News on tensor network algorithms

Size: px
Start display at page:

Download "News on tensor network algorithms"

Transcription

1 News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, (2018) S. S. Jahromi, RO, PRB 98, 1558 (2018) S. S. Jahromi, RO, arxiv: P. Schmoll, S. Singh, M. Rizzi, RO, arxiv: A. Kshetrimayum, M. Rizzi, J. Eisert, RO, arxiv: P. Schmoll, A. Haller, M. Rizzi, RO, arxiv:

2 Applications welcomed

3 Tensor networks everywhere HEP and lattice gauge theories Quantum information and computation Quantum gravity, string theory and AdS/CFT Strongly correlated systems Classical statistical mechanics Quantum simulations Entanglement and Tensor Networks Numerical tensor calculus Nuclear physics Quantum chemistry Materials science AI, Deep learning & Linguistics

4 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder Overview, omit many technical details

5 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, (2018)

6 The ruby model H= X α=x,y,z Jα X σiα σjα α links <latexit sha1_base64="4zpoby6jmn0eeuamn8sqowsfki4=">aaacthicbvbnswmxem3wr1q/qh69bivgocquchoril6kpwrwfrp1mu3tnjbzxzkswjf9gv48epnxepggigbav9hqqodne2+yyfmjzps27ucrnzu9mzuxny8slc4trxrx1y5ugetc6ytkowz6ochnaa1rpjltrpkc8dlt+iotkd64plkxmdjxw4i2bfqc1muetkg8iqnii7ydxrull3gbr30wxe0zd8v4nswnxsb9muzgxjucm50dlazgyz0bhrv89o77q6/ek5bsxxtc+c9wmlbcwdw84opbcuksakajb6vajh3pdgjsm8jpwnbjrsmga+jrloebckraytimfg8zpoo7otqv0hjm/pxiqcg1fl5xctb9namnyp+0vqy7h+2ebvgsaua+f3vjjnwir8nidpouad40aihk5lzm+icbajn/wytgth75l7jy23umptsvvy6zopjoa22ibesga1rbvvrddutqhxpcl+jvureertfr/doas7kzdfsrcrmfmkqyzw==</latexit> Reproduces the low-energy sector of the topological color code model in its gapped phase (Z2 x Z2 topological order) E. Bombin, M. A. Martin-Delgado, PRL 97, (2006) Coarse-graining triangles leads to brickwall lattice Study with ipeps

7 Energies and phase diagram Ground state energy Jc=(0.8, 0.8, 0.4) J=(1, 1, 1) 0.56 ipeps FU ED (N=24) 1.07 Multicritical point ipeps FU ED (N=24) Comparison to exact diag. for 24 sites ε0 ε Good convergence. Multicritical point challenging /D /D 3 phases separated by 2nd order QPTs. QPTs meet at a multicritical point. A1 phase: gapped, Z2 x Z2 TO. A2 & A3 phases: gapless. Gapped by a perturbation, colored Ising anyons. S. S. Jahromi, M. Kargarian, S. F. Masoudi, A. Langari, PRB 94, (2016) Phase diagram J x + Jy + J z = 2 <latexit sha1_base64="vafdml2snczwpqlikq/ymgnv+eg=">aaab/hicbzdlsgmxfibp1futt9eu3qsliahlpgi6eypupksk9gltmgtstbuauzbkxlhuv3hjqhg3pog738z0ogttpzdw8f/nkjpfizmtyrk+jclk6tr6rngztlw9s7tn7h+0zzqiqlsk4phoelhszklaukxx2o0fxyhhaccbx8/8zj0vkkxhnupj6gr4gdkfeay05jrlhvuatlhdtbp7ev2immtwrkqvfvogo4ck5nv0za/+icjjqenfojayz1uxcizykey4nzb6iaqxjmm8pd2niq6odcbz8ln0rjub8ioht6hqpv6emobayjtwdgea1uguejpxp6+xkp/cmbawthqnyfwhp+firwiwbbowqyniqqzmbno7ijlcahol8yrpeozfly9du1a1nd+evepxerxfoiqjoaebzqeon9cefhbi4rle4c14ml6md+nj3low8pky/cnj8wflfzju</latexit>

