Holographic construction of CFT excited states. Kostas Skenderis

Size: px
Start display at page:

Download "Holographic construction of CFT excited states. Kostas Skenderis"

Transcription

1 Holographic construction of CFT excited states STAG CH RESEARCH ER C TE CENTER Aspects of Conformal Field Theories Thessaloniki, Greece 24 September 2015

2 Introduction According to holography, gravity in (d + 1) dimensions is related to QFT in d dimensions. A central question is how the bulk is reconstructed by QFT data. Here I will summarize what we know and show how to obtain the bulk solution corresponding to an excited CFT state.

3 References KS, Ariana Christodoulou, Holographic construction of CFT excited states, to appear Earlier relevant work: S. de Haro, S. Solodukhin, KS, Holographic reconstruction of space-time and renormalization in AdS/CFT Commun.Math.Phys. 217 (2001) hep-th/ KS, B. van Rees, Real-time gauge/gravity duality, Phys.Rev.Lett. 101 (2008) , ; Real-time gauge/gravity duality: prescription, renormalization and examples, JHEP 0905 (2009) 085,

4 Outline

5 Outline

6 QFT To define a theory we typically give the Lagrangian. Depending on context we may be interested in: vacuum correlators 0 O 1 (x 1 ) O(x n ) 0 correlators in a non-trivial states, α O 1 (x 1 ) O(x n ) α For example, α may be a state that spontaneously breaks some of the symmetries, a thermal state, a non-equilibrium state, etc. The correlators may be time-ordered, Wightman functions, advanced, retarded...

7 QFT Given a theory, a state and a set of operators there is a unique answer for their correlators. Any dual formulation should have the same properties. How does it work in holography?

8 Holography Within the gravity approximation: The dual QFT is represented by: An (asymptotically) AdS solution of (d + 1)-dimensional gravity coupled to matter. Operators are dual to bulk fields and the state is encoded in subleading terms in bulk solutions.

9 Euclidean vs If we are interested in time-independent states (vacuum state, thermal state) we may Wick rotate to. In Lorenzian signature there are different types of correlators (time-ordered, Wightman, retarded, etc.). In Euclidean QFT there is a unique type of correlators. So to simplify matters let s initially focus on. We will return to full fledged Lorentzian discussion afterwards.

10 Outline

11 Bulk scalar field Bulk scalar fields Φ of mass m 2 = ( d) are dual to operators O of dimension. The solution of the bulk field equation has an asymptotic expansion of the form [de Haro, Solodukhin, KS (2000)]: Φ(x, r) = r d φ (0) + + log r 2 ψ (2 d) + r φ (2 d) + φ (0) is the source for the dual operator and all blue terms are locally determined by it. φ (2 d) is related with the expectation value of O, O φ (2 d)

12 QFT vs gravity We argued earlier that the Lagrangian and the state uniquely specify the correlators. The counterpart of this statement on the gravity side is that (φ (0), φ (2 d) ) uniquely specify a bulk solution. One way to see this is to use a radial Hamiltonian formalism, where the radial direction plays the role of time. The renormalised radial canonical momentum is π = O φ (2 d) By a standard Hamiltonian argument, specifying the conjugate pair (φ (0), π ) uniquely picks a solution. [Papadimitriou, KS (2004)]

13 Holographic reconstruction I Given QFT data (φ (0), O ) there is a unique solution Φ(x, r) of the bulk field equations.

14 QFT vs gravity In QFT the vacuum structure is a dynamical question: in general, one cannot tune the value of O. The counterpart of this statement in gravity is that regularity in the interior selects O. A generic pair (φ (0), π ) leads to a singular solution.

15 Outline

16 New issues On the gravity side: In the bulk equations of motion do not have a unique solution given boundary conditions. One needs in addition initial conditions. There are non-trivial normalisable modes that vanish at the boundary. On the QFT side: Given a Lagrangian and operators there is more than one type of correlator one may wish to compute. One may wish to compute ttime-ordered, anti-time ordered, Wightman products, etc. on non-trivial states.

17 QFT On the QFT side one can summarise the new data needed by providing a contour in the complex time plane specifying where operators are inserted in this contour.

18 Examples t T C0 C1 T C3 C2 a b c a Vacuum-to-vacuum contour: computes correlators 0 T ( ) 0 b In-in contour: computes correlators α α c Thermal contour: computes thermal correlators

19 Examples Wightman in-in 2-point function, 0 O(x)O(y) 0 t t1 0 t2 Thermal Wightman 2-point function. t t1 0 t2

20 Real-time gauge/gravity duality [van Rees, KS (2008)] The holographic prescription is to use "piece-wise" holography: Real segments are associated with Lorentzian solutions, Imaginary segments are associated with Euclidean solutions, Solutions are matched at the corners.

21 Examples a E L E b E L L E c E L L

22 Comments In the extended space-time associated to a given contour, boundary conditions and regularity in the interior uniquely fix the bulk solution. The Euclidean caps can also be thought of as Hartle-Hawking wave functions.

23 Holographic reconstruction II: Lorentzian case Given QFT data (φ (0), O ) and a contour in the complex time plane there is a unique solution Φ(x, r) of the bulk field equations.

