Holographic Geometries from Tensor Network States

Size: px
Start display at page:

Download "Holographic Geometries from Tensor Network States"

Transcription

1 Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013

2 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

3 The AdS/CFT correspondence Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

4 The AdS/CFT correspondence The AdS/CFT is a concrete example of the holographic principle, which suggests that all the information about the interior of some region is actually contained on the boundary of that region. The AdS/CFT, connects the physics of a weakly coupled string theory living in an Anti de Sitter space with the physics of a strongly coupled QFT living on the boundary of AdS.

5 The AdS/CFT correspondence The AdS/CFT correspondence [Maldacena 98]: Z SUGRA [AdS D+1, J (x, z)] = DJ (x, z) e S SUGRA[J (x,z)] Z CFT [ AdS D+1, J(x)] = Dφ(x) e [S 0[φ(x)]+ J(x) O(x) dx] AdS/CFT correspondence Z SUGRA [AdS D+1, J (x, z)] exp ( J(x) O(x) dx ) CFT J (x, 0) = J(x) z is the extra dimension of the gravity theory in AdS, Oare operators of the CFT on the boundary of AdS and J (x, z) are SUGRA fields such that J(x) J (x, z) z 0 are the sources for correlation functions of the CFT.

6 The AdS/CFT correspondence AdS/CFT provides models to study non perturbative effects in QFT (confinement, quantum phase transitions...) However, still there is not a first principle derivation of the duality. It is widely accepted that the AdS/CFT is at heart a geometric formulation of the renormalization group (RG), such that the renormalization scale becomes the extra dimension z. Curvature of the holographic direction contains the RG flow information.

7 Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

8 Tensor Network States (TNS) efficiently describe the low energy physics of strongly correlated QMBS. TNS techniques drawed from RG methods + knowledge of the entanglement structure in the ground state of QMBS TNS may be classified into two categories according to the geometry of the underlying networks:

9 Tensor Network States (TNS) efficiently describe the low energy physics of strongly correlated QMBS. TNS techniques drawed from RG methods + knowledge of the entanglement structure in the ground state of QMBS TNS may be classified into two categories according to the geometry of the underlying networks:

10 Tensor Network States (TNS) efficiently describe the low energy physics of strongly correlated QMBS. TNS techniques drawed from RG methods + knowledge of the entanglement structure in the ground state of QMBS TNS may be classified into two categories according to the geometry of the underlying networks:

11 Physical Geometry Networks The network mimics the physical geometry of the system, as specified by the pattern of interactions in the Hamiltonian Ex. MPS (1D), PEPS (2D) Holographic Networks Tensors are connected so as to parametrize the physics at different length scales relevant to describe the QMBS wave function The network spans an additional dimension related with the RG scale Ex: MERA, TTN

12 The MPS anstaz is: Ψ MPS = d {s j }=1 T s 1,s 2,, s N s 1, s 2,, s N T s1,s 2,, s N = Tr [A s1 A s2 A sn ]

13 Expectation values with MPS ( ) E Oj = d s j s s j =1 j O j s j A sj A s j Ψ Θ Ψ = Tr [E O1 E O2 E ON ]

14 Correlation Functions in MPS C [l+1] = Ψ O(s i ) O(s j ) Ψ = Tr [ ] E [s 1] 1 E [s i ] O E[s i ] O E[s N ] 1 C [l+1] = c ν (λ ν ) l ν 2 where λ ν 2 are the eigenvalues of E 1 for which it holds that λ ν 2 < 1 Correlation functions are a superposition of exponentially decaying function with decay lengths given by ξ ν 1/ log λ ν

15 Entanglement Entropy in MPS S A 2 log W where W is the bond dimension

16 The MERA ansatz [Vidal07]

17 The MERA ansatz [Vidal07] The MERA representation of implements an effcient real space RG procedure through a layered tensor network labelled by τ Each layer of MERA defines a RG transformation: prior to the renormalization of a block of 2 sites at layer τ into a single site by means of a Λ τ tensor, SRE between the sites is removed by means of the disentangler χ τ Disentanglers χ / χ χ = I and isometries Λ/ Λ Λ = I For 1D systems, the MERA computation of an observable Θ requires the contraction of a 2D tensor network