8 Fidelity from CTMs With CTMs Ground state fidelity per site C1 H.-Q- Zhou, RO, G. Vidal, PRL 0, (2008) Tr C4 Td C3 C1 Tu C2 N <latexit sha1_base64="xo9iuse/jf0lb+viestxhxz0sjq=">aaacvnicbvhlsgmxfm1mra31nerstbailuizkyjuhkigrqscfucnlkwmbuotzjbkhnl2j3wjn+jgtb9cxxccj+ece5ocbdgjsrvut2wndtk7mexebv/g8ojyotmtqyirmnrwxclzdjaijaps01qz0owlqtxgpbemhqz6451irspxqocxaxpue7rlmdkg6jj8seazyw9rx7uc/7bchhdwbhaixwj0q4owlqtxkumvos/ntqmoymg4febbc8fjuyv3vnateauqb4uqdpwpp4xwwonqmcglwp4b6/yisu0xi5ocnygsizxapdiyucbovhs0i2uclw0twm4kzriaztjljhhisg15yjwc6b5a16bknq2v6o5te0rfnggi8pygbskgjua0yxhssbbmqwmqlttcfei+kghr8xm5e4k3/urnuc+xpinfrvov+0ucwxaolkabeoagvmatqiiawoat/fi2lbk+rf87bwfmvtta9jyblbkdp045sb8=</latexit> ln F (λ1, λ2 ) ln d(λ1, λ2 ) lim N N C2 a Tl F (λ1, λ2 ) = hψ(λ2 ) Ψ(λ1 )i d(λ1, λ2 ) Tu d(λ1, λ2 ) = <latexit sha1_base64="zjjusofcsz+na81gnowvb+6pcm4=">aaactxicbzfns8mwgmft+tbn29sjl+aqjshordcjkiinoebeyb0ltdmtmky1eaqm0i/orfdmt/diqrexmxn02wobh//nlfnhtwtxynsvvmfufmfxqbhcwlldw98ob241dzwqyho0frfq+0qzwsvraafb2olijpifa/m358n8654pzwn5a4oedspskzzklicrvhlgcomdqitms0a85wd/4ue+dtldyu+nwimvq2nx8v4fiflxa3a5dggqyzduhgbdirezh+rzpffkfbtmjwjpgzogchrhlvd+dooyphgtqaxruupycxqzoobtwfksm2qwehpleqxjujki6w42ciphe0yjcbgrcytgkfq3iyor1opin5urgb6eza3fwblocufjn+mysyfj+rmotawgga+txqfxjiiygcbucxnxtpve+apma0rgbgfyydpqpkw5hq+pkqdnyzukaaftoipy0de6rzfocjuqry/ofb2jd+vjerm+ra+f0oi17tlg/6kw9a3wh7mk</latexit> C4 A2 - A3 QPT Td C1 C2 C4 C3 C1 C2 Tl Tr C4 C3 C3 Compatible with other observables: - Entanglement entropy - 2-point correlators Many open questions: - Top. nature of A2 and A3? - Multicritical point?

9 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

10 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, PRB 98, 1558 (2018)

11 Star Heisenberg Antiferromagnet X H = Je S i S j + Jt hiji2e X Si Sj hiji2t <latexit sha1_base64="pwrwknsaiyfqrybw6/+aw+po7cc=">aaaca3icfzhpahsxema1m7zx3dz160nc28nqeyguwm4jnjecas4mj4feicfrfq086yjwahdpnmawx/kiueunesk7rp4taoksacfp38yhpe9joasliljz/i1xr99s1rbqb9+93/7q+pjp3oaledgtucpnp+ewldtyi0kk+4vbniukl5lj0bx/cy3gylyf0btaycbhwqzschjs3ljpwg84jheiw2zxfsmuxwpbxkfklhhjdqizkkpsoj3feiixygke91fww/npzt+95i8brwa/wbssq7icfltvn27crqnclblqeopbowidgoyvnysfwlk9ki0wxez4gaconc/qdqtfvjpyc8oi0ty4pqkw6r+oimfwtrpetwaclu3z3lz8x29quno4rkquskitlgelpqlkyr48jkrbqwrqgasj3v1bxhldbbnvqbsqwudpxofzn/uh45odvvvpko4a+8k+se8szl9ym3vyl/wyyh+9bw/h2/xu/ab/2f+6hpw9lafjnps/9wbdtlfo</latexit> (spin-1/2) J. Richter et al, PRB 70, 1 (2004) H. Yao, S. A. Kivelson, PRL 99, (2007) G. Kells et al, PRB 81, 4429 (20) S. Dusuel et al, PRB 78, 1252 (2008) G. Misguich, P. Sindzingre, JPCM 19, (2007) B. J. Yang, A. Paramekanti, Y. B. Kim, PRB (20) T. P. Choy, Y. B. Kim, PRB 80, (2009) S. J. Ran et al, PRB 97, (2018) G. Y. Huang, S. D. Liang, D. X. Yao, EPJB 86, 379 (2013) (a) σyσy σxσx σzσz (b) Frustrated triangles. Ground state not fully clear yet. Chiral QSL, VBS, spin-1 trimerized... Coarse-graining leads to brick-wall lattice (different setups) (c) (d) Same ipeps strategy than the ruby lattice T=0 phase diagram as a function of Jt/Je?

12 ipeps phase diagram Agrees with previous results Continuous QPT New phase, breaks C3 symmetry (4x4 unit cell, D=9)

13 Coarse-graining setups Setup A Setup B Jt/Je << 1 Jt/Je >> Je=1, Jt= Je=0.05, Jt= Setup A Setup B Setup A Setup B ε0 ε Fast convergence! Better for large-d /D /D

14 Bond energies Ebond 0.2 Jt/Je << 1 Je=0.05, Jt= Jt-bond1 Jt-bond2 Jt-bond3 Je-bond Jt/Je >> /D Jt/Je >> 1 (a) (b) (c) Degeneracy of the three configurations. RVB possible. ipeps favors one of them because it has less entanglement.