24 Outline

25 Excited states Excited states are obtained by acting with operators on the CFT vacuum, = O 0 Using the in-in formalism one may compute correlation functions in this state: τ 0 τ 3 a b t 1 t 2 T This means that we are considering the path integral ( Z[φ (0) ] = [Dϕ] exp i dtd d 1 x ( ) ) g (0) LQF T + φ (0) O C

26 1-point functions In preparation for the holographic discussion let us discuss the 1-point function, ( O (x) = [Dϕ]O (x) exp i dtd d 1 x ( ) ) g (0) LQF T + φ (0) O C To leading order in the sources, O (x) = 0 O (x)o (0) 0 φ (0) + φ+ (0) 0 O ( )O (x) 0 = 0 O (x) φ (0) + φ+ (0) O (x) 0 The 2-point functions here are Wightman functions, not time-ordered.

27 Remarks Setting φ + (0) = 0, φ (0) = 1 and taking x computes the norm of the state. The orthogonality of the 2-point functions implies that O i (x) = 0, i to linear order in sources. However, to higher order in the sources, O i (x) 0, i

28 Holographic construction In holography each gauge invariant operator O i is mapped to a corresponding bulk field Φ i. If we are interested in the holographic construction of the CFT state to leading order in the sources, it suffices to consider only the corresponding field Φ to linear order. To higher order one needs to consider other bulk fields as well.

29 Holographic construction The time contour and the corresponding bulk space-time are: τ 3 E b 2T τ 0 τ 3 a b t 1 t 2 T t 2 t 1 L L T τ 0 E a

30 Procedure We need to find regular solutions of the (linear) bulk equations with the prescribed boundary conditions in each part of the extended spacetime. Impose the matching conditions. I will present the results for a scalar field in AdS 3 in global coordinates. We have also carried the same computation in Poincaré coordinates.

31 Obtaining the solution: Euclidean solutions In the past cap we consider a solution with a delta function source: Φ E = rd φ (0) (τ 0, φ) +..., φ (0) (τ 0, φ) = δ(τ 0 a)δ(φ) This leads to Φ E (τ 0, r, φ) = n=0 k Z ( i 4π 2 [ θ( τ 0 a )φ (0) (ω nk, k)e ω nk τ0+ikφ + +θ(τ 0 + a )φ (0) (ω+ nk, k)e ω+ nk τ0+ikφ] + d nk e ω nk τ0+ikφ) g(ω nk, k, r) where g(ω nk, k, r) r as r 0 and ω ± nk are the frequencies of the normalizable modes. There is a similar expression at the future EAdS cap.

32 Lorentzian solution I The Lorentzian solution in the first Lorentzian part is a sum of normalisable modes Φ 1 L(t 1, r, φ) = n,k (a nk e iω+ nk t1+ikφ + a nk eiω+ nk t1 ikφ )ig(ω nk, k, r). There is a similar expression for the second Lorenzian part.

33 Matching conditions The matching conditions are continuity of fields and momenta along the contour: Φ E τ0=0 = Φ 1 L, t1=0 τ 0 Φ E = i τ0=0 t 1 Φ 1 L t1=0 Φ 1 L t1=t = Φ 2 L, t2=t t 1 Φ 1 L = t1=t t 2 Φ 2 L t2=t Φ 2 L t2=2t = Φ + E, τ3=0 t 2 Φ 2 L = i t2=2t τ 3 Φ + E. τ3=0 The matching conditions fix all constants in terms of the sources. In particular, they imply a nk φ (0) (ω+ nk, k), a nk φ+ (0) (ω nk, k)

34 The solution across the matching surface Past Euclidean Lorentzian Lorentzian Future Euclidean τ 0 a 0 t 1 T t 2 2T a τ 3 Amplitude of a single mode as a function of (Euclidean and then Lorentzian) time for fixed r, φ.

35 Holographic 1-point function The 1-point function is extracted from the asymptotic, Φ(x, r) = + r φ (2 d) +, O φ (2 d) In our case the solution is normalizable, so O = lim r Φ 1 r 0 L(r, t, φ) ( lim φ r 0 (0) (ω+ nk, k)e iω+ nk t+ikφ + φ + (0) (ω nk, t ikφ) k)eiω+ nk ig(ω nk, k, r) n,k The limit and the sums can be evaluated exactly [van Rees, KS (2008)] leading to O (x) = 0 O (x)o (0) 0 φ (0) + φ+ (0) 0 O ( )O (x) 0 in exact agreement with our earlier QFT computation!

36 Summary Bulk excitations (normalizable modes) are dual to excited CFT states.

37 The extrapolation dictionary An a priori different dictionary was suggested in the early days of AdS/CFT [Banks, Douglas, Horowitz, Martinec (1998)]. Boundary correlation functions can be obtained as a limit of bulk correlation functions: O (x 1 ) O (x n ) QF T = lim r 0 r n Φ(x 1, r) Φ(x n, r) Bulk This prescription is equivalent to the standard one for scalars in a fixed background [Harlow, Stanford (2011)]. It also agrees with the real-time prescription for non-equilibrium scalar 2-point functions [Keranen, Kleinert (2014)].

38 Bulk reconstruction The extrapolate dictionary suggests the following map between boundary and bulk operators: Φ(x, r) = d d x K(x r, x)o (x ) K is called the smearing function. Bulk correlation functions are then related to boundary correlation functions by Φ(x 1, r 1 ) Φ(x n, r n ) Bulk = d d x 1...d d x nk(x 1 r 1, x 1 )... K(x n r n, x n ) O (x 1) O (x n) QF T [Banks, Douglas, Horowitz, Martinec (1998)],... [Hamilton, Kabat, Lifschytz, Lowe (2006)]...

