Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Size: px
Start display at page:

Download "Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing"

Transcription

1 Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) ITP, Beijing

2 Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state Tensor network state (TNS) as lowly-entangled state Partition function as tensor networks Brief review of RG techniques to evaluate a 2D tensor network Partial list of successful applications of TNS

3 Why need Tensor Network State (TNS)? Hilbert space is too large N Catastrophe of dimension, Exponential wall problem Dirac: too complicated to be solved Kohn: wavefunction is not a scientific concept

4 Why we need Tensor Network State (TNS)? Nature does not exhaust all the possibilities 1024 * 1024 binary figure: can hold absolutely anything in the universe actually much much more: Almost all of them are meaningless and you will never see

5 Why we need Tensor Network State (TNS)? Nature is meaningful and usually local Particles are uncorrelated at long distance Entanglement entropy Area law conjecture: all physical relevant system satisfies (may have log corrections in gapless/critical systems) sys env

6 Why we need Tensor Network State (TNS)? From the viewpoint of entanglement Full Hilbert space: Too large to study even to enumerate! TNS is suitable for lowly-entangled state Lowly-entangled corner: relevant for physical QMB state, area law

7 Graphical Notations Open links Shared links State and operator State norm Expectation value

8 1D TNS: Matrix Product State (MPS) Graphics and Expression Some exact states: GHZ, Majumdar-Ghosh, AKLT Matrix Product Operator (MPO): Heisenberg Key: 1D area law, always finitely-correlated Canonical form

9 1D TNS: Matrix Product State (MPS) Energy minimization find a PEPS which minimize the energy: Imaginary time evolution

10 2D Tensor Network State Graphical notations (basis always there) Scalar (in PBC) Operator parameterize State: virtual / physical

11 Graphics and Expression 2D Tensor Network State Norm/expectation

12 2D Tensor Network State Members: PEPS, PESS (virtual particle entanglement) entangled pair entangled simplex Projected Entangled Pair States (PEPS) arxiv: cond-mat Projected Entangled Simplex States (PESS) PRX 4, (2014)

13 2D Tensor Network State Members: Correlator Product State (CPS), e.g., H. J. Changlani, PRB 80, (2009) Product of correlators, no virtual particle

14 2D Tensor Network State Members: TTN, MERA G. Vidal, PRL 99, (2007) Tree Tensor Network State (TNN) Multi-scale Entangled Renormalization Ansatz (MERA) RG: Kadanoff, Fisher, Wilson

15 2D Tensor Network State Different classes indicate different entanglement structure 1D area law: TNN Area Law summary 1D area law with log: 1D MERA 2D area law: PEPS, PESS, Short-CPS, 2D MERA 2D area law with log(even volume law): Long-CPS, Branch MERA

16 2D Tensor Network State Some exact states: RVB, Toric Code, SSS (1). Represent a spin-2 in terms of 2 vspin-1. (2). Vspins in a simplex form simplex singlet (3). Project virtual space to the physical spin-2 space:

17 2D Tensor Network State Power-law-decaying correlation = Ψ Ψ

18 2D Tensor Network State 2D-iTEBD: simple update Local vision!

19 2D Tensor Network State Fermionic statistics P. Corboz, PRL 113, (2014)

20 Partition function as a tensor-network Tensor network model (TNM) Any statistical model with only local interactions has an exact tensor network representation of the partition function = T

21 Partition function as a tensor-network Other construction: group, dual

22 What we have discussed up to now? For quantum lattice systems Choose suitable ansatz (e.g., 5 classes) Obtain wavefunction (e.g., 2 big classes) Obtain expectation (e.g., 3 big classes) For classical statistical systems Mapping to TNM (e.g., 3 methods) Obtain expectation (e.g., 3 big classes)

23 RG methods to evaluate a tensor-network It is a #P-complete hard problem to do it exactly in 2D! Strategy: approximation via renormalization (information compression) Transform Matrix (TM) Renormalization Group (RG) Target: effective low-dimensional representation of T, and then diagonalize it. XQW, Phys. Rev. B 56, 5061 (1997) Basis Transformation to get the fixed point

24 RG methods to evaluate a tensor-network Boundary MPS: infinite Time Evolving Block Decimation (itebd) Target: effective MPS representation of the dominant eigenvector Power method to get the fixed point: R. Orus, Phys. Rev. B 78, (2008)