18 Correlation Functions in MERA The total contraction of the tensor network proceeds by mapping an effective observable Θ in a sequential way Θ τ Θ τ+1 = S[Θ τ ] Ψ Θ Ψ = C Θ h C h = log 2 N S( ) = µ α φ α Tr(φ α, ) α = log µ α

19 Correlation Functions in MERA φ α (x) φ β (y) = Ψ φ α (x) φ β (y) Ψ = δ αβ = C S τ (φ α (x)) S τ (φ β (y)) C = x y 2 α

20 Entanglement Entropy in MERA S A Ω hol A log W = Length(γ A) log W S A = k log L

21 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

22 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) The AdS/MERA duality [Swingle 09] The local RG MERA circuit happens to be a realization of the AdS/CFT From the entanglement structure of a quantum critical QMBS is possible to define a discrete higher dimensional geometry The discrete geometry emerging at the critical point is a discrete version of AdS

23 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) The AdS/MERA duality The Big Questions are: Are some systems of strongly interacting qubits, secretly theories of quantum gravity in an AdS emergent spacetime? Is this intimately related with the structure of entangle ment in QMBS? What is the role of large N / strong coupling in AdS/MERA? The AdS/MERA is established by analyzing the computation of Entanglement Entropy with MERA and in the AdS/CFT

24 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) The AdS/MERA duality Entanglement Entropy in the AdS/CFT: The Ryu-Takanayagi conjecture S A = 1 4G (d+2) N Area(γ A )

25 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) The AdS/MERA duality Ryu-Takanayagi: Entanglement AdS geometry TNS : Entanglement Tensor properties & connectivity Can through AdS/MERA duality? Tensor properties & connectivity AdS geometry

26 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) Depth of Entanglement in MERA and extra dimensions: Entanglement as the fabric of spacetime

27 The connection between AdS/CFT and entanglement renormalization tensor networks (MERA)

28 Hybrid MERA-MPS networks Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

29 Hybrid MERA-MPS networks We consider the ground state Ψ of gapped 1D-Hamiltonian H. The correlations decay exponentially for distances l ξ, while typically keep power-law decaying for distances l ξ. We set ξ = 2 z 0

30 Hybrid MERA-MPS networks A suitable TNS ansatz to reproduce these features is a tensor network state with an MPS at the top of a finite number τ 0 log ξ of MERA layers. The τ 0 layers correspond to those in the scale invariant MERA describing a neighbouring critical point. The top MPS describes the LRE in the gapped phase Hybrid MERA-MPS

31 Hybrid MERA-MPS networks Entanglement Entropy in the hybrid TNS S TNS A = S MERA A + S MPS A log 2 z log W

32 Hybrid MERA-MPS networks Correlators in the hybrid TNS C TNS (l) = Ψ Φ( l/2) Φ( l/2) Ψ = ξ 2 C MPS Φ( l/2ξ) Φ(l/2ξ) C MPS Effective correlation length = ξ 2 c ν (λ ν ) l/ξ ν 2 ξ TNS = 1 log λ Γ = ξ log λ 2 = 2 z 0 log λ 2

33 Holographic geometries for hybrid MERA-MPS networks Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

34 Holographic geometries for hybrid MERA-MPS networks The geometric ansatz for the hybrid tensor network (JHEP 05 (2013) 24, arxiv: ), corresponds to an asymptotically AdS 3 spacetime, with a capping region at the IR region located at z 0 The geometry remains approximately AdS for values of the radial coordinate z z 0

35 Holographic geometries for hybrid MERA-MPS networks AdS ansatz metric ds 2 t=0 = dz2 A(z) 2 + B(z)2 dx 2 with, A(z) 2 = z2 f (z), L 2 AdS f (z) = 1 + Q ( z z 0 B(z) 2 = L 2 f (z) AdS z 2 ) ( ) ( ) z z 2 log z 0 z 0 with f (z) 0 and with no singularities for 0 Q 2. The metric asymptotes to AdS when z 0 as f (z) 1

36 Geometric Computation of Entanglement Entropy & Correlators Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

37 Geometric Computation of Entanglement Entropy & Correlators We apply the RT prescription = compute minimal length curves for E.E & correlators Length(γ) = 2L AdS ɛ z max z max dz z z 2 maxf (z) z 2 f (z max ) S A = 1 4 G (3) Length(γ) N C holog (l) = Γ exp [ m Length(Γ)] exp [ m Length(γ)]

