Technologies National University of Singapore QIP 2015 2 18 / Quantum Hamiltonian Complexity condensed matter physics QHC complexity theory

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

The Density Matrix Renormalization Group: Introduction and Overview

The Density Matrix Renormalization Group: Introduction and Overview The Density Matrix Renormalization Group: Introduction and Overview Introduction to DMRG as a low entanglement approximation Entanglement Matrix Product States Minimizing the energy and DMRG sweeping The

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information

Magnets, 1D quantum system, and quantum Phase transitions

Magnets, 1D quantum system, and quantum Phase transitions 134 Phys620.nb 10 Magnets, 1D quantum system, and quantum Phase transitions In 1D, fermions can be mapped into bosons, and vice versa. 10.1. magnetization and frustrated magnets (in any dimensions) Consider

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

2D Bose and Non-Fermi Liquid Metals

2D Bose and Non-Fermi Liquid Metals 2D Bose and Non-Fermi Liquid Metals MPA Fisher, with O. Motrunich, D. Sheng, E. Gull, S. Trebst, A. Feiguin KITP Cold Atoms Workshop 10/5/2010 Interest: A class of exotic gapless 2D Many-Body States a)

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

MERA for Spin Chains with Critical Lines

MERA for Spin Chains with Critical Lines MERA for Spin Chains with Critical Lines Jacob C. Bridgeman Aroon O Brien Stephen D. Bartlett Andrew C. Doherty ARC Centre for Engineered Quantum Systems, The University of Sydney, Australia January 16,

More information

Neural Network Representation of Tensor Network and Chiral States

Neural Network Representation of Tensor Network and Chiral States Neural Network Representation of Tensor Network and Chiral States Yichen Huang ( 黄溢辰 ) 1 and Joel E. Moore 2 1 Institute for Quantum Information and Matter California Institute of Technology 2 Department

More information

arxiv: v1 [cond-mat.str-el] 1 Apr 2014

arxiv: v1 [cond-mat.str-el] 1 Apr 2014 Replica exchange molecular dynamics optimization of tensor networ states for quantum many-body systems Wenyuan Liu, 1,2 Chao Wang, 1,2 Yanbin Li, 1 Yuyang Lao, 1 Yongjian Han, 1,2, Guang-Can Guo, 1,2 and

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Disentangling Topological Insulators by Tensor Networks

Disentangling Topological Insulators by Tensor Networks Disentangling Topological Insulators by Tensor Networks Shinsei Ryu Univ. of Illinois, Urbana-Champaign Collaborators: Ali Mollabashi (IPM Tehran) Masahiro Nozaki (Kyoto) Tadashi Takayanagi (Kyoto) Xueda

More information

A quantum dynamical simulator Classical digital meets quantum analog

A quantum dynamical simulator Classical digital meets quantum analog A quantum dynamical simulator Classical digital meets quantum analog Ulrich Schollwöck LMU Munich Jens Eisert Freie Universität Berlin Mentions joint work with I. Bloch, S. Trotzky, I. McCulloch, A. Flesch,

More information

Quantum Information and Quantum Many-body Systems

Quantum Information and Quantum Many-body Systems Quantum Information and Quantum Many-body Systems Lecture 1 Norbert Schuch California Institute of Technology Institute for Quantum Information Quantum Information and Quantum Many-Body Systems Aim: Understand

More information

Topological Kondo Insulators!

Topological Kondo Insulators! Topological Kondo Insulators! Maxim Dzero, University of Maryland Collaborators: Kai Sun, University of Maryland Victor Galitski, University of Maryland Piers Coleman, Rutgers University Main idea Kondo

More information

Many-Body physics meets Quantum Information

Many-Body physics meets Quantum Information Many-Body physics meets Quantum Information Rosario Fazio Scuola Normale Superiore, Pisa & NEST, Istituto di Nanoscienze - CNR, Pisa Quantum Computers Interaction between qubits two-level systems Many-Body

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

arxiv: v2 [cond-mat.str-el] 25 Aug 2011

arxiv: v2 [cond-mat.str-el] 25 Aug 2011 Studying Two Dimensional Systems With the Density Matrix Renormalization Group E.M. Stoudenmire and Steven R. White Department of Physics and Astronomy, University of California, Irvine, CA 92697 (Dated:

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

Entanglement Renormalization and Wavelets

Entanglement Renormalization and Wavelets YITP, Jne 06 Entanglement Renormalization and Wavelets Glen Evenbly G.E., Steven. R. White, Phys. Rev. Lett 6. 40403 (April `6). G.E., Steven. R. White, arxiv: 605.073 (May `6). Entanglement renormalization

More information

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases

Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Magnetic Crystals and Helical Liquids in Alkaline-Earth 1D Fermionic Gases Leonardo Mazza Scuola Normale Superiore, Pisa Seattle March 24, 2015 Leonardo Mazza (SNS) Exotic Phases in Alkaline-Earth Fermi

More information

arxiv: v4 [quant-ph] 13 Mar 2013

arxiv: v4 [quant-ph] 13 Mar 2013 Deep learning and the renormalization group arxiv:1301.3124v4 [quant-ph] 13 Mar 2013 Cédric Bény Institut für Theoretische Physik Leibniz Universität Hannover Appelstraße 2, 30167 Hannover, Germany cedric.beny@gmail.com