25 RG methods to evaluate a tensor-network Corner Transfer Matrix (CTM) RG Target: effective representation of the surrounding environment A A

26 RG methods to evaluate a tensor-network Corner Transfer Matrix (CTM) RG: Left move P. Corboz, PRL 113, (2014) C 1 E 3 E 3 C 2 A E 1 E 1 A A A A E 2 E 2 make matrix C 3 E 4 E 4 C 4 Enlarge the corner by absorbing system gradually to get the fixed point Truncation by bond targeting: always 4*4 cluster

27 RG methods to evaluate a tensor-network Coarse-graining RG: Mimic Kadanoff s block spin decimation in real space by scale transformation. The local DOF is renormalized and decimated in each scale transformation

28 Local optimization Levin-Nave Tensor RG: realized by local SVD 8/43 Step 1: lattice deformation M kj, il mji mlk m D n 1 T T U V kj, n n il, n SVD: the best scheme to truncate a matrix

29 Step 2 of LN-TRG: Decimation of local degree of freedom by summation 9/43 Txyz SxikSyjiSzkj ijk A complete scale transformation step: from N to N/3

30 Higher-order TRG (HOTRG): realized by local HOSVD Coarse grain along the lattice vectors alternatively PRB 86, (2012) Key Problem: 2 cutoff simultaneously, how?? D D D 2 D 2

31 Low rank approximation of a tensor is still an open problem itself! Higher-Order SVD (HOSVD) SIAM, J. Matrix Anal. Appl, 21, 1253 (2000). Definition: pseudo-diagonalization by orthogonal transformation Truncation: gives a good low rank approximation of T. Us Can be obtained by directional SVD independently

32 In practical calculation: isometry action U: obtained from HOSVD of M, chosen the one has smaller truncation error Two directions are coarse-grained alternatively to cover more entanglement and keep symmetry. More symmetric method: bond SVD via gauge transformation

33 Improvement 1: Second Renormalization Group (SRG) by global optimization PRL 103, (2009) Difference between NRG and DMRG: different basis selection scheme! 1974 Wilson NRG System 1992 White DMRG System sys env States are weighted according to the spectra of the system States are weighted according to the spectra of sys s RDM: entanglement spectra between a sys and its env Environment is important!

34 Note: HOTRG is a local update method without environment HOSRG: Consider the environment in the frame work of HOTRG Z=Tr MM env Forward iteration: HOTRG to obtain U at all the scales. Backward iteration: get E (N-1), E (N-2),, E (2), E (1) from the recursive relation. Sweep: This iteration can be repeated to gain more accuracy

35 Extension to 3D Forward iteration Backward iteration Modify the local decomposition SRG can be used to globally optimize a 3D tensor network! SRG in 2D finite system with PBC: combined with a sweeping scheme H. H. Zhao, Z. Y. Xie, T. Xiang, and M. Imada, Phys. Rev. B 93, (2016).

36 Improvement 2: EV/Loop-TRG by removing local(short-range) entanglement Corner double line picture TEFR: ZCGu, XGWen, PRB 80, (2009) No long-range entanglement at all Topological trivial phase Long-range entanglement exist Probably topological ordered phase RG fixed tensor: low-rank Direct-product structure: can be removed locally; If done, then D can be much smaller without lowering the accuracy! Corresponds to RG spirit: low-scale entanglement should not appear at higher-scale near Tc

37 EV-TRG, i.e., realized by disentangler Idea: why we did not see CDL? they are entangled by local entanglement (as unitary trans.) Spirit of MERA: we add disentangler before we do local decomposition. Evenbly, Vidal, PRL 115, (2015) equivalently to enforce this special structure of the basis transformation unitary disentangle (to remove local entanglement) isometry (to do decimation)

38 Solve the parameters by variation: Minimize distance, or maximize overlap Isometric property can simplify the calculation: for any isometry X and any matrix M, we have

39 Loop TRG: realized by entanglement filtering Idea: CDL structure can be removed by canonicalization of a very sparse MPS (loop) Canonicalization (basis transformation): to remove all the loop entanglement Deformation (square to octagon): to coarse grain Variation: to improve accuracy SY, ZCGu, XGWen, PRL 118, (2017)

40 Comparison Method Summary Local opt CG, global opt CG, transfer-matrix-based (best). Coarse-graining: more suitable to extract critical info from RG fixed point HOTRG/HOSRG: designed for 3D lattice, almost the only practical method in 3D SRG/HOSRG: can work for finite lattice (even PBC), while others has problems Entanglement removing: more suitable for critical system

41 Critical point accuracy Method Summary Remove SRE, but why (not so clear)? Variation? disentangle/filtering? No + No Yes + Yes EV-TRG and Loop-TRG use variation, while others do not.

