Geometry, topology and frustration: the physics of spin ice

Size: px
Start display at page:

Download "Geometry, topology and frustration: the physics of spin ice"

Transcription

1 Geometry, topology and frustration: the physics of spin ice Roderich Moessner CNRS and LPT-ENS 9 March 25, Magdeburg

2 Overview Spin ice: experimental discovery and basic model Spin ice in a field dimensional reduction to kagome ice : magnetisation plateau: entropy, correlations tilted field: Kasteleyn transition termination of plateau: entropy peak Conservation law and gauge theory: algebraic dipolar correlations exact N = solution Why spin ice obeys the ice rules Conclusions and outlook Collaborators: K. Gregor, S. V. Isakov, K. Raman, S. L. Sondhi

3 Spin ice Experimental discovery of a frustrated pyrochlore Ising ferromagnet by Harris et al.: Ho 2 Ti 2 O 7, followed by Dy 2 Ti 2 O 7. Missing entropy (Ramirez et al.) at low T is precisely the Pauling entropy for cubic ice I c, S Pauling = (1/2) ln(3/2):

4 Crystal structure of spin ice Spins reside on pyrochlore lattice Pyrochlore lattice consists of corner-sharing tetrahedra ll sites and bonds are symmetry-equivalent not a Bravais lattice

5 Spin ice, a frustrated ferromagnet (Θ W > ) Ising spins are forced to point along local [111] axes there are four sublattices, κ anisotropy generates Ising (a) (b) pseudospins: S i = σ iˆd κ(i) J changes sign exchange favours two-in two-out states (Bernal- Fowler ice rules): i σ i = H = J S i S j E ) 2 (ˆd κ(i) S i = (J/3) ij i <ij> σ i σ j

6 The Pauling entropy n anisotropic pyrochlore ferromagnet leads to a pseudospin antiferromagnet Pyrochlore antiferromagnets are highly frustrated. Frustration leads to a large ground-state degeneracy. Degeneracy of single tetrahedron: ground-state configurations: n g = ( 4 2) = 6 (ice rules) fraction of ground-state configurations: f = n g /4 2 = 3/8 Pauling estimate of entropy for full lattice: total number of ground states: 2 n s f n t = 2 n s f n s/2 ground state entropy per spin S = 1 2 ln 3 2 Connection between ice and pyrochlores due to nderson

7 Spin ice in a field Ising spins are forced to point along local [111] axes there are four sublattices, κ anisotropy generates Ising pseudospins: S i = σ iˆd κ(i) J changes sign B becomes staggered H = J ij S i S j E i (a) (b) (c) [1] [11] [111] (d) <1> <111> <11> ) 2 (ˆd κ(i) S i gµb J B S i i = (J/3) <ij> σ i σ j gµ B J i B ˆd κ(i) σ i

8 Magnetisation plateau in a [111] field exchange favours two-in two-out states [111] field has projection of 1 on one sublattice, 1/3 on other three favours three-in one-out state low field we get a magnetisation plateau with 2/3 of maximal magnetisation (predicted Bramwell et al., measured Hiroi et al.) Low-field plateau has a non-vanishing entropy of.96k B /Dy or.78k B /Dy. M (µ B /Dy) (b) (a) H // [111].48 K.99 K 1.65 K H (koe) Dy 2 Ti 2 O 7

9 From pyrochlore to kagome Pyrochlore lattice in [111] direction: One sublattice forms triangular planes Three other sublattices form kagome planes Kagome and triangular planes alternate

10 The plateau regime as a kagome magnet One sublattice pinned by field; triangular planes fully polarised Kagome [111] planes now decoupled (other three sublattices): each triangle has two up and one down spin. y This is equivalent to kagome Ising in a field = hexagonal dimer model =triangular height model. x Plateau is exactly soluble, for entropy S =.8k B /Dy, and for correlations: structure factor with logarithmic peaks. Dimensional reduction in bulk!