38 Results Outline 1 Introduction & Motivation The AdS/CFT correspondence The connection between AdS/CFT and entanglement renormalization tensor networks (MERA) 2 Contributions and Results Hybrid MERA-MPS networks Holographic geometries for hybrid MERA-MPS networks Geometric Computation of Entanglement Entropy & Correlators Results

39 Results Geodesic length Length(γ) = log l max (δ) ɛ l max (δ) = 4 z 0 δ δ = 2 Q Entanglement Entropy & Two point Correlators S A = S UV A + SIR A (δ) SUV A log 2 z 0 ɛ S IR A (δ) log 2 δ [ C holog (l) = ɛ 2 exp 2 l ] max (δ) = l max (δ) 2 ɛ ξ holo = l max (δ)

40 Results Comparing EE in TNS and in the ansatz geometry W MPS 2 δ and connecting the effective correlation lengths of the TNS and the geometry ξ holo = κ ξ TNS λ 2 = exp ( κ ) 2 δ

41 New insights on the connection between MERA states and holography have been provided. This proposal could be extendable to higher dimensions. e.g with 2D MERA and PEPS, TNS of LW string-net states. Useful to study topological phases. Holographic duals : ABJM models and /or D3-D7 brane constructions? Entanglement and TNS as new tools for the study of gauge/gravity dualities. Outlook Role of large N in AdS/TNS Time evolution and dynamics e.g quenches

42 Appendix For Further Reading J.M Maldacena. The Large N Limit of Superconformal Field Theories and Supergravity. Adv. Theor. Math. Phys. 2, [hep-th/ ] B. Swingle Entanglement Renormalization and Holography. Phys. Rev. D 86, (2012) , [arxiv: ] G. Vidal Entanglement Renormalization. Phys. Rev. Lett. 99, (2007) [cond-mat/ [cond-mat.str-el]]

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

Disentangling Topological Insulators by Tensor Networks

Disentangling Topological Insulators by Tensor Networks Disentangling Topological Insulators by Tensor Networks Shinsei Ryu Univ. of Illinois, Urbana-Champaign Collaborators: Ali Mollabashi (IPM Tehran) Masahiro Nozaki (Kyoto) Tadashi Takayanagi (Kyoto) Xueda

More information

Some applications of integral geometry in AdS/CFT

Some applications of integral geometry in AdS/CFT Some applications of integral geometry in AdS/CFT Xing Nov 2nd @ USTC Outline Review of integral geometry OPE block and reconstruction of bulk operators Entanglement renormalization Entanglement entropy

More information

Exact holography and entanglement entropy from one-point functions

Exact holography and entanglement entropy from one-point functions Exact holography and entanglement entropy from one-point functions O-Kab Kwon (Sungkyunkwan University) In collaboration with Dongmin Jang, Yoonbai Kim, Driba Tolla arxiv:1612.05066, 1610.01490 1605.00849

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

From Path Integral to Tensor Networks for AdS/CFT

From Path Integral to Tensor Networks for AdS/CFT Seminar @ Osaka U 2016/11/15 From Path Integral to Tensor Networks for AdS/CFT Kento Watanabe (Center for Gravitational Physics, YITP, Kyoto U) 1609.04645v2 [hep-th] w/ Tadashi Takayanagi (YITP + Kavli

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

SPACETIME FROM ENTANGLEMENT - journal club notes -

SPACETIME FROM ENTANGLEMENT - journal club notes - SPACETIME FROM ENTANGLEMENT - journal club notes - Chris Heinrich 1 Outline 1. Introduction Big picture: Want a quantum theory of gravity Best understanding of quantum gravity so far arises through AdS/CFT

More information

Information Metric and Holography

Information Metric and Holography 11 th Vienna Central European Seminar Quantum and Gravity @ Univ. of Vienna, Nov.7-8, 015 Information Metric and Holography Tadashi Takayanagi Yukawa Institute for Theoretical Physics (YITP), Kyoto University

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

From Black holes to Qubits through String Theoretic Microscopes

From Black holes to Qubits through String Theoretic Microscopes ICHEP Formal Theory Development, July 10 th, 2018 @ Seoul From Black holes to Qubits through String Theoretic Microscopes Tadashi Takayanagi Yukawa Institute for Theoretical Physics Kyoto University 1

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

Themodynamics at strong coupling from Holographic QCD

Themodynamics at strong coupling from Holographic QCD Themodynamics at strong coupling from Holographic QCD p. 1 Themodynamics at strong coupling from Holographic QCD Francesco Nitti APC, U. Paris VII Excited QCD Les Houches, February 23 2011 Work with E.