15 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

16 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder S. S. Jahromi, RO, arxiv:

17 Graph-based PEPS (gpeps) Store information about the TN on a structure matrix Example: star lattice Links in unit cell Unit cell Label of edge for tensor Looping over the columns of the structure matrix we can authomatize tensor updates in imaginary-time evolution for essentially any lattice. Simple update (no environment): automatic! Full update (with environment): work in progress

18 Graph-based PEPS (gpeps) Store information about the TN on a structure matrix Example: star lattice Links in unit cell Unit cell Label of edge for tensor Looping over the columns of the structure matrix we can authomatize tensor updates in imaginary-time evolution for essentially any lattice. Simple update (no environment): automatic! Full update (with environment): work in progress

19 All you need is the matrix 1d chain

20 All you need is the matrix 2d square

21 All you need is the matrix 2d triangular

22 All you need is the matrix 2d kagome

23 All you need is the matrix 3d pyrochlore

24 Some ground state energies Simple update, and mean field environment (only lambdas) for observables. Not variational. 1d 2d 3d 2d 3d 2d 2d Very simple, efficient, and fully-atomatized way of getting a first idea about the ground state in many cases

25 An example Antiferromagnetic Heisenberg model on the cubic lattice H= X ij <latexit sha1_base64="mnx9gy58opujhing40lzu/oqauk=">aaacexicbzbns8mwgmft+tbnw9wjl+aqdhqtchorhl52noheyc0ltdmtw5qwjbvg6vfw4lfx4kerr968+w3mtik6+yfal//neuiev58wkpvlfrmlldw19y3yzmvre2d3z9w/6mg4fzi0ccxi0forjixy0lzumdjlbegrz0jxh19p6917iisn+z2ajmsn0idtkgkktowztsa8hi5miy+joxxmjh/c29yj0mfbrh7ui+izvatuzqsxws6gcgq1ppptcwkcroqrzjcufdtkljshoshmjk84qsqjwmm0ih2nheveutlsoxyeaceaysz04qro3n8tgyqknes+7oyqgsrf2tt8r9zpvxjhzpqnqsiczx8kuwzvdkfxwiakghwbaebyup1xiidiikx0ibudgr248jj0tuu25puzauoqikmmjsaxqaebnimgaiiwaammhsateagvxqpxblwz7/pwklhmhii/mj6+avplnba=</latexit> sha1_base64="ck8pdc+ekzh4numsp+zg7r8leyk=">aaab2xicbzdnsgmxfixv1l86vq1rn8eiucozbnqpuhfzwbzco5rm5k4bmskmyr2hdh0bf25efc93vo3pz0jbdwq+zknivscullqubn9ebwd3b/+gfugfnfzjk9nmo2fz0gjsilzl5jnmfpxu2cvjcp8lgzylffbj6f0i77+gstlxtzqrmmr4wmtuck7o6oyaraadlmw2ivxdc9yanb+gss7kddujxa0dhefbucunsafw7g9liwuxuz7ggupnm7rrtrxzzi6dk7a0n+5oykv394ukz9bostjdzdhn7ga2mp/lbiwlt1eldvesarh6kc0vo5wtdmajnchizrxwyasblykjn1yqa8z3hysbg29d77odon4moa7ncafxemin3meddkalahj4hxdv4r15h6uuat66tdp4i+/zbzjgijg=</latexit> sha1_base64="rmyfn5xfpi2uqijpx3omrxghb1s=">aaacbnicbzbns8mwhmb/nw9ztq1evqshsnnovehfelzsong9wdpkmqzbtqqtssqm0q/gxa/ixymifgrvfhuzf0q3hwj88jwjyf8jus6udpwvq7sxubw9u96t7fx3dw7to2phjzkkte0snshegbxllkztztsnvvrslajou8hkzpz3h6hulinv9tsla4ghmysywdpyvl1voivkquz4orsxkpeccn0vpkmecrp9sx8j3645dwcuta7uemqwvmu3p70wizmgssyck9v3nvqpciw1i5wwfs9tnmvkgoe0bzdggqpbpp+oqgfgcvguslnijebu7xs5fkpnrwbocqxhajwbmf9l/uxhl4ocxwmmauwwd0uzrzpbs3pqycqlmk8nyckz+ssiiywx0abeiinbxr15htrnddfwrqnloiftqimlf3antwhbgwg8wjo8wpv1zl1y74u6stayt2p4i+vjg6cympq=</latexit> sha1_base64="gztutzs0z28mekjkccn5wb1pfri=">aaacexicbzc7tsmwfiydrqxcaowsfhvspyphgqwpgqvjefqinvxkoe7r1nyi20gqorwcc6/cwgbcrgxsva1ugyfo+svln/9zjuzzbwmjsjvol7wyura+svnakm/v7o7t2wehbrwnepmwjlksuwfshffbwppqrrqjjighjhsc8fw03rknutfy3oljqvocdqsnkebawl5dbcbl6kmu+xkd5tdzggje5j6fhg5j/xmfqd+uodvnjrgmbgevukjp259egooue6exq0r1xcfr/qxjttejedllfukqhqmb6rkuibpvz2yb5fduocgmymmo0hdm/p7iefdqwgptyzeeqsxa1pyv1kt1dnhpqehstqsepxsldooytuobizueazyxglck5q8qd5fewjsqyyyed3hlzwif1vzdn06lflxeuqlh4arugqvoqr00qbo0aayp4am8gffr0xq23qz3eeukvcwcgt+ypr4buqwcda==</latexit> (spin-1/2) Si Sj