39 Smearing function In our discussion we reconstructed the bulk solution from O (x ) One can also follow similar steps to those in [Hamilton, Kabat, Lifschytz, Lowe (2006)] to show that Φ L (x, r) = d d x K(x r, x) O (x ) In our derivation the smearing function is automatically convergent due to iɛ s that originate from the Euclidean caps. (In Hamilton et al these insertions were added by hand.)

40 Remarks In our derivation the relation was between classical fields in the bulk and expectation values of boundary operators in a specific state. This appears different than a map between bulk and boundary operators. If we consider a quantized bulk field ˆΦ L (t 1, r, φ) = n,k (â nk e iω+ nk t1+ikφ + â nk eiω+ nk t1 ikφ )ig(ω nk, k, r) where now a nk, a nk are creation and annihilation operators, then our results would imply that φ ± (0) are quantum operators. However, from the QFT perspective φ ± (0) are classical sources that couple to quantum operators.

41 Beyond linear fields This boundary-to-bulk map cannot hold in this form in complete generality. If the QFT contains operators with dimensions, O 1, O 2, O 3, with 3 = Then [KS, Taylor (2006)], O 3 = π 3 + c 12 π 1 π 2 where c 12 is a constant. This suggests Φ 3 (x, r) = d d x K(x r, x) O 3 (x ) + d d x K 1 (x r, x) O 1 (x ) O 2 (x ) Locality also suggest non-linear terms should be added to the map [Kabat, Lifschytz, Lowe (2011)]...[Kabat, Lifschytz (2015)].

42 Outline

43 I discussed how QFT data reconstruct classical fields in the bulk, both in Euclidean and. The map works in full generality. I explicitly worked out the dual of the CFT excited state at the linearized level. It is straightforward (but tedious) to work out the dual at the non-linear order. The dual solution would involve many bulk fields.

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre

Holographic renormalization and reconstruction of space-time. Kostas Skenderis Southampton Theory Astrophysics and Gravity research centre Holographic renormalization and reconstruction of space-time Southampton Theory Astrophysics and Gravity research centre STAG CH RESEARCH ER C TE CENTER Holographic Renormalization and Entanglement Paris,

More information

arxiv: v2 [hep-th] 23 Mar 2009

arxiv: v2 [hep-th] 23 Mar 2009 ITFA-2008-50 Real-time gauge/gravity duality: Prescription, Renormalization and Examples arxiv:0812.2909v2 [hep-th] 23 Mar 2009 Kostas Skenderis and Balt C. van Rees Institute for Theoretical Physics,

More information

The boundary S-matrix and the AdS to CFT dictionary

The boundary S-matrix and the AdS to CFT dictionary hep-th/9903048 The boundary S-matrix and the AdS to CFT dictionary arxiv:hep-th/9903048v2 1 Oct 1999 Steven B. Giddings Department of Physics University of California Santa Barbara, CA 93106-9530 Abstract

More information

Gauge/Gravity Duality and the Black Hole Interior

Gauge/Gravity Duality and the Black Hole Interior Gauge/Gravity Duality and the Black Hole Interior Joseph Polchinski Kavli Institute for Theoretical Physics University of California at Santa Barbara KIAS-YITP joint workshop String Theory, Black Holes

More information

Reconstructing Bulk from Boundary: clues and challenges

Reconstructing Bulk from Boundary: clues and challenges Reconstructing Bulk from Boundary: clues and challenges Ben Freivogel GRAPPA and ITFA Universiteit van Amsterdam Ben Freivogel () Reconstructing Bulk from Boundary May 24, 2013 1 / 28 Need quantum gravity

More information

Holographic relations at finite radius

Holographic relations at finite radius Mathematical Sciences and research centre, Southampton June 11, 2018 RESEAR ENT Introduction The original example of holography in string theory is the famous AdS/FT conjecture of Maldacena: - String theory

More information

Topologically Massive Gravity and AdS/CFT

Topologically Massive Gravity and AdS/CFT Topologically Massive Gravity and AdS/CFT Institute for Theoretical Physics University of Amsterdam The Planck Scale, XXV Max Born Symposium Wroclaw, 30 June 2009 Introduction Three dimensional gravity

More information

Introduction to AdS/CFT

Introduction to AdS/CFT Introduction to AdS/CFT Who? From? Where? When? Nina Miekley University of Würzburg Young Scientists Workshop 2017 July 17, 2017 (Figure by Stan Brodsky) Intuitive motivation What is meant by holography?

More information

Holography with Shape Dynamics

Holography with Shape Dynamics . 1/ 11 Holography with Henrique Gomes Physics, University of California, Davis July 6, 2012 In collaboration with Tim Koslowski Outline 1 Holographic dulaities 2 . 2/ 11 Holographic dulaities Ideas behind

More information

Holographic Wilsonian Renormalization Group

Holographic Wilsonian Renormalization Group Holographic Wilsonian Renormalization Group JiYoung Kim May 0, 207 Abstract Strongly coupled systems are difficult to study because the perturbation of the systems does not work with strong couplings.