More information

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity Entanglement Entropy what is entanglement entropy? general tool; divide quantum system into two parts and

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

Quark-gluon plasma from AdS/CFT Correspondence

Quark-gluon plasma from AdS/CFT Correspondence Quark-gluon plasma from AdS/CFT Correspondence Yi-Ming Zhong Graduate Seminar Department of physics and Astronomy SUNY Stony Brook November 1st, 2010 Yi-Ming Zhong (SUNY Stony Brook) QGP from AdS/CFT Correspondence

More information

Holographic Entanglement Entropy for Surface Operators and Defects

Holographic Entanglement Entropy for Surface Operators and Defects Holographic Entanglement Entropy for Surface Operators and Defects Michael Gutperle UCLA) UCSB, January 14th 016 Based on arxiv:1407.569, 1506.0005, 151.04953 with Simon Gentle and Chrysostomos Marasinou

More information

arxiv: v1 [quant-ph] 6 Jun 2011

arxiv: v1 [quant-ph] 6 Jun 2011 Tensor network states and geometry G. Evenbly 1, G. Vidal 1,2 1 School of Mathematics and Physics, the University of Queensland, Brisbane 4072, Australia 2 Perimeter Institute for Theoretical Physics,

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

Holographic relations at finite radius

Holographic relations at finite radius Mathematical Sciences and research centre, Southampton June 11, 2018 RESEAR ENT Introduction The original example of holography in string theory is the famous AdS/FT conjecture of Maldacena: - String theory

More information

Quantum Entanglement and the Geometry of Spacetime

Quantum Entanglement and the Geometry of Spacetime Quantum Entanglement and the Geometry of Spacetime Matthew Headrick Brandeis University UMass-Boston Physics Colloquium October 26, 2017 It from Qubit Simons Foundation Entropy and area Bekenstein-Hawking

More information

Entanglement entropy and the F theorem

Entanglement entropy and the F theorem Entanglement entropy and the F theorem Mathematical Sciences and research centre, Southampton June 9, 2016 H RESEARH ENT Introduction This talk will be about: 1. Entanglement entropy 2. The F theorem for

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

arxiv:hep-th/ v3 24 Apr 2007

arxiv:hep-th/ v3 24 Apr 2007 Anti-de Sitter boundary in Poincaré coordinates C. A. Ballón Bayona and Nelson R. F. Braga Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 Brazil Abstract

More information

Non-relativistic holography

Non-relativistic holography University of Amsterdam AdS/CMT, Imperial College, January 2011 Why non-relativistic holography? Gauge/gravity dualities have become an important new tool in extracting strong coupling physics. The best

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Holographic Entanglement and Interaction

Holographic Entanglement and Interaction Holographic Entanglement and Interaction Shigenori Seki RINS, Hanyang University and Institut des Hautes Études Scientifiques Intrication holographique et interaction à l IHES le 30 janvier 2014 1 Contents

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

Gravity Actions from Tensor Networks

Gravity Actions from Tensor Networks Gravity Actions from Tensor Networks [hep-th/1609.04645] with T. Takayanagi and K. Watanabe and ongoing work with P. Caputa, N. Kundu, T. Takayanagi, K. Watanabe Masamichi Miyaji Yukawa Institute for Theoretical

More information

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory

The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory The Gauge/Gravity correspondence: linking General Relativity and Quantum Field theory Alfonso V. Ramallo Univ. Santiago IFIC, Valencia, April 11, 2014 Main result: a duality relating QFT and gravity Quantum

More information

Geometrical Approximation to the AdS/CFT Correspondence

Geometrical Approximation to the AdS/CFT Correspondence International Journal of Advanced Research in Physical Science (IJARPS) Volume 3, Issue 6, 2016, PP 26-30 ISSN 2349-7874 (Print) & ISSN 2349-7882 (Online) www.arcjournals.org Geometrical Approximation