26 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder

27 Outline 1) ipeps for the ruby model 2) ipeps & VBS phases on the star lattice 3) gpeps and the structure matrix 4) idmrg for SU(2)-invariant chiral ladder P. Schmoll, S. Singh, M. Rizzi, RO, arxiv: P. Schmoll, A. Haller, M. Rizzi, RO, arxiv:

28 Chiral interactions on a ladder H= X i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> Ji Si (Si+1 Si+2 ) (spin-1/2) Multiple motivations: wire constructionism, simpler case than 2d, etc

29 Chiral interactions on a ladder H= X i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> 1 Ji Si (Si+1 Si+2 ) (spin-1/2) 3 ~2 S ~3 + S ~3 S ~4 ~1 S ~2 S H1 = S H Singlet ground state S2 = 0 ~3 S ~4 ~2 S ~3 S ~2 S ~1 S H2 = + S H Study with SU(2) idmrg (omit tech. details) ~2 S ~1 S ~3 S ~4 ~2 S ~3 S H3 = S H Non-singlet ground state ~ ~ ~ ~ ~ ~ H4 = + S1 S2 S3 + S2 S3 S4 H4 2 4

30 First intuition S <latexit sha1_base64="dvnxep6x03kjflmge9mhpnn0c4c=">aaab73icbzbns8naeiyn9avwr6phl4tf8fqsefry9okxov2anptndtiu3wzs3y1qqv+efw+kepxveppfug1z0nyxfh7emwfn3iarxbvx/xyka+sbm1vf7dlo7t7+qfnwqknjvdfssfjeqh1qjyjlbbhublythtqkblac0e2s3npcpxksh80kqt+ia8ldzqixvjvrbif5mjjeuejw3bnikng5vcbxvvf+6vzjlkyodrnu647njsbpqdkcczywuqnghlirhwdhoqqraj+b7zslz9bpkzbw9kld5u7viyxgwk+iwhzg1az1cm1m/lfrpca89jmuk9sgziupwlqqe5pz8atpftijjhyou9zustiqksqmjahkq/cwt16f5kxvs3x/wand5heu4qro4rw8uiia3eedgsbawdo8wpszdl6cd+dj0vpw8plj+cpn8wdo0o95</latexit> <latexit S 1) Kadanoff blocking on triangles H= X Ji Si (Si+1 Si+2 ) <latexit sha1_base64="gz+dlajuekmmb8cinuvxtftsnp8=">aaab+3icbzdlssnafiyn9vbrldalm8eiucqjclosunfz0v6gcwuyowmhtizhzikwkfdx40irt76io9/gazuftv4w8pgfczhn/idltgnh+byqa+sbm1vv7dro7t7+gx1y76okkxq6nogj7adeawccopppdv1uaokddr1gcjor9x5bkpaibz1nwy/jslciuaknnbtrnmy8hdz3ggjn90wbi6hdcjroxhgv3biaqfr7ah95yukzgismncg1cj1u+zmrmleorc3lfksetsgibgyfiuh5+fz2ap8aj8rris0tgs/d3xm5izwaxohpjikeq+xazpyvnsh0doxntkszbkexi6kmy53gwra4zbko5lmdhepmbsv0tcsh2srvmyg4y19ehe550zv8d9foxzdxvnexokfnyewxqivuurt1eevp6bm9ojersf6sd+tj0vqxypkj9efw5w8kk5rs</latexit> Hef f i <latexit sha1_base64="totcl0mr/kvfmpyycsqtsfvihji=">aaacm3icbzdlsgnbeev7fmb4irp0uxieibbmrncnilojrhrnfdjh6on0xmaeb901qhjgb3ljj7gqxiuibv0how8kjl5oonyqorqun0ih0bzfranpmdm5+cjccxfpeww1tlbe0hgqgk+zwmbqxqeasxhxogqu/czrnia+5nf+3wmvfn3plrzxdixdhldc2oleibhfy3mlsxocgavt0mtedmeegafixd+ay9ywy9oxquxxycsuk4oliur61nzlyqe8utmu2n3bjdhdkjohzr3ss9uowrrycjmkwjcdo8fwrhukjnledfpne8ruaic3dububg1l/ztz2dzog4jymrch9n3riyygwndd33sgfg/1ek1n/ldrphgctjirjsnyia0wbakejkexilsf4gxl1wblspi/aruliji0mrdncm74yzpq2ks6hi/2y8cnwzgkzjnskqpxyae5jjvytuqekufyqt7jh/vkvvmf1tegdcoazmyqp7k+fwacwkgy</latexit> <latexit sha1_base64="qcye88vtfubvcaovrnprdiatxpw=">aaacxhicbzfbsxwxfmczo7brqu22bs9ehl0kfqnmrej7kui9icdluyrslemmk1mdswzm3hswbl6kny/9kjw77qf1+ydkl/97j5f8uzrsweyshyhew9948bkz2d3a3nn1uvfm7awtw8p4knwyntcftvwkzycouplrxncqcsmvitvtef7qfzdw1ponths+vnsirsuyxsdlpxuwo15vhr7cj5czbxai/f55nsj5pvgiwwuoc7nwnsebhh0w8+4imntn0b15h6hvuyymhsy5c1lrwq/v5wora1zrnt5ifd7rj4fjimav0ix0ytiu8t59vtasvvwjk9tauzo0ohbuogcs+27wwt5qdksnfbrqu8xt2c3m8fahkcvutqlliyzuvzscvdzovreqfcub+zw3f/+xg7vyfrk7ozswuwzpg6pwatywdxpkythdoq1amrhhrsbuapatw390gwnp8yevwuxgma38/bh/8m1pr4fskfdkn6tkmzkhz+scdakjd+rp1ik2o9/xerwv7zyvxtgy5x35j+ldr0sctai=</latexit> J1 + J2 X S n S n+1 = sgn(j1 J2 ) 3 3 n (1,2) = nn triangles sgn(j1j2) = -1 sgn(j1j2) = +1 Spin-1/2 AFH chain: gapless, c=1 CFT Spin-1/2 FH chain: non-critical 2) Currents by exact diagonalization Jijz <latexit sha1_base64="ybr3kkthpknmtpwszufju2b3qgk=">aaacj3icbvdlsgmxfm3uv62vuzdugkwoljaziuhgkborv5xab/qxznjmmzbzimkidzi/ceovubfurjf+izm2c229ehjyzr3cngmhjappgf9aaml5zxutvz7z2nza3tf39+rcdzkmnewznzdtjaijhqljkhlpbpwg12akyy+uer1xt7igvncnxwhpukjvuydijbvl6rdtf8kbriy6ibspvkshmtyhbycjhne4ksuwv+3mlqqr3yi1hixjnbzy1vayqkvpgkvjunarmdoqbboqwppru+fj0cwexawj0tknqhyixcxfjmszdihigpai9ullqq+5rhsiic8yhimmbx2fq+njogf/t0tifwls2qozcsxmtyt8t2uf0jnrrnqlqkk8pf3khaxkhyahwr7lbes2vgbhttvfir4glzfu0wzucoa85uvqlxvnhw9psuxlwrxpcaaoqq6y4bsuwtwogbra4be8gzfwrj1pl9qh9jlttwmzmx3wp7tvhy2do4u=</latexit> H1 pbc 1st excited state (triplet) i + = (Si Sj Si Sj+ ) 2 H3 obc g.s. <S2> = 12, Sz = 3 Compatible with original intuition