More information

AdS/CFT Correspondence and Entanglement Entropy

AdS/CFT Correspondence and Entanglement Entropy AdS/CFT Correspondence and Entanglement Entropy Tadashi Takayanagi (Kyoto U.) Based on hep-th/0603001 [Phys.Rev.Lett.96(2006)181602] hep-th/0605073 [JHEP 0608(2006)045] with Shinsei Ryu (KITP) hep-th/0608213

More information

LECTURE 3: Quantization and QFT

LECTURE 3: Quantization and QFT LECTURE 3: Quantization and QFT Robert Oeckl IQG-FAU & CCM-UNAM IQG FAU Erlangen-Nürnberg 14 November 2013 Outline 1 Classical field theory 2 Schrödinger-Feynman quantization 3 Klein-Gordon Theory Classical

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

1 The Quantum Anharmonic Oscillator

1 The Quantum Anharmonic Oscillator 1 The Quantum Anharmonic Oscillator Perturbation theory based on Feynman diagrams can be used to calculate observables in Quantum Electrodynamics, like the anomalous magnetic moment of the electron, and

More information

Holographic dictionary and defects in the bulk

Holographic dictionary and defects in the bulk Holographic dictionary and defects in the bulk Mikhail Khramtsov 1, 1 Steklov Mathematical Institute, Russian Academy of Sciences, Gubkina str. 8, 119991, Moscow, Russia Abstract. We study the holographic

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Black Holes, Holography, and Quantum Information

Black Holes, Holography, and Quantum Information Black Holes, Holography, and Quantum Information Daniel Harlow Massachusetts Institute of Technology August 31, 2017 1 Black Holes Black holes are the most extreme objects we see in nature! Classically

More information

Maxwell s equations. based on S-54. electric field charge density. current density

Maxwell s equations. based on S-54. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Glueballs at finite temperature from AdS/QCD

Glueballs at finite temperature from AdS/QCD Light-Cone 2009: Relativistic Hadronic and Particle Physics Instituto de Física Universidade Federal do Rio de Janeiro Glueballs at finite temperature from AdS/QCD Alex S. Miranda Work done in collaboration

More information

Duality and Emergent Gravity in AdS/CFT

Duality and Emergent Gravity in AdS/CFT Duality and Emergent Gravity in AdS/CFT Sebastian de Haro University of Amsterdam and University of Cambridge Equivalent Theories in Science and Metaphysics Princeton, 21 March 2015 Motivating thoughts

More information

Holography and the (Exact) Renormalization Group

Holography and the (Exact) Renormalization Group Holography and the (Exact) Renormalization Group Rob Leigh University of Illinois ICMT: March 2014 Rob Leigh (UIUC) HRG ICMT: March 2014 1 / 21 Introduction An appealing aspect of holography is its interpretation

More information

Holography and (Lorentzian) black holes

Holography and (Lorentzian) black holes Holography and (Lorentzian) black holes Simon Ross Centre for Particle Theory The State of the Universe, Cambridge, January 2012 Simon Ross (Durham) Holography and black holes Cambridge 7 January 2012

More information

1 Equal-time and Time-ordered Green Functions

1 Equal-time and Time-ordered Green Functions 1 Equal-time and Time-ordered Green Functions Predictions for observables in quantum field theories are made by computing expectation values of products of field operators, which are called Green functions

More information

17 Eternal Black Holes and Entanglement

17 Eternal Black Holes and Entanglement 17 Eternal Black Holes and Entanglement References: This section is based mostly on Maldacena hep-th/0106112; see also the relevant section of Harlow s review lectures, 1409.1231. An eternal black hole

More information

Holographic Second Laws of Black Hole Thermodynamics

Holographic Second Laws of Black Hole Thermodynamics Holographic Second Laws of Black Hole Thermodynamics Federico Galli Gauge/Gravity Duality 018, Würzburg, 31 July 018 Based on arxiv: 1803.03633 with A. Bernamonti, R. Myers and J. Oppenheim Second Law

More information

10 Interlude: Preview of the AdS/CFT correspondence

10 Interlude: Preview of the AdS/CFT correspondence 10 Interlude: Preview of the AdS/CFT correspondence The rest of this course is, roughly speaking, on the AdS/CFT correspondence, also known as holography or gauge/gravity duality or various permutations

More information

BLACK HOLES IN 3D HIGHER SPIN GRAVITY. Gauge/Gravity Duality 2018, Würzburg

BLACK HOLES IN 3D HIGHER SPIN GRAVITY. Gauge/Gravity Duality 2018, Würzburg BLACK HOLES IN 3D HIGHER SPIN GRAVITY Gauge/Gravity Duality 2018, Würzburg What is a Black Hole? What is a Black Hole? In General Relativity (and its cousins): Singularity What is a Black Hole? In General

More information

A Solvable Irrelevant

A Solvable Irrelevant A Solvable Irrelevant Deformation of AdS $ / CFT * A. Giveon, N. Itzhaki, DK arxiv: 1701.05576 + to appear Strings 2017, Tel Aviv Introduction QFT is usually thought of as an RG flow connecting a UV fixed

More information

Quantization of Scalar Field

Quantization of Scalar Field Quantization of Scalar Field Wei Wang 2017.10.12 Wei Wang(SJTU) Lectures on QFT 2017.10.12 1 / 41 Contents 1 From classical theory to quantum theory 2 Quantization of real scalar field 3 Quantization of

More information

Themodynamics at strong coupling from Holographic QCD

Themodynamics at strong coupling from Holographic QCD Themodynamics at strong coupling from Holographic QCD p. 1 Themodynamics at strong coupling from Holographic QCD Francesco Nitti APC, U. Paris VII Excited QCD Les Houches, February 23 2011 Work with E.