More information

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre Holographic renormalization and reconstruction of space-time Southampton Theory Astrophysics and Gravity research centre STAG CH RESEARCH ER C TE CENTER Holographic Renormalization and Entanglement Paris,

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

Quantum mechanics and the geometry of spacetime

Quantum mechanics and the geometry of spacetime Quantum mechanics and the geometry of spacetime Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

Tensor network renormalization

Tensor network renormalization Coogee'15 Sydney Quantum Information Theory Workshop Tensor network renormalization Guifre Vidal In collaboration with GLEN EVENBLY IQIM Caltech UC Irvine Quantum Mechanics 1920-1930 Niels Bohr Albert

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Holographic entanglement entropy beyond AdS/CFT

Holographic entanglement entropy beyond AdS/CFT Holographic entanglement entropy beyond AdS/CFT Edgar Shaghoulian Kavli Institute for the Physics and Mathematics of the Universe April 8, 014 Dionysios Anninos, Joshua Samani, and ES hep-th:1309.579 Contents

More information

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford

AdS/CFT duality. Agnese Bissi. March 26, Fundamental Problems in Quantum Physics Erice. Mathematical Institute University of Oxford AdS/CFT duality Agnese Bissi Mathematical Institute University of Oxford March 26, 2015 Fundamental Problems in Quantum Physics Erice What is it about? AdS=Anti de Sitter Maximally symmetric solution of

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

EPR Pairs, Local Projection and Quantum Teleportation in Holography

EPR Pairs, Local Projection and Quantum Teleportation in Holography Strings and Fields 2016, 2016/08/10 @ YITP, Kyoto EPR Pairs, Local Projection and Quantum Teleportation in Holography Kento Watanabe (YITP, Kyoto) arxiv: 1604.01772 [hep-th] (will appear in JHEP) with

More information

A Solvable Irrelevant

A Solvable Irrelevant A Solvable Irrelevant Deformation of AdS $ / CFT * A. Giveon, N. Itzhaki, DK arxiv: 1701.05576 + to appear Strings 2017, Tel Aviv Introduction QFT is usually thought of as an RG flow connecting a UV fixed

More information

Holographic construction of CFT excited states. Kostas Skenderis

Holographic construction of CFT excited states. Kostas Skenderis Holographic construction of CFT excited states STAG CH RESEARCH ER C TE CENTER Aspects of Conformal Field Theories Thessaloniki, Greece 24 September 2015 Introduction According to holography, gravity in

More information

Chapter 3: Duality Toolbox

Chapter 3: Duality Toolbox 3.: GENEAL ASPECTS 3..: I/UV CONNECTION Chapter 3: Duality Toolbox MIT OpenCourseWare Lecture Notes Hong Liu, Fall 04 Lecture 8 As seen before, equipped with holographic principle, we can deduce N = 4

More information

Holography for Black Hole Microstates

Holography for Black Hole Microstates 1 / 24 Holography for Black Hole Microstates Stefano Giusto University of Padua Theoretical Frontiers in Black Holes and Cosmology, IIP, Natal, June 2015 2 / 24 Based on: 1110.2781, 1306.1745, 1311.5536,

More information

Holographic vortex pair annihilation in superfluid turbulence

Holographic vortex pair annihilation in superfluid turbulence Holographic vortex pair annihilation in superfluid turbulence Vrije Universiteit Brussel and International Solvay Institutes Based mainly on arxiv:1412.8417 with: Yiqiang Du and Yu Tian(UCAS,CAS) Chao

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

Reconstructing Bulk from Boundary: clues and challenges

Reconstructing Bulk from Boundary: clues and challenges Reconstructing Bulk from Boundary: clues and challenges Ben Freivogel GRAPPA and ITFA Universiteit van Amsterdam Ben Freivogel () Reconstructing Bulk from Boundary May 24, 2013 1 / 28 Need quantum gravity

More information

Hyperscaling violation and entanglement entropy in gauge/string theory

Hyperscaling violation and entanglement entropy in gauge/string theory Hyperscaling violation and entanglement entropy in gauge/string theory K. Narayan Chennai Mathematical Institute Introduction, summary Lightcone SYM, string theory, AdS plane waves AdS plane waves, hyperscaling