31 H1 : energy and entropy Algebraic energy convergence: gapless Entanglement entropy: c=1 CFT

32 H1 : correlation functions Critical correlation functions Spin-spin 0-1 Matches continuum limit Z 1 C(r) r -2 H g <latexit sha1_base64="mmshpbspzffgt/r8rrfh3k1g+tq=">aaacanicbzdlsgmxfiyz9vbrbdsvuakwow7kjai6lhbjsok9qduutjppqznjsdjigqy3voobf4q49snc+tam7sy09yfax3/o4et8owrug8/7dgorq2vrg8xn0tb2zu6eu3/q0ijrmdsxyej1qqqjo5w0dtwmdkqika4zayfj+rtevidku8hvzessiezdtiokkbfw3z2qv9qz7ceplxiavughnppzqjlyd8te1zsjloofqxnkavtdr95a4cqm3gcgto76njrbipshmjgs1es0kqip0zb0lxiuex2ksxmyegqdayyeso8bohn/t6qo1nosh7yzrmakf2tt879anzhrvzbslhndoj4vihigjydtpocakoinm1hawfh7v4hhymzgbgolg4k/epiytm6rvuxbi3ltoo+jci7bcagah1ycgrgbddaegdycz/ak3pwn58v5dz7mrqunnzkef+r8/gaeo5am</latexit> dx (JL,1 JR,2 JR,1 JL,2 ) <latexit sha1_base64="fy46rwicdfpahmwssggr5gigm/g=">aaacwhicbvfds8mwfe3r5+bx1edflg5bqauvqr9fx0r8mokmsi6rpukwljylurvh6z8ufnc/4ovzhkibfwlnnnmuyt0jmykmet67487nlywulveqk6tr6xu1za2wublmvmmuvpoppizlkfimcpt8kdocjqhkj+hgaqq/pnntheofcjjxtkj7qygfo2ipbk1dq0cztksx6eeguoqi0ale5qsekse4b/swhpuyw9we+iuelfl4w90fnprw9luf9dyopiewvt4eqldw9469cces8cegtibv6nzeg0ixpoepmkmnaftehp2cahrm8ria5iznla1oj7cttgnctacyb1pcnmuiijw2x642zn9pfdqxzpie1plq7jtpbut+p7vzjm87huizhhnkvi+kcwmoyjqyrejzhnjoawva2lcc61nngdq/qnoq/omvz0hr5ni3+o60fne5iwoz7jbdsk98ckyuydvpkczh5i18ovpogvphenfjrxxbxwcys03+llv1bedsshm=</latexit> -3 E.g., P.-Huang et al, PRB 95, (2017) Vertical dimer-dimer C(r) -4 <latexit sha1_base64="32oadrjo3tnzecis5mjetwsqehc=">aaacd3icbzc7tsmwfiydrqxcaowsfhwolfwcimcs6mjyjhqrmla5rtnadrlldhcvltdg4vvygecilzwnt8ftm0dll1n69j9zdhz+gdmqlen8w0vlk6tr64wn4ubw9s6uvbffkkkqmgnihcwieybjgi1ju1hfsiclgqkakxywqk/q7xsije3iwzxmxi/qikyhxugzq2ef1mvifhqic5e8qc8ucgs30+joz/g809usy3p2yak4u8ffchmogvynnv3l9rocrirwmcepu67dla+rubqzkhw9vbko8agnsndgjciift29j4phxundmbhmxqpo3d8tgkvsjqpadezidev8bwl+v+umkrz0ny15qkimz4vclegvwek4se8fwyqndsasqpkrxenkclamwqijwz0/erfazxxx8e21vlvk4yiaq3aeysaff6agrkednaegj+azvii368l6sd6tj1nrkpxphia/sj5/an76nju=</latexit> r 5 4 Similar algebraic decays for other correlators