More information

arxiv:hep-th/ v1 6 Dec 2006

arxiv:hep-th/ v1 6 Dec 2006 CU-TP-1162 hep-th/0612053 arxiv:hep-th/0612053 v1 6 Dec 2006 Local bulk operators in AdS/CFT: A holographic description of the black hole interior Alex Hamilton, 1 Daniel Kabat, 1 Gilad Lifschytz, 2 and

More information

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis

Out of equilibrium dynamics and Robinson-Trautman spacetimes. Kostas Skenderis Out of equilibrium dynamics and STAG CH RESEARCH ER C TE CENTER NINTH CRETE REGIONAL MEETING IN STRING THEORY In memoriam: Ioannis Bakas Kolymbari, July 13, 2017 Out of equilibrium dynamics and Outline

More information

Entanglement entropy and the F theorem

Entanglement entropy and the F theorem Entanglement entropy and the F theorem Mathematical Sciences and research centre, Southampton June 9, 2016 H RESEARH ENT Introduction This talk will be about: 1. Entanglement entropy 2. The F theorem for

More information

Thermalization in a confining gauge theory

Thermalization in a confining gauge theory 15th workshop on non-perturbative QD Paris, 13 June 2018 Thermalization in a confining gauge theory CCTP/ITCP University of Crete APC, Paris 1- Bibliography T. Ishii (Crete), E. Kiritsis (APC+Crete), C.

More information

Bulk local states on the black holes in AdS/CFT

Bulk local states on the black holes in AdS/CFT Bulk local states on the black holes in AdS/CFT Kanato Goto The University of Tokyo,Komaba Holography,Quantum Entanglement and Higher Spin Gravity, Feb.6 th -7 th @YITP,Kyoto Based on the work in progress

More information

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania

Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Holographic Cosmology Beyond Inflation? Mark Trodden! University of Pennsylvania Workshop: Status and Future of Inflationary Theory! University of Chicago, August 22-24, 2014 Questions Haven t been thinking

More information

REVIEW REVIEW. Quantum Field Theory II

REVIEW REVIEW. Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

Quantum Field Theory II

Quantum Field Theory II Quantum Field Theory II PHYS-P 622 Radovan Dermisek, Indiana University Notes based on: M. Srednicki, Quantum Field Theory Chapters: 13, 14, 16-21, 26-28, 51, 52, 61-68, 44, 53, 69-74, 30-32, 84-86, 75,

More information

A Brief Introduction to AdS/CFT Correspondence

A Brief Introduction to AdS/CFT Correspondence Department of Physics Universidad de los Andes Bogota, Colombia 2011 Outline of the Talk Outline of the Talk Introduction Outline of the Talk Introduction Motivation Outline of the Talk Introduction Motivation

More information

Holographic signatures of. resolved cosmological singularities

Holographic signatures of. resolved cosmological singularities Holographic signatures of resolved cosmological singularities Norbert Bodendorfer LMU Munich based on work in collaboration with Andreas Schäfer, John Schliemann International Loop Quantum Gravity Seminar

More information

Review of scalar field theory. Srednicki 5, 9, 10

Review of scalar field theory. Srednicki 5, 9, 10 Review of scalar field theory Srednicki 5, 9, 10 2 The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate

More information

Causality Constraints in Conformal Field Theory

Causality Constraints in Conformal Field Theory Causality Constraints in Conformal Field Theory Tom Hartman Cornell University 7 th NEW ENGLAND STRINGS MEETING BROWN NOVEMBER 2015 1509.00014 with Sachin Jain Sandipan Kundu and work in progress. UV complete

More information

Classical field theory 2012 (NS-364B) Feynman propagator

Classical field theory 2012 (NS-364B) Feynman propagator Classical field theory 212 (NS-364B Feynman propagator 1. Introduction States in quantum mechanics in Schrödinger picture evolve as ( Ψt = Û(t,t Ψt, Û(t,t = T exp ı t dt Ĥ(t, (1 t where Û(t,t denotes the

More information

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg

Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger. Julius-Maximilians-Universität Würzburg Gauge/Gravity Duality: Applications to Condensed Matter Physics. Johanna Erdmenger Julius-Maximilians-Universität Würzburg 1 New Gauge/Gravity Duality group at Würzburg University Permanent members 2 Gauge/Gravity

More information

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES

HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES HOLOGRAPHIC RECIPE FOR TYPE-B WEYL ANOMALIES Danilo E. Díaz (UNAB-Talcahuano) joint work with F. Bugini (acknowledge useful conversations with R. Aros, A. Montecinos, R. Olea, S. Theisen,...) 5TH COSMOCONCE

More information

Quantum phase transitions in condensed matter

Quantum phase transitions in condensed matter Quantum phase transitions in condensed matter The 8th Asian Winter School on Strings, Particles, and Cosmology, Puri, India January 11-18, 2014 Subir Sachdev Talk online: sachdev.physics.harvard.edu HARVARD

More information

arxiv:hep-th/ v3 24 Apr 2007

arxiv:hep-th/ v3 24 Apr 2007 Anti-de Sitter boundary in Poincaré coordinates C. A. Ballón Bayona and Nelson R. F. Braga Instituto de Física, Universidade Federal do Rio de Janeiro, Caixa Postal 68528, RJ 21941-972 Brazil Abstract