42 What we have discussed up to now? For quantum lattice systems Choose suitable ansatz (e.g., 5 classes) Obtain wavefunction (e.g., 2 big classes) Obtain expectation (e.g., 3 big classes) For classical statistical systems Mapping to TNM (e.g., 3 methods) Obtain expectation (e.g., 3 big classes)

43 Successful Applications (Very Partial) 3D classical statistical model: Ising model PRB 86, (2012) Frustrated spin model: AF Kagome, J1-J2 square PRL 118, (2017) Unfrustrated spin model: many, spin-1/2 AF Heisenberg model on square Annu. Rev. CMP 3, 111(2012) Superconductivity: t-j model, Hubbard model PRL 113, (2014) Classical spin glass: EA model PRB 90, (2014) Quantum chemistry: Nat. Chem. 5, 660 (2013) Continuous DOF and KT phase transition: Continuous space and 1D quantum field theory: PRE 89, (2014) PRL 104, (2010) 1D many-body localization: Topological order detection: PRL 114, (2015) PRL 111, (2013) Lattice gauge theory: PRD 88, (2013)

44 Machine Learning? Thank you!

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

Tensor network renormalization

Tensor network renormalization Coogee'15 Sydney Quantum Information Theory Workshop Tensor network renormalization Guifre Vidal In collaboration with GLEN EVENBLY IQIM Caltech UC Irvine Quantum Mechanics 1920-1930 Niels Bohr Albert

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice Renormalization of Tensor Network States Partial order and finite temperature phase transition in the Potts model on irregular lattice Tao Xiang Institute of Physics Chinese Academy of Sciences Background:

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Lecture 3: Tensor Product Ansatz

Lecture 3: Tensor Product Ansatz Lecture 3: Tensor Product nsatz Graduate Lectures Dr Gunnar Möller Cavendish Laboratory, University of Cambridge slide credits: Philippe Corboz (ETH / msterdam) January 2014 Cavendish Laboratory Part I:

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

Tensor network renormalization

Tensor network renormalization Walter Burke Institute for Theoretical Physics INAUGURAL CELEBRATION AND SYMPOSIUM Caltech, Feb 23-24, 2015 Tensor network renormalization Guifre Vidal Sherman Fairchild Prize Postdoctoral Fellow (2003-2005)

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Machine Learning with Tensor Networks

Machine Learning with Tensor Networks Machine Learning with Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 Beijing Jun 2017 Machine learning has physics in its DNA # " # #

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 15, No. 4, pp. 1423 1447 c 2017 Society for Industrial and Applied Mathematics TENSOR NETWORK SKELETONIZATION LEXING YING Abstract. We introduce a new coarse-graining algorithm,

More information

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

Fermionic topological quantum states as tensor networks

Fermionic topological quantum states as tensor networks order in topological quantum states as Jens Eisert, Freie Universität Berlin Joint work with Carolin Wille and Oliver Buerschaper Symmetry, topology, and quantum phases of matter: From to physical realizations,

More information

arxiv: v1 [quant-ph] 18 Jul 2017

arxiv: v1 [quant-ph] 18 Jul 2017 Implicitly disentangled renormalization arxiv:1707.05770v1 [quant-ph] 18 Jul 017 Glen Evenbly 1 1 Département de Physique and Institut Quantique, Université de Sherbrooke, Québec, Canada (Dated: July 19,

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 7 - JGU Mainz Vorstellung der Arbeitsgruppen WS 15-16 recent developments in control of quantum objects (e.g., cold atoms, trapped ions) General Framework

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

Disentangling Topological Insulators by Tensor Networks

Disentangling Topological Insulators by Tensor Networks Disentangling Topological Insulators by Tensor Networks Shinsei Ryu Univ. of Illinois, Urbana-Champaign Collaborators: Ali Mollabashi (IPM Tehran) Masahiro Nozaki (Kyoto) Tadashi Takayanagi (Kyoto) Xueda