33 H1 : entanglement spectrum Entanglement spectrum of half an infinite chain comparison with spin-1/2 AFH chain 30 Same entang. spectrum Same boundary CFT 15 Same (1+1)d-CFT 5 SU(2)1 WZW theory Compatible with bosonization, Kadanoff blocking, etc Many open questions: H3? More legs? WZW limit?

34 OUTLOOK 1) Phase diagram and phase transitions of the topological ruby model with ipeps 2) AFH model on the star lattice has a competition between VBS phases. ipeps shows that one of them is a new phase with a 6-site unit cell 3) Structure matrix can be used to authomatize (at least some) PEPS methods to any lattice 4) SU(2) idmrg simulations of a chiral ladder suggest that it corresponds to a SU(2)1 WZW theory

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Chiral spin liquids. Bela Bauer

Chiral spin liquids. Bela Bauer Chiral spin liquids Bela Bauer Based on work with: Lukasz Cinco & Guifre Vidal (Perimeter Institute) Andreas Ludwig & Brendan Keller (UCSB) Simon Trebst (U Cologne) Michele Dolfi (ETH Zurich) Nature Communications

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

Quantum phase transitions and entanglement in (quasi)1d spin and electron models

Quantum phase transitions and entanglement in (quasi)1d spin and electron models Quantum phase transitions and entanglement in (quasi)1d spin and electron models Elisa Ercolessi - Università di Bologna Group in Bologna: G.Morandi, F.Ortolani, E.E., C.Degli Esposti Boschi, A.Anfossi

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS LSSIFITION OF SU(2)-SYMMETRI TENSOR NETWORKS Matthieu Mambrini Laboratoire de Physique Théorique NRS & Université de Toulouse M.M., R. Orús, D. Poilblanc, Phys. Rev. 94, 2524 (26) D. Poilblanc, M.M., arxiv:72.595

More information

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) 2018.10.29 ITP, Beijing Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Quantum Convolutional Neural Networks

Quantum Convolutional Neural Networks Quantum Convolutional Neural Networks Iris Cong Soonwon Choi Mikhail D. Lukin arxiv:1810.03787 Berkeley Quantum Information Seminar October 16 th, 2018 Why quantum machine learning? Machine learning: interpret

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets

Valence Bond Crystal Order in Kagome Lattice Antiferromagnets Valence Bond Crystal Order in Kagome Lattice Antiferromagnets RRP Singh UC DAVIS D.A. Huse Princeton RRPS, D. A. Huse PRB RC (2007) + PRB (2008) OUTLINE Motivation and Perspective Dimer Expansions: General

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

SPIN LIQUIDS AND FRUSTRATED MAGNETISM SPIN LIQUIDS AND FRUSTRATED MAGNETISM Classical correlations, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University For written notes see: http://topo-houches.pks.mpg.de/

More information

Golden chain of strongly interacting Rydberg atoms

Golden chain of strongly interacting Rydberg atoms Golden chain of strongly interacting Rydberg atoms Hosho Katsura (Gakushuin Univ.) Acknowledgment: Igor Lesanovsky (MUARC/Nottingham Univ. I. Lesanovsky & H.K., [arxiv:1204.0903] Outline 1. Introduction

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

A new perspective on long range SU(N) spin models

A new perspective on long range SU(N) spin models A new perspective on long range SU(N) spin models Thomas Quella University of Cologne Workshop on Lie Theory and Mathematical Physics Centre de Recherches Mathématiques (CRM), Montreal Based on work with

More information

Kitaev honeycomb lattice model: from A to B and beyond

Kitaev honeycomb lattice model: from A to B and beyond Kitaev honeycomb lattice model: from A to B and beyond Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Postdoc: PhD students: Collaborators: Graham Kells Ahmet Bolukbasi

More information

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction

Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Topological Phases of the Spin-1/2 Ferromagnetic-Antiferromagnetic Alternating Heisenberg Chain with Frustrated Next-Nearest-Neighbour Interaction Kazuo Hida (Saitama University) Ken ichi Takano (Toyota

More information

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University

Global phase diagrams of two-dimensional quantum antiferromagnets. Subir Sachdev Harvard University Global phase diagrams of two-dimensional quantum antiferromagnets Cenke Xu Yang Qi Subir Sachdev Harvard University Outline 1. Review of experiments Phases of the S=1/2 antiferromagnet on the anisotropic

More information

Understanding Topological Order with PEPS. David Pérez-García Autrans Summer School 2016