More information

Quantization of scalar fields

Quantization of scalar fields Quantization of scalar fields March 8, 06 We have introduced several distinct types of fields, with actions that give their field equations. These include scalar fields, S α ϕ α ϕ m ϕ d 4 x and complex

More information

The Klein-Gordon equation

The Klein-Gordon equation Lecture 8 The Klein-Gordon equation WS2010/11: Introduction to Nuclear and Particle Physics The bosons in field theory Bosons with spin 0 scalar (or pseudo-scalar) meson fields canonical field quantization

More information

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian:

Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: Path integral in quantum mechanics based on S-6 Consider nonrelativistic quantum mechanics of one particle in one dimension with the hamiltonian: let s look at one piece first: P and Q obey: Probability

More information

One Loop Tests of Higher Spin AdS/CFT

One Loop Tests of Higher Spin AdS/CFT One Loop Tests of Higher Spin AdS/CFT Simone Giombi UNC-Chapel Hill, Jan. 30 2014 Based on 1308.2337 with I. Klebanov and 1401.0825 with I. Klebanov and B. Safdi Massless higher spins Consistent interactions

More information

Kinematic Space 2: Seeing into the bulk with Integral Geometry. Sam McCandlish. Stanford University

Kinematic Space 2: Seeing into the bulk with Integral Geometry. Sam McCandlish. Stanford University Kinematic Space 2: Seeing into the bulk with Integral Geometry Sam McCandlish Stanford University Work in progress with: Bartek Czech, Lampros Lamprou, Ben Mosk, James Sully 1 How do we probe the bulk?

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Universal entanglement of non-smooth surfaces

Universal entanglement of non-smooth surfaces Universal entanglement of non-smooth surfaces Pablo Bueno IFT, Madrid Based on P.B., R. C. Myers and W. Witczak-Krempa, PRL 115, 021602 (2015); P.B. and R. C. Myers arxiv:1505.07842; + work in progress

More information

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis

Symmetries, Horizons, and Black Hole Entropy. Steve Carlip U.C. Davis Symmetries, Horizons, and Black Hole Entropy Steve Carlip U.C. Davis UC Davis June 2007 Black holes behave as thermodynamic objects T = κ 2πc S BH = A 4 G Quantum ( ) and gravitational (G) Does this thermodynamic

More information

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY

HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY HIGHER SPIN CORRECTIONS TO ENTANGLEMENT ENTROPY JHEP 1406 (2014) 096, Phys.Rev. D90 (2014) 4, 041903 with Shouvik Datta ( IISc), Michael Ferlaino, S. Prem Kumar (Swansea U. ) JHEP 1504 (2015) 041 with

More information

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization:

Summary of free theory: one particle state: vacuum state is annihilated by all a s: then, one particle state has normalization: The LSZ reduction formula based on S-5 In order to describe scattering experiments we need to construct appropriate initial and final states and calculate scattering amplitude. Summary of free theory:

More information

Applications of AdS/CFT correspondence to cold atom physics

Applications of AdS/CFT correspondence to cold atom physics Applications of AdS/CFT correspondence to cold atom physics Sergej Moroz in collaboration with Carlos Fuertes ITP, Heidelberg Outline Basics of AdS/CFT correspondence Schrödinger group and correlation

More information

Theory of Quantum Matter: from Quantum Fields to Strings

Theory of Quantum Matter: from Quantum Fields to Strings Theory of Quantum Matter: from Quantum Fields to Strings Salam Distinguished Lectures The Abdus Salam International Center for Theoretical Physics Trieste, Italy January 27-30, 2014 Subir Sachdev Talk

More information

arxiv: v2 [hep-th] 22 Apr 2018

arxiv: v2 [hep-th] 22 Apr 2018 Why do Things Fall? arxiv:1802.01198v2 [hep-th] 22 Apr 2018 Leonard Susskind Stanford Institute for Theoretical Physics and Department of Physics, Stanford University, Stanford, CA 94305-4060, USA Abstract

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

The Hamiltonian operator and states

The Hamiltonian operator and states The Hamiltonian operator and states March 30, 06 Calculation of the Hamiltonian operator This is our first typical quantum field theory calculation. They re a bit to keep track of, but not really that

More information

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter

Complex entangled states of quantum matter, not adiabatically connected to independent particle states. Compressible quantum matter Complex entangled states of quantum matter, not adiabatically connected to independent particle states Gapped quantum matter Z2 Spin liquids, quantum Hall states Conformal quantum matter Graphene, ultracold

More information

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2

31st Jerusalem Winter School in Theoretical Physics: Problem Set 2 31st Jerusalem Winter School in Theoretical Physics: Problem Set Contents Frank Verstraete: Quantum Information and Quantum Matter : 3 : Solution to Problem 9 7 Daniel Harlow: Black Holes and Quantum Information

More information

Euclidean path integral formalism: from quantum mechanics to quantum field theory

Euclidean path integral formalism: from quantum mechanics to quantum field theory : from quantum mechanics to quantum field theory Dr. Philippe de Forcrand Tutor: Dr. Marco Panero ETH Zürich 30th March, 2009 Introduction Real time Euclidean time Vacuum s expectation values Euclidean

More information

Second quantization: where quantization and particles come from?