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

The Density Matrix Renormalization Group: Introduction and Overview

The Density Matrix Renormalization Group: Introduction and Overview The Density Matrix Renormalization Group: Introduction and Overview Introduction to DMRG as a low entanglement approximation Entanglement Matrix Product States Minimizing the energy and DMRG sweeping The

More information

Journal Club: Brief Introduction to Tensor Network

Journal Club: Brief Introduction to Tensor Network Journal Club: Brief Introduction to Tensor Network Wei-Han Hsiao a a The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note summarizes the talk given on March 8th 2016 which was

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

arxiv: v2 [quant-ph] 31 Oct 2013

arxiv: v2 [quant-ph] 31 Oct 2013 Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz arxiv:1109.5334v2 [quant-ph] 31 Oct 2013 G. Evenbly 1 and G. Vidal 2 1 The University of Queensland, Brisbane, Queensland 4072,

More information

An introduction to tensornetwork

An introduction to tensornetwork An introduction to tensornetwork states and MERA Sissa Journal Club Andrea De Luca 29/01/2010 A typical problem We are given: A lattice with N sites On each site a C d hilbert space A quantum hamiltonian

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

Excursion: MPS & DMRG

Excursion: MPS & DMRG Excursion: MPS & DMRG Johannes.Schachenmayer@gmail.com Acronyms for: - Matrix product states - Density matrix renormalization group Numerical methods for simulations of time dynamics of large 1D quantum

More information

Numerical Methods for Strongly Correlated Systems

Numerical Methods for Strongly Correlated Systems CLARENDON LABORATORY PHYSICS DEPARTMENT UNIVERSITY OF OXFORD and CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE Numerical Methods for Strongly Correlated Systems Dieter Jaksch Feynman

More information

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS LSSIFITION OF SU(2)-SYMMETRI TENSOR NETWORKS Matthieu Mambrini Laboratoire de Physique Théorique NRS & Université de Toulouse M.M., R. Orús, D. Poilblanc, Phys. Rev. 94, 2524 (26) D. Poilblanc, M.M., arxiv:72.595

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

Rigorous free fermion entanglement renormalization from wavelets

Rigorous free fermion entanglement renormalization from wavelets Computational Complexity and High Energy Physics August 1st, 2017 Rigorous free fermion entanglement renormalization from wavelets arxiv: 1707.06243 Jutho Haegeman Ghent University in collaboration with:

More information

Time-dependent variational principle for quantum many-body systems

Time-dependent variational principle for quantum many-body systems Quantum Information in Quantum Many-Body Physics October 21, 2011 Centre de Recherches Mathematiques, Montréal Time-dependent variational principle for quantum many-body systems PRL 107, 070601 (2011)

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Time-dependent DMRG:

Time-dependent DMRG: The time-dependent DMRG and its applications Adrian Feiguin Time-dependent DMRG: ^ ^ ih Ψ( t) = 0 t t [ H ( t) E ] Ψ( )... In a truncated basis: t=3 τ t=4 τ t=5τ t=2 τ t= τ t=0 Hilbert space S.R.White

More information

arxiv: v2 [cond-mat.str-el] 18 Oct 2014

arxiv: v2 [cond-mat.str-el] 18 Oct 2014 Advances on Tensor Network Theory: Symmetries, Fermions, Entanglement, and Holography Román Orús Institute of Physics, Johannes Gutenberg University, 55099 Mainz, Germany arxiv:1407.6552v2 cond-mat.str-el]

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

Entanglement spectrum and Matrix Product States

Entanglement spectrum and Matrix Product States Entanglement spectrum and Matrix Product States Frank Verstraete J. Haegeman, D. Draxler, B. Pirvu, V. Stojevic, V. Zauner, I. Pizorn I. Cirac (MPQ), T. Osborne (Hannover), N. Schuch (Aachen) Outline Valence

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Konrad Waldherr October 20, 2013 Joint work with Thomas Huckle QCCC 2013, Prien, October 20, 2013 1 Outline Numerical (Multi-) Linear

More information

Quantum Many Body Systems and Tensor Networks

Quantum Many Body Systems and Tensor Networks Quantum Many Body Systems and Tensor Networks Aditya Jain International Institute of Information Technology, Hyderabad aditya.jain@research.iiit.ac.in July 30, 2015 Aditya Jain (IIIT-H) Quantum Hamiltonian

More information

Entanglement and variational methods for strongly correlated quantum many-body systems

Entanglement and variational methods for strongly correlated quantum many-body systems Entanglement and variational methods for strongly correlated quantum many-body systems Frank Verstraete J. Haegeman, M. Marien, V. Stojevic, K. Van Acoleyen, L. Vanderstraeten D. Nagaj, V. Eissler, M.