More information

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009 The itebd algorithm beyond unitary evolution R. Orús and G. Vidal School of Physical Sciences, The University of Queensland, QLD 4072, Australia arxiv:0711.3960v4 [cond-mat.stat-mech] 13 Mar 2009 The infinite

More information

Dephasing, relaxation and thermalization in one-dimensional quantum systems

Dephasing, relaxation and thermalization in one-dimensional quantum systems Dephasing, relaxation and thermalization in one-dimensional quantum systems Fachbereich Physik, TU Kaiserslautern 26.7.2012 Outline 1 Introduction 2 Dephasing, relaxation and thermalization 3 Particle

More information

Entanglement spectrum and Matrix Product States

Entanglement spectrum and Matrix Product States Entanglement spectrum and Matrix Product States Frank Verstraete J. Haegeman, D. Draxler, B. Pirvu, V. Stojevic, V. Zauner, I. Pizorn I. Cirac (MPQ), T. Osborne (Hannover), N. Schuch (Aachen) Outline Valence

More information

arxiv: v2 [quant-ph] 12 Aug 2008

arxiv: v2 [quant-ph] 12 Aug 2008 Complexity of thermal states in quantum spin chains arxiv:85.449v [quant-ph] Aug 8 Marko Žnidarič, Tomaž Prosen and Iztok Pižorn Department of physics, FMF, University of Ljubljana, Jadranska 9, SI- Ljubljana,

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome Raman scattering, magnetic field, and hole doping Wing-Ho Ko MIT January 25, 21 Acknowledgments Acknowledgments Xiao-Gang Wen Patrick Lee

More information

Critical Values for Electron Pairing in t U J V and t J V Models

Critical Values for Electron Pairing in t U J V and t J V Models Vol. 114 (2008) ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Critical Values for Electron Pairing in t U J V and t J V Models M. Bak Institute

More information

Many Body Quantum Mechanics

Many Body Quantum Mechanics Many Body Quantum Mechanics In this section, we set up the many body formalism for quantum systems. This is useful in any problem involving identical particles. For example, it automatically takes care

More information

Quantum Monte Carlo wave functions and their optimization for quantum chemistry

Quantum Monte Carlo wave functions and their optimization for quantum chemistry Quantum Monte Carlo wave functions and their optimization for quantum chemistry Julien Toulouse Université Pierre & Marie Curie and CNRS, Paris, France CEA Saclay, SPhN Orme des Merisiers April 2015 Outline

More information

From Path Integral to Tensor Networks for AdS/CFT

From Path Integral to Tensor Networks for AdS/CFT Seminar @ Osaka U 2016/11/15 From Path Integral to Tensor Networks for AdS/CFT Kento Watanabe (Center for Gravitational Physics, YITP, Kyoto U) 1609.04645v2 [hep-th] w/ Tadashi Takayanagi (YITP + Kavli

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

Entanglement in Many-Body Fermion Systems

Entanglement in Many-Body Fermion Systems Entanglement in Many-Body Fermion Systems Michelle Storms 1, 2 1 Department of Physics, University of California Davis, CA 95616, USA 2 Department of Physics and Astronomy, Ohio Wesleyan University, Delaware,

More information

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina

Haldane phase and magnetic end-states in 1D topological Kondo insulators. Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Haldane phase and magnetic end-states in 1D topological Kondo insulators Alejandro M. Lobos Instituto de Fisica Rosario (IFIR) - CONICET- Argentina Workshop on Next Generation Quantum Materials ICTP-SAIFR,

More information

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada.

Computational Approaches to Quantum Critical Phenomena ( ) ISSP. Fermion Simulations. July 31, Univ. Tokyo M. Imada. Computational Approaches to Quantum Critical Phenomena (2006.7.17-8.11) ISSP Fermion Simulations July 31, 2006 ISSP, Kashiwa Univ. Tokyo M. Imada collaboration T. Kashima, Y. Noda, H. Morita, T. Mizusaki,

More information

Classical and quantum simulation of dissipative quantum many-body systems

Classical and quantum simulation of dissipative quantum many-body systems 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 0 20 32 Classical and quantum simulation of dissipative quantum many-body systems

More information

Diffusion Monte Carlo

Diffusion Monte Carlo Diffusion Monte Carlo Notes for Boulder Summer School 2010 Bryan Clark July 22, 2010 Diffusion Monte Carlo The big idea: VMC is a useful technique, but often we want to sample observables of the true ground

More information

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany

Recent developments in DMRG. Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany Recent developments in DMRG Eric Jeckelmann Institute for Theoretical Physics University of Hanover Germany Outline 1. Introduction 2. Dynamical DMRG 3. DMRG and quantum information theory 4. Time-evolution

More information

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany)

R. Citro. In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L. Santos (MP, Hannover, Germany) Phase Diagram of interacting Bose gases in one-dimensional disordered optical lattices R. Citro In collaboration with: A. Minguzzi (LPMMC, Grenoble, France) E. Orignac (ENS, Lyon, France), X. Deng & L.

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

Journal Club: Brief Introduction to Tensor Network

Journal Club: Brief Introduction to Tensor Network Journal Club: Brief Introduction to Tensor Network Wei-Han Hsiao a a The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note summarizes the talk given on March 8th 2016 which was

More information

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model

Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model Vol. 114 2008 ACTA PHYSICA POLONICA A No. 1 Proceedings of the XIII National School of Superconductivity, L adek Zdrój 2007 Real Space Bogoliubov de Gennes Equations Study of the Boson Fermion Model J.

More information