Second quantization: where quantization and particles come from? 110 Phys460.nb 7 Second quantization: where quantization and particles come from? 7.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system? 7.1.1.Lagrangian Lagrangian

More information

Beyond the unitarity bound in AdS/CFT

Beyond the unitarity bound in AdS/CFT Beyond the unitarity bound in AdS/CFT Tomás Andrade in collaboration with T. Faulkner, J. Jottar, R. Leigh, D. Marolf, C. Uhlemann October 5th, 2011 Introduction 1 AdS/CFT relates the dynamics of fields

More information

Strings, gauge theory and gravity. Storrs, Feb. 07

Strings, gauge theory and gravity. Storrs, Feb. 07 Strings, gauge theory and gravity Storrs, Feb. 07 Outline Motivation - why study quantum gravity? Intro to strings Gravity / gauge theory duality Gravity => gauge: Wilson lines, confinement Gauge => gravity:

More information

Causal Evolution of Bulk localized Excitations in AdS from CFT

Causal Evolution of Bulk localized Excitations in AdS from CFT Causal Evolution of Bulk localized Excitations in AdS from CFT Kanato Goto The University of Tokyo, Komaba Particle Theory Group based on arxiv:1605.02835 KG and M.Miyaji and T.Takayanagi Kanato Goto (Tokyo

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Path Integrals in Quantum Field Theory C6, HT 2014

Path Integrals in Quantum Field Theory C6, HT 2014 Path Integrals in Quantum Field Theory C6, HT 01 Uli Haisch a a Rudolf Peierls Centre for Theoretical Physics University of Oxford OX1 3PN Oxford, United Kingdom Please send corrections to u.haisch1@physics.ox.ac.uk.

More information

arxiv: v1 [hep-th] 6 Nov 2012

arxiv: v1 [hep-th] 6 Nov 2012 Dual description of a 4d cosmology Michael Smolkin and Neil Turok Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5, Canada. Abstract M-theory compactified on S 7 /Z k allows for a

More information

Thomas Klose Uppsala University J u n e, S t r i n g s , U p p s a l a

Thomas Klose Uppsala University J u n e, S t r i n g s , U p p s a l a Thomas Klose Uppsala University 2 7. J u n e, S t r i n g s 2 0 1 1, U p p s a l a The space-time dependence of two- and three-point functions of Scalar Conformal Primary Operators is fixed by conformal

More information

Emergent Causality in Holography

Emergent Causality in Holography Emergent Causality in Holography Netta Engelhardt Princeton University 20.6.18 Based mostly on: NE, Horowitz 16; NE 16; NE, Fischetti 17 Spacetime Emergence Holography: the equivalence of a higher-dim

More information

Emergent Locality in the AdS/CFT Correspondence

Emergent Locality in the AdS/CFT Correspondence June 1, 2011 Emergent Locality in the AdS/CFT Correspondence arxiv:0903.4437 (MG, Giddings, Penedones) arxiv:0904.3544 (MG, Giddings) work in progress (MG, Giddings) 1 Acknowledgements My committee: Joe

More information

Scale anomalies, states, and rates in conformal field theory

Scale anomalies, states, and rates in conformal field theory Published for SISSA by Springer Received: January 7, 017 Accepted: April 18, 017 Published: April 8, 017 Scale anomalies, states, and rates in conformal field theory Marc Gillioz, a Xiaochuan Lu b and

More information

Big crunch singularities in AdS and relevant deformations of CFT s

Big crunch singularities in AdS and relevant deformations of CFT s Big crunch singularities in AdS and relevant deformations of CFT s Vlad Vaganov Fields, Gravity & Strings Group Center for Theoretical Physics of the Universe Institute for Basic Science Seoul, Korea 5

More information

Developments on the radial gauge

Developments on the radial gauge Developments on the radial gauge Jędrzej Świeżewski Faculty of Physics, University of Warsaw in collaboration with Norbert Bodendorfer, Paweł Duch, Wojciech Kamiński and Jerzy Lewandowski ILQGS, November

More information

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute

Quantum critical dynamics: CFT, Monte Carlo & holography. William Witczak-Krempa Perimeter Institute Quantum critical dynamics: CFT, Monte Carlo & holography William Witczak-Krempa Perimeter Institute Toronto, HEP seminar, Jan. 12 2015 S. Sachdev @Harvard / PI E. Sorensen @McMaster E. Katz @Boston U.

More information

Holographic thermalization of 2D CFT

Holographic thermalization of 2D CFT Holographic thermalization of 2D CFT Shu Lin ( 林树 ) Sun Yat-Sen University ICTS, USTC, 9/8/2016 SL, Shuryak, PRD 2008 SL, PRD 2016 Outline Phenomenon of thermalization in physics Holographic description

More information

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29

Analog Duality. Sabine Hossenfelder. Nordita. Sabine Hossenfelder, Nordita Analog Duality 1/29 Analog Duality Sabine Hossenfelder Nordita Sabine Hossenfelder, Nordita Analog Duality 1/29 Dualities A duality, in the broadest sense, identifies two theories with each other. A duality is especially

More information

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis

Local RG, Quantum RG, and Holographic RG. Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local RG, Quantum RG, and Holographic RG Yu Nakayama Special thanks to Sung-Sik Lee and Elias Kiritsis Local renormalization group The main idea dates back to Osborn NPB 363 (1991) See also my recent review