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Quantum Information and Quantum Many-body Systems

Quantum Information and Quantum Many-body Systems Quantum Information and Quantum Many-body Systems Lecture 1 Norbert Schuch California Institute of Technology Institute for Quantum Information Quantum Information and Quantum Many-Body Systems Aim: Understand

More information

Quantum Hamiltonian Complexity. Itai Arad

Quantum Hamiltonian Complexity. Itai Arad 1 18 / Quantum Hamiltonian Complexity Itai Arad Centre of Quantum Technologies National University of Singapore QIP 2015 2 18 / Quantum Hamiltonian Complexity condensed matter physics QHC complexity theory

More information

Tensor operators: constructions and applications for long-range interaction systems

Tensor operators: constructions and applications for long-range interaction systems In this paper we study systematic ways to construct such tensor network descriptions of arbitrary operators using linear tensor networks, so-called matrix product operators (MPOs), and prove the optimality

More information

Frustration-free Ground States of Quantum Spin Systems 1

Frustration-free Ground States of Quantum Spin Systems 1 1 Davis, January 19, 2011 Frustration-free Ground States of Quantum Spin Systems 1 Bruno Nachtergaele (UC Davis) based on joint work with Sven Bachmann, Spyridon Michalakis, Robert Sims, and Reinhard Werner

More information

arxiv: v3 [cond-mat.str-el] 15 Sep 2015

arxiv: v3 [cond-mat.str-el] 15 Sep 2015 Tensor Network Renormalization G. Evenbly 1 and G. Vidal 2 1 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena CA 91125, USA 2 Perimeter Institute for Theoretical

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Systematic! Fermionic! D>1?! Chung-Pin Chou 1, Frank Pollmann 2, Ting-Kuo Lee 1 1 Institute

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

Positive Tensor Network approach for simulating open quantum many-body systems

Positive Tensor Network approach for simulating open quantum many-body systems Positive Tensor Network approach for simulating open quantum many-body systems 19 / 9 / 2016 A. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert and S. Montangero PRL 116, 237201 (2016)

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School T ensor N et works I ztok Pizorn Frank Verstraete University of Vienna 2010 M ichigan Quantum Summer School Matrix product states (MPS) Introduction to matrix product states Ground states of finite systems

More information

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks. IPAM/UCLA, Sat 24 th Jan 2009 umerical Approaches to Quantum Many-Body Systems QS2009 tutorials lecture: Tensor etworks Guifre Vidal Outline Tensor etworks Computation of expected values Optimization of

More information

arxiv: v2 [cond-mat.str-el] 28 Apr 2010

arxiv: v2 [cond-mat.str-el] 28 Apr 2010 Simulation of strongly correlated fermions in two spatial dimensions with fermionic Projected Entangled-Pair States arxiv:0912.0646v2 [cond-mat.str-el] 28 Apr 2010 Philippe Corboz, 1 Román Orús, 1 Bela

More information

Preparing Projected Entangled Pair States on a Quantum Computer

Preparing Projected Entangled Pair States on a Quantum Computer Preparing Projected Entangled Pair States on a Quantum Computer Martin Schwarz, Kristan Temme, Frank Verstraete University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria Toby Cubitt,

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Quantum quenches in 2D with chain array matrix product states

Quantum quenches in 2D with chain array matrix product states Quantum quenches in 2D with chain array matrix product states Andrew J. A. James University College London Robert M. Konik Brookhaven National Laboratory arxiv:1504.00237 Outline MPS for many body systems

More information

arxiv: v2 [cond-mat.str-el] 6 Nov 2013

arxiv: v2 [cond-mat.str-el] 6 Nov 2013 Symmetry Protected Quantum State Renormalization Ching-Yu Huang, Xie Chen, and Feng-Li Lin 3 Max-Planck-Institut für Physik komplexer Systeme, 087 Dresden, Germany Department of Physics, University of