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Quantum mechanics and the geometry of space4me

Quantum mechanics and the geometry of space4me Quantum mechanics and the geometry of space4me Juan Maldacena PPCM Conference May 2014 Outline Brief review of the gauge/gravity duality Role of strong coupling in the emergence of the interior Role of

More information

Aspects of integrability in classical and quantum field theories

Aspects of integrability in classical and quantum field theories Aspects of integrability in classical and quantum field theories Second year seminar Riccardo Conti Università degli Studi di Torino and INFN September 26, 2018 Plan of the talk PART 1 Supersymmetric 3D

More information

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi

BPS Black holes in AdS and a magnetically induced quantum critical point. A. Gnecchi BPS Black holes in AdS and a magnetically induced quantum critical point A. Gnecchi June 20, 2017 ERICE ISSP Outline Motivations Supersymmetric Black Holes Thermodynamics and Phase Transition Conclusions

More information

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY

Gauge / gravity duality in everyday life. Dan Kabat Lehman College / CUNY Gauge / gravity duality in everyday life Dan Kabat Lehman College / CUNY Queens College - 11/8/2017 Outline 1. About the title...* 2. What is it? 3. What is it good for? 4. My own interest: gauge => gravity

More information

Insight into strong coupling

Insight into strong coupling Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) focused on probing features of quantum gravity Bottom-up approaches pheno applications to QCD-like and condensed

More information

Holographic Entanglement Entropy

Holographic Entanglement Entropy Motivation Time-dependent Multi-region Summary Holographic entanglement entropy for time dependent states and disconnected regions Durham University INT08: From Strings to Things, April 3, 2008 VH, M.

More information

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Workshop: Status and Future of Inflationary Theory! University of Chicago, August 22-24, 2014 Questions Haven t been thinking

More information

Duality and Holography

Duality and Holography Duality and Holography? Joseph Polchinski UC Davis, 5/16/11 Which of these interactions doesn t belong? a) Electromagnetism b) Weak nuclear c) Strong nuclear d) a) Electromagnetism b) Weak nuclear c) Strong

More information

Black Hole Entropy and Gauge/Gravity Duality

Black Hole Entropy and Gauge/Gravity Duality Tatsuma Nishioka (Kyoto,IPMU) based on PRD 77:064005,2008 with T. Azeyanagi and T. Takayanagi JHEP 0904:019,2009 with T. Hartman, K. Murata and A. Strominger JHEP 0905:077,2009 with G. Compere and K. Murata

More information

AdS 6 /CFT 5 in Type IIB

AdS 6 /CFT 5 in Type IIB AdS 6 /CFT 5 in Type IIB Part II: Dualities, tests and applications Christoph Uhlemann UCLA Strings, Branes and Gauge Theories APCTP, July 2018 arxiv: 1606.01254, 1611.09411, 1703.08186, 1705.01561, 1706.00433,

More information

Bulk versus boundary quantum states

Bulk versus boundary quantum states Bulk versus boundary quantum states Henrique Boschi-Filho and Nelson R. F. Braga Instituto de Física, Universidade Federal do Rio de Janeiro Caixa Postal 68528, 21945-970 Rio de Janeiro, RJ, Brazil Abstract

More information

arxiv: v1 [hep-th] 6 Feb 2018

arxiv: v1 [hep-th] 6 Feb 2018 Black Holes and Complexity Classes arxiv:1802.02175v1 [hep-th] 6 Feb 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060,

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures

Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Lattice study of quantum entanglement in SU(3) Yang-Mills theory at zero and finite temperatures Yoshiyuki Nakagawa Graduate School of Science and Technology, Niigata University, Igarashi-2, Nishi-ku,

More information

Holography for 3D Einstein gravity. with a conformal scalar field

Holography for 3D Einstein gravity. with a conformal scalar field Holography for 3D Einstein gravity with a conformal scalar field Farhang Loran Department of Physics, Isfahan University of Technology, Isfahan 84156-83111, Iran. Abstract: We review AdS 3 /CFT 2 correspondence