Understanding Topological Order with PEPS. David Pérez-García Autrans Summer School 2016 Understanding Topological Order with PEPS David Pérez-García Autrans Summer School 2016 Outlook 1. An introduc

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

Symmetric Surfaces of Topological Superconductor

Symmetric Surfaces of Topological Superconductor Symmetric Surfaces of Topological Superconductor Sharmistha Sahoo Zhao Zhang Jeffrey Teo Outline Introduction Brief description of time reversal symmetric topological superconductor. Coupled wire model

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Lecture 3: Tensor Product Ansatz

Lecture 3: Tensor Product Ansatz Lecture 3: Tensor Product nsatz Graduate Lectures Dr Gunnar Möller Cavendish Laboratory, University of Cambridge slide credits: Philippe Corboz (ETH / msterdam) January 2014 Cavendish Laboratory Part I:

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Techniques for translationally invariant matrix product states

Techniques for translationally invariant matrix product states Techniques for translationally invariant matrix product states Ian McCulloch University of Queensland Centre for Engineered Quantum Systems (EQuS) 7 Dec 2017 Ian McCulloch (UQ) imps 7 Dec 2017 1 / 33 Outline

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Geometry, topology and frustration: the physics of spin ice

Geometry, topology and frustration: the physics of spin ice Geometry, topology and frustration: the physics of spin ice Roderich Moessner CNRS and LPT-ENS 9 March 25, Magdeburg Overview Spin ice: experimental discovery and basic model Spin ice in a field dimensional

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Fermionic topological quantum states as tensor networks

Fermionic topological quantum states as tensor networks order in topological quantum states as Jens Eisert, Freie Universität Berlin Joint work with Carolin Wille and Oliver Buerschaper Symmetry, topology, and quantum phases of matter: From to physical realizations,

More information

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Universal Topological Phase of 2D Stabilizer Codes

Universal Topological Phase of 2D Stabilizer Codes H. Bombin, G. Duclos-Cianci, D. Poulin arxiv:1103.4606 H. Bombin arxiv:1107.2707 Universal Topological Phase of 2D Stabilizer Codes Héctor Bombín Perimeter Institute collaborators David Poulin Guillaume

More information

Neural Network Representation of Tensor Network and Chiral States

Neural Network Representation of Tensor Network and Chiral States Neural Network Representation of Tensor Network and Chiral States Yichen Huang ( 黄溢辰 ) 1 and Joel E. Moore 2 1 Institute for Quantum Information and Matter California Institute of Technology 2 Department

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Thomas Quella University of Cologne Presentation given on 18 Feb 2016 at the Benasque Workshop Entanglement in Strongly

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Jung Hoon Kim & Jung Hoon Han

Jung Hoon Kim & Jung Hoon Han Chiral spin states in the pyrochlore Heisenberg magnet : Fermionic mean-field theory & variational Monte-carlo calculations Jung Hoon Kim & Jung Hoon Han Department of Physics, Sungkyunkwan University,

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Spin liquids on the triangular lattice

Spin liquids on the triangular lattice Spin liquids on the triangular lattice ICFCM, Sendai, Japan, Jan 11-14, 2011 Talk online: sachdev.physics.harvard.edu HARVARD Outline 1. Classification of spin liquids Quantum-disordering magnetic order

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

The uses of Instantons for classifying Topological Phases

The uses of Instantons for classifying Topological Phases The uses of Instantons for classifying Topological Phases - anomaly-free and chiral fermions Juven Wang, Xiao-Gang Wen (arxiv:1307.7480, arxiv:140?.????) MIT/Perimeter Inst. 2014 @ APS March A Lattice

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Non-abelian statistics

Non-abelian statistics Non-abelian statistics Paul Fendley Non-abelian statistics are just plain interesting. They probably occur in the ν = 5/2 FQHE, and people are constructing time-reversal-invariant models which realize

More information

Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Matrix product approximations to multipoint functions in two-dimensional conformal field theory Matrix product approximations to multipoint functions in two-dimensional conformal field theory Robert Koenig (TUM) and Volkher B. Scholz (Ghent University) based on arxiv:1509.07414 and 1601.00470 (published

More information

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome

Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome Perturbing the U(1) Dirac Spin Liquid State in Spin-1/2 kagome Raman scattering, magnetic field, and hole doping Wing-Ho Ko MIT January 25, 21 Acknowledgments Acknowledgments Xiao-Gang Wen Patrick Lee

More information

Multiple spin exchange model on the triangular lattice

Multiple spin exchange model on the triangular lattice Multiple spin exchange model on the triangular lattice Philippe Sindzingre, Condensed matter theory laboratory Univ. Pierre & Marie Curie Kenn Kubo Aoyama Gakuin Univ Tsutomu Momoi RIKEN T. Momoi, P. Sindzingre,

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 7 - JGU Mainz Vorstellung der Arbeitsgruppen WS 15-16 recent developments in control of quantum objects (e.g., cold atoms, trapped ions) General Framework

More information

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor

Quantum Magnetism. P. Mendels Lab. Physique des solides, UPSud From basics to recent developments: a flavor Quantum Magnetism P. Mendels Lab. Physique des solides, UPSud philippe.mendels@u-psud.fr From basics to recent developments: a flavor Quantum phase transitions Model physics for fermions, bosons, problems

More information

Spin-charge separation in doped 2D frustrated quantum magnets p.