More information

Gauge-gravity Duality

Gauge-gravity Duality Imperial College London Gauge-gravity Duality Benedict Fraser Submitted in part fulfilment of the requirements for the degree of Master of Science in of Imperial College London 1 To my parents, To Kiran

More information

Higher Spin AdS/CFT at One Loop

Higher Spin AdS/CFT at One Loop Higher Spin AdS/CFT at One Loop Simone Giombi Higher Spin Theories Workshop Penn State U., Aug. 28 2015 Based mainly on: SG, I. Klebanov, arxiv: 1308.2337 SG, I. Klebanov, B. Safdi, arxiv: 1401.0825 SG,

More information

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory

An Inverse Mass Expansion for Entanglement Entropy. Free Massive Scalar Field Theory in Free Massive Scalar Field Theory NCSR Demokritos National Technical University of Athens based on arxiv:1711.02618 [hep-th] in collaboration with Dimitris Katsinis March 28 2018 Entanglement and Entanglement

More information

dynamics of broken symmetry

dynamics of broken symmetry dynamics of broken symmetry Julian Sonner, MIT Simons Symposium - Quantum Entanglement Caneel Bay, USVI a physics connection in paradise 1957: J. R. Oppenheimer purchases small plot of land in Hawksnest

More information

STOCHASTIC QUANTIZATION AND HOLOGRAPHY

STOCHASTIC QUANTIZATION AND HOLOGRAPHY STOCHASTIC QUANTIZATION AND HOLOGRAPHY WORK WITH D.MANSI & A. MAURI: TO APPEAR TASSOS PETKOU UNIVERSITY OF CRETE OUTLINE CONFORMAL HOLOGRAPHY STOCHASTIC QUANTIZATION STOCHASTIC QUANTIZATION VS HOLOGRAPHY

More information

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara

Recent Developments in Holographic Superconductors. Gary Horowitz UC Santa Barbara Recent Developments in Holographic Superconductors Gary Horowitz UC Santa Barbara Outline 1) Review basic ideas behind holographic superconductors 2) New view of conductivity and the zero temperature limit

More information

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT.

Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Boost-invariant dynamics near and far from equilibrium physics and AdS/CFT. Micha l P. Heller michal.heller@uj.edu.pl Department of Theory of Complex Systems Institute of Physics, Jagiellonian University

More information

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli

The Cardy-Verlinde equation and the gravitational collapse. Cosimo Stornaiolo INFN -- Napoli The Cardy-Verlinde equation and the gravitational collapse Cosimo Stornaiolo INFN -- Napoli G. Maiella and C. Stornaiolo The Cardy-Verlinde equation and the gravitational collapse Int.J.Mod.Phys. A25 (2010)

More information

Recurrence Relations for Finite-Temperature Correlators via AdS 2 /CFT 1

Recurrence Relations for Finite-Temperature Correlators via AdS 2 /CFT 1 Recurrence Relations for Finite-Temperature Correlators via AdS 2 /CFT 1 Satoshi Ohya Institute of Quantum Science, Nihon University Based on: SO,arXiv:1309.2939[hep-th] Seminar@Kobe, 15 July 2015 1/35

More information

Attempts at relativistic QM

Attempts at relativistic QM Attempts at relativistic QM based on S-1 A proper description of particle physics should incorporate both quantum mechanics and special relativity. However historically combining quantum mechanics and

More information

Maxwell s equations. electric field charge density. current density

Maxwell s equations. electric field charge density. current density Maxwell s equations based on S-54 Our next task is to find a quantum field theory description of spin-1 particles, e.g. photons. Classical electrodynamics is governed by Maxwell s equations: electric field

More information

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11

Week 1. 1 The relativistic point particle. 1.1 Classical dynamics. Reading material from the books. Zwiebach, Chapter 5 and chapter 11 Week 1 1 The relativistic point particle Reading material from the books Zwiebach, Chapter 5 and chapter 11 Polchinski, Chapter 1 Becker, Becker, Schwartz, Chapter 2 1.1 Classical dynamics The first thing

More information

1 Polyakov path integral and BRST cohomology

1 Polyakov path integral and BRST cohomology Week 7 Reading material from the books Polchinski, Chapter 3,4 Becker, Becker, Schwartz, Chapter 3 Green, Schwartz, Witten, chapter 3 1 Polyakov path integral and BRST cohomology We need to discuss now

More information

Holographic entanglement entropy

Holographic entanglement entropy Holographic entanglement entropy Mohsen Alishahiha School of physics, Institute for Research in Fundamental Sciences (IPM) 21th Spring Physics Conference, 1393 1 Plan of the talk Entanglement entropy Holography

More information

2 Canonical quantization

2 Canonical quantization Phys540.nb 7 Canonical quantization.1. Lagrangian mechanics and canonical quantization Q: How do we quantize a general system?.1.1.lagrangian Lagrangian mechanics is a reformulation of classical mechanics.

More information

Quantum Fields in Curved Spacetime

Quantum Fields in Curved Spacetime Quantum Fields in Curved Spacetime Lecture 3 Finn Larsen Michigan Center for Theoretical Physics Yerevan, August 22, 2016. Recap AdS 3 is an instructive application of quantum fields in curved space. The

More information

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula

A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula A Comment on Curvature Effects In CFTs And The Cardy-Verlinde Formula Arshad Momen and Tapobrata Sarkar the Abdus Salam International Center for Theoretical Physics, Strada Costiera, 11 4014 Trieste, Italy

More information