More information

arxiv: v2 [hep-th] 2 Jul 2015

arxiv: v2 [hep-th] 2 Jul 2015 CALT-TH-2015-015 Consistency Conditions for an AdS/MERA Correspondence Ning Bao, ChunJun Cao, Sean M. Carroll, Aidan Chatwin-Davies, Nicholas Hunter-Jones, Jason Pollack, and Grant N. Remmen Walter Burke

More information

Holographic Entanglement Beyond Classical Gravity

Holographic Entanglement Beyond Classical Gravity Holographic Entanglement Beyond Classical Gravity Xi Dong Stanford University August 2, 2013 Based on arxiv:1306.4682 with Taylor Barrella, Sean Hartnoll, and Victoria Martin See also [Faulkner (1303.7221)]

More information

Holography of compressible quantum states

Holography of compressible quantum states Holography of compressible quantum states New England String Meeting, Brown University, November 18, 2011 sachdev.physics.harvard.edu HARVARD Liza Huijse Max Metlitski Brian Swingle Compressible quantum

More information

21 Holographic Entanglement Entropy

21 Holographic Entanglement Entropy 21 Holographic Entanglement Entropy 21.1 The formula We now turn to entanglement entropy in CFTs with a semiclassical holographic dual. That is, we assume the CFT has a large number of degrees of freedom

More information

On the calculation of entanglement entropy in quantum field theory

On the calculation of entanglement entropy in quantum field theory On the calculation of entanglement entropy in quantum field theory Nakwoo Kim Physics Department Kyung Hee University July 5, 2017 RQIN 2017, YITP Kyoto Nakwoo Kim ( Physics Department Kyung Hee University

More information

Holographic Entanglement Entropy, SUSY & Calibrations

Holographic Entanglement Entropy, SUSY & Calibrations Holographic Entanglement Entropy, SUSY & Calibrations Eoin Ó Colgáin 1, 1 Asia Pacific Center for Theoretical Physics, Postech, Pohang 37673, Korea Abstract. Holographic calculations of entanglement entropy

More information

arxiv: v2 [hep-th] 14 Jan 2019

arxiv: v2 [hep-th] 14 Jan 2019 Entanglement in simple spin networks with a boundary * Yi Ling, Meng-He Wu, Yikang Xiao, nstitute of High Energy Physics, Chinese Academy of Sciences, Beijing 00049, China School of Physics, University

More information

EPR Pairs, Local Projection and Quantum Teleportation in Holography

EPR Pairs, Local Projection and Quantum Teleportation in Holography YITP long term workshop 2016, One Day Conference, 2016/06/08 @ YITP, Kyoto EPR Pairs, Local Projection and Quantum Teleportation in Holography Kento Watanabe (YITP, Kyoto) arxiv: 1604.01772 [hep-th] with

More information

Black holes with AdS asymptotics and holographic RG flows

Black holes with AdS asymptotics and holographic RG flows Black holes with AdS asymptotics and holographic RG flows Anastasia Golubtsova 1 based on work with Irina Aref eva (MI RAS, Moscow) and Giuseppe Policastro (ENS, Paris) arxiv:1803.06764 (1) BLTP JINR,

More information

5. a d*, Entanglement entropy and Beyond

5. a d*, Entanglement entropy and Beyond Motivation: role of higher curvature interactions on AdS/CFT calculations Overview: 1. Introductory remarks on c-theorem and CFT s 2. Holographic c-theorem I: Einstein gravity 3. Holographic c-theorem

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

Dynamics, phase transitions and holography

Dynamics, phase transitions and holography Dynamics, phase transitions and holography Jakub Jankowski with R. A. Janik, H. Soltanpanahi Phys. Rev. Lett. 119, no. 26, 261601 (2017) Faculty of Physics, University of Warsaw Phase structure at strong

More information

Emergent Causality in Holography

Emergent Causality in Holography Emergent Causality in Holography Netta Engelhardt Princeton University 20.6.18 Based mostly on: NE, Horowitz 16; NE 16; NE, Fischetti 17 Spacetime Emergence Holography: the equivalence of a higher-dim

More information

Emergent Quantum Criticality

Emergent Quantum Criticality (Non-)Fermi Liquids and Emergent Quantum Criticality from gravity Hong Liu Massachusetts setts Institute te of Technology HL, John McGreevy, David Vegh, 0903.2477 Tom Faulkner, HL, JM, DV, to appear Sung-Sik