More information

Plaquette Renormalized Tensor Network States: Application to Frustrated Systems

Plaquette Renormalized Tensor Network States: Application to Frustrated Systems Workshop on QIS and QMP, Dec 20, 2009 Plaquette Renormalized Tensor Network States: Application to Frustrated Systems Ying-Jer Kao and Center for Quantum Science and Engineering Hsin-Chih Hsiao, Ji-Feng

More information

arxiv: v1 [cond-mat.str-el] 24 Sep 2015

arxiv: v1 [cond-mat.str-el] 24 Sep 2015 Algorithms for tensor network renormalization G. Evenbly 1 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA (Dated: September 25, 2015) arxiv:1509.07484v1 [cond-mat.str-el]

More information

Tensor network vs Machine learning. Song Cheng ( 程嵩 ) IOP, CAS

Tensor network vs Machine learning. Song Cheng ( 程嵩 ) IOP, CAS Tensor network vs Machine learning Song Cheng ( 程嵩 ) IOP, CAS physichengsong@iphy.ac.cn Outline Tensor network in a nutshell TN concepts in machine learning TN methods in machine learning Outline Tensor

More information

Real-Space RG for dynamics of random spin chains and many-body localization

Real-Space RG for dynamics of random spin chains and many-body localization Low-dimensional quantum gases out of equilibrium, Minneapolis, May 2012 Real-Space RG for dynamics of random spin chains and many-body localization Ehud Altman, Weizmann Institute of Science See: Ronen

More information

arxiv: v1 [quant-ph] 6 Jun 2011

arxiv: v1 [quant-ph] 6 Jun 2011 Tensor network states and geometry G. Evenbly 1, G. Vidal 1,2 1 School of Mathematics and Physics, the University of Queensland, Brisbane 4072, Australia 2 Perimeter Institute for Theoretical Physics,

More information

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009 The itebd algorithm beyond unitary evolution R. Orús and G. Vidal School of Physical Sciences, The University of Queensland, QLD 4072, Australia arxiv:0711.3960v4 [cond-mat.stat-mech] 13 Mar 2009 The infinite

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Topological order from quantum loops and nets

Topological order from quantum loops and nets Topological order from quantum loops and nets Paul Fendley It has proved to be quite tricky to T -invariant spin models whose quasiparticles are non-abelian anyons. 1 Here I ll describe the simplest (so

More information

Quantum Entanglement in Exactly Solvable Models

Quantum Entanglement in Exactly Solvable Models Quantum Entanglement in Exactly Solvable Models Hosho Katsura Department of Applied Physics, University of Tokyo Collaborators: Takaaki Hirano (U. Tokyo Sony), Yasuyuki Hatsuda (U. Tokyo) Prof. Yasuhiro

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

arxiv: v1 [cond-mat.str-el] 7 Aug 2011 Topological Geometric Entanglement of Blocks Román Orús 1, 2 and Tzu-Chieh Wei 3, 4 1 School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia 2 Max-Planck-Institut für Quantenoptik,

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India.

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India. Entanglement Entropy In Gauge Theories Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India. On The Entanglement Entropy For Gauge Theories, arxiv: 1501.2593 Sudip Ghosh, Ronak Soni and

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

From Path Integral to Tensor Networks for AdS/CFT

From Path Integral to Tensor Networks for AdS/CFT Seminar @ Osaka U 2016/11/15 From Path Integral to Tensor Networks for AdS/CFT Kento Watanabe (Center for Gravitational Physics, YITP, Kyoto U) 1609.04645v2 [hep-th] w/ Tadashi Takayanagi (YITP + Kavli

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

Machine learning quantum phases of matter

Machine learning quantum phases of matter Machine learning quantum phases of matter Summer School on Emergent Phenomena in Quantum Materials Cornell, May 2017 Simon Trebst University of Cologne Machine learning quantum phases of matter Summer

More information

M AT R I X P R O D U C T S TAT E S F O R L AT T I C E G A U G E T H E O R I E S. kai zapp

M AT R I X P R O D U C T S TAT E S F O R L AT T I C E G A U G E T H E O R I E S. kai zapp M AT R I X P R O D U C T S TAT E S F O R L AT T I C E G A U G E T H E O R I E S kai zapp October 2015 Kai Zapp: Matrix Product States for Lattice Gauge Theories, October 2015 supervisors: Jun.-Prof. Román

More information