Spin-charge separation in doped 2D frustrated quantum magnets p. 0.5 setgray0 0.5 setgray1 Spin-charge separation in doped 2D frustrated quantum magnets Didier Poilblanc Laboratoire de Physique Théorique, UMR5152-CNRS, Toulouse, France Spin-charge separation in doped

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI BEIJING HONG Frustrated Spin Systems 2nd Edition H T Diep University of Cergy-Pontoise, France Editor \fa World Scientific NEW JERSEY LONDON SINGAPORE SHANGHAI KONG TAIPEI CHENNAI CONTENTS Preface of the

More information

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa Entanglement signatures of QED3 in the kagome spin liquid William Witczak-Krempa Aspen, March 2018 Chronologically: X. Chen, KITP Santa Barbara T. Faulkner, UIUC E. Fradkin, UIUC S. Whitsitt, Harvard S.

More information

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC)

Kai Sun. University of Michigan, Ann Arbor. Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Kai Sun University of Michigan, Ann Arbor Collaborators: Krishna Kumar and Eduardo Fradkin (UIUC) Outline How to construct a discretized Chern-Simons gauge theory A necessary and sufficient condition for

More information

Vortices and vortex states of Rashba spin-orbit coupled condensates

Vortices and vortex states of Rashba spin-orbit coupled condensates Vortices and vortex states of Rashba spin-orbit coupled condensates Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University March 5, 2014 P.N, T.Duric, Z.Tesanovic,

More information

7 Frustrated Spin Systems

7 Frustrated Spin Systems 7 Frustrated Spin Systems Frédéric Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland Contents 1 Introduction 2 2 Competing interactions and degeneracy

More information

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School T ensor N et works I ztok Pizorn Frank Verstraete University of Vienna 2010 M ichigan Quantum Summer School Matrix product states (MPS) Introduction to matrix product states Ground states of finite systems

More information

Dimerized & frustrated spin chains. Application to copper-germanate

Dimerized & frustrated spin chains. Application to copper-germanate Dimerized & frustrated spin chains Application to copper-germanate Outline CuGeO & basic microscopic models Excitation spectrum Confront theory to experiments Doping Spin-Peierls chains A typical S=1/2

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Linked-Cluster Expansions for Quantum Many-Body Systems

Linked-Cluster Expansions for Quantum Many-Body Systems Linked-Cluster Expansions for Quantum Many-Body Systems Boulder Summer School 2010 Simon Trebst Lecture overview Why series expansions? Linked-cluster expansions From Taylor expansions to linked-cluster

More information

Machine learning quantum phases of matter

Machine learning quantum phases of matter Machine learning quantum phases of matter Summer School on Emergent Phenomena in Quantum Materials Cornell, May 2017 Simon Trebst University of Cologne Machine learning quantum phases of matter Summer

More information

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid

Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid Exotic Antiferromagnets on the kagomé lattice: a quest for a Quantum Spin Liquid Claire Lhuillier Université Pierre et Marie Curie Institut Universitaire de France &CNRS Physics of New Quantum Phases in

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Haidong Zhou National High Magnetic Field Laboratory Tallahassee, FL Outline: 1. Introduction of Geometrically Frustrated Magnets (GFM)

More information

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris Magnetoelastics in the frustrated spinel ZnCr 2 O 4 Roderich Moessner CNRS and ENS Paris CEA Saclay, June 2005 Overview Neutron scattering experiments on ZnCr 2 O 4 Modelling magnetism on the B sublattice

More information

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet

A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet 1 A Dirac Spin Liquid May Fill the Gap in the Kagome Antiferromagnet A. Signatures of Dirac cones in a DMRG study of the Kagome Heisenberg model, Yin- Chen He, Michael P. Zaletel, Masaki Oshikawa, and

More information

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES

ADIABATIC PREPARATION OF ENCODED QUANTUM STATES ADIABATIC PREPARATION OF ENCODED QUANTUM STATES Fernando Pastawski & Beni Yoshida USC Los Angeles, June 11, 2014 QUANTUM NOISE Storing single observable not enough. Decoherence deteriorates quantum observables.

More information

Physics 239/139 Spring 2018 Assignment 2 Solutions

Physics 239/139 Spring 2018 Assignment 2 Solutions University of California at San Diego Department of Physics Prof. John McGreevy Physics 39/139 Spring 018 Assignment Solutions Due 1:30pm Monday, April 16, 018 1. Classical circuits brain-warmer. (a) Show

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Boundary Degeneracy of Topological Order

Boundary Degeneracy of Topological Order Boundary Degeneracy of Topological Order Juven Wang (MIT/Perimeter Inst.) - and Xiao-Gang Wen Mar 15, 2013 @ PI arxiv.org/abs/1212.4863 Lattice model: Toric Code and String-net Flux Insertion What is?

More information

arxiv: v2 [cond-mat.str-el] 14 Aug 2012

arxiv: v2 [cond-mat.str-el] 14 Aug 2012 Nature of the Spin Liquid Ground State of the S = 1/2 Heisenberg Model on the Kagome Lattice arxiv:1205.4858v2 [cond-mat.str-el] 14 Aug 2012 Stefan Depenbrock, 1, Ian P. McCulloch, 2 and Ulrich Schollwöck

More information