More information

Tensor network renormalization

Tensor network renormalization Walter Burke Institute for Theoretical Physics INAUGURAL CELEBRATION AND SYMPOSIUM Caltech, Feb 23-24, 2015 Tensor network renormalization Guifre Vidal Sherman Fairchild Prize Postdoctoral Fellow (2003-2005)

More information

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach

Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach P R A Y A S Students Journal of Physics c Indian Association of Physics Teachers Massive Scalar Field in Anti-deSitter Space: a Superpotential Approach M. Sc., Physics Department, Utkal University, Bhubaneswar-751

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Entanglement Entropy for Disjoint Intervals in AdS/CFT

Entanglement Entropy for Disjoint Intervals in AdS/CFT Entanglement Entropy for Disjoint Intervals in AdS/CFT Thomas Faulkner Institute for Advanced Study based on arxiv:1303.7221 (see also T.Hartman arxiv:1303.6955) Entanglement Entropy : Definitions Vacuum

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

towards a holographic approach to the QCD phase diagram

towards a holographic approach to the QCD phase diagram towards a holographic approach to the QCD phase diagram Pietro Colangelo INFN - Sezione di Bari - Italy in collaboration with F. De Fazio, F. Giannuzzi, F. Jugeau and S. Nicotri Continuous Advances in

More information

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES Danilo E. Díaz (UNAB-Talcahuano) joint work with F. Bugini (acknowledge useful conversations with R. Aros, A. Montecinos, R. Olea, S. Theisen,...) 5TH COSMOCONCE

More information

Current correlators, supersymmetry breaking and holography

Current correlators, supersymmetry breaking and holography International School for Advanced Studies Doctoral Thesis Current correlators, supersymmetry breaking and holography Author: Flavio Porri Supervisor: Prof. Matteo Bertolini A thesis submitted in candidacy

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Emergent gravity. Diana Vaman. Physics Dept, U. Virginia. September 24, U Virginia, Charlottesville, VA

Emergent gravity. Diana Vaman. Physics Dept, U. Virginia. September 24, U Virginia, Charlottesville, VA Emergent gravity Diana Vaman Physics Dept, U. Virginia September 24, U Virginia, Charlottesville, VA What is gravity? Newton, 1686: Universal gravitational attraction law F = G M 1 M 2 R 2 12 Einstein,

More information

Properties of the boundary rg flow

Properties of the boundary rg flow Properties of the boundary rg flow Daniel Friedan Department of Physics & Astronomy Rutgers the State University of New Jersey, USA Natural Science Institute University of Iceland 82ème rencontre entre

More information

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP

BPS non-local operators in AdS/CFT correspondence. Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv: to appear in JHEP BPS non-local operators in AdS/CFT correspondence Satoshi Yamaguchi (Seoul National University) E. Koh, SY, arxiv:0812.1420 to appear in JHEP Introduction Non-local operators in quantum field theories

More information

Holographic signatures of. resolved cosmological singularities

Holographic signatures of. resolved cosmological singularities Holographic signatures of resolved cosmological singularities Norbert Bodendorfer LMU Munich based on work in collaboration with Andreas Schäfer, John Schliemann International Loop Quantum Gravity Seminar

More information

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara

A Holographic Description of Black Hole Singularities. Gary Horowitz UC Santa Barbara A Holographic Description of Black Hole Singularities Gary Horowitz UC Santa Barbara Global event horizons do not exist in quantum gravity: String theory predicts that quantum gravity is holographic:

More information

Insight into strong coupling

Insight into strong coupling Thank you 2012 Insight into strong coupling Many faces of holography: Top-down studies (string/m-theory based) Bottom-up approaches pheno applications to QCD-like and condensed matter systems (e.g. Umut

More information

Tensor network and (p-adic) AdS/CFT

Tensor network and (p-adic) AdS/CFT Prepared for submission to JHEP Tensor network and (p-adic) AdS/CFT arxiv:1703.05445v3 [hep-th] 25 Jan 2018 Arpan Bhattacharyya a, Ling-Yan Hung a,b,c, Yang Lei d, and Wei Li d a Department of Physics

More information