11 Tilting the field out of the plateau regime Equivalence between kagome sites is lost Logarithmic peaks in structure factor wander inwards until commensurate incommensurate transition with anisotropic scaling. This is Kasteleyn transition, mixed first/second order character. Plot: 1/ξ x and 1/ξ y and m vs. tilt of field

12 Termination of pleateau: entropy spike.3 S t high field, monomers (tetrahedra in 3-in 1-out state) proliferate. This behaviour is captured by monomer-dimer model, with entropy peak at transition larger than zero-field entropy. In experiment, first order transition takes over at low T oki et al. S per pyrochlore atom B B c T fugacity

13 Back to zero field: correlations Longer-range correlations are present in pyrochlores: Pyrochlore structure factor in [hhk] plane has sharp features ( bowties ). Zinkin et al. These are (apparently) unimportant for thermodynamics. They are due to the ground state constraint, L =, for each tetrahedron. This constraint gives rise to a local conservation law, which can be resolved by a gauge theory. Youngblood et al., Henley, Huse et al., Hermele et al.

14 Gauge theory for the pyrochlore ground states e e 4 2 z x e 1 e 3 same as for six-vertex in d = 2: y Turn the Ising spins, S i, into oriented link vectors, B i = S i ê i, on (bipartite!) diamond lattice. Ground-state constraint becomes conservation law gauge theory. L i = B = = B = For continuous spins (XY, Heisenberg models), define a separate gauge field for each spin components.

15 Long-wavelength analysis: coarse-graining Vector potential takes care of constraint Flippable loops have zero average flux: low average flux many microstates nsatz: upon coarse-graining, obtain energy functional of entropic origin: Z = D exp[s cl ]; S cl = K ( ) 2 2 Resulting correlators are transverse and algebraic: e.g. B z (q)b z ( q) q 2 /q 2 (3 cos 2 θ 1)/r 3.

16 Bow-ties in nature inelastic neutrons on YSc 2 Ballou et al. neutrons on water ice I h Li et al.

17 Large-N treatment compared to finite N Strategy: Gauge ansatz works for any number of spin components. Therefore, consider classical O(N) model, N =. O( ) model is soluble Canals+Garanin no free parameter. S [hhk] = 32( cos( q x ) 4 cos(q z )) 2 4 sin( q x 4 )2 5 cos(q x ) 4 cos( q x ) 2 cos(q z ) 2 Ising, T = Heisenberg Zinkin et al. N = Canals+Garanin

18 Pyrochlore real space correlations Multiplied by r 3 : lines large-n; dots Monte Carlo different directions, sublattices, and system sizes Ising Heisenberg, T = J/2

19 Dipolar spin ice: the real Hamiltonian Real interactions, D, are mainly dipolar: long-ranged! D ij = S i S j 3(S i ˆr ij )(S i ˆr ij ) r 3 ij Phenomenology well understood Gingras et al., Siddharthan et al. Question: Why is Pauling entropy (from nearest-neighbour ice model) measured in dipolar spin ice??? nswer: T = correlations of n.n. model are also dipolar: G ij lim T (H/T + λ1) 1 ij D ij for r ij Dipolar D and n.n. H are (approximately) diagonalised by the same unitary transformation. Spectrum (in mean-field theory) very similar

20 Spin ice vs. dipolar spin ice: D = G + nn + fn 2Π 2Π 2Π 2Π Π 2Π 2Π 1 2Π 2Π 2Π spectra of H G + nn G H 1 T= G + nn 2Π 2Π + fn Π 2Π 2Π 2Π

21 Why spin ice obeys the ice rules t zero temperature, only the zero-energy modes play a role. These form a flat band for the nearest-neighbour model. The same flat band is found for dipolar interactions. t zero (but not at finite T ), the physics is the same projective equivalence Dipolar spins are ice because ice is dipolar

22 Summary Spin ice, a ferromagnet, is highly frustrated (geometry) Dimensional reduction in applied field extended string defects restore higher dimensionality in weak field (topology) Kagome ice with non-trivial thermodynamics and correlations Topological Kasteleyn transition in tilted field Plateau termination: entropy peak (monomer-dimer model) Large-N approach applicable to dipolar interactions dipolar spins are ice because ice is dipolar Gauge structure can be generalised to quantum problems: artificial light

Magnetic Monopoles in Spin Ice

Magnetic Monopoles in Spin Ice Magnetic Monopoles in Spin Ice Claudio Castelnovo University of Oxford Roderich Moessner Max Planck Institut Shivaji Sondhi Princeton University Nature 451, 42 (2008) 25 th International Conference on

More information

Magnetic Monopoles in Spin Ice

Magnetic Monopoles in Spin Ice Magnetic Monopoles in Spin Ice Claudio Castelnovo University of Oxford Roderich Moessner Max Planck Institut Shivaji Sondhi Princeton University Nature 451, 42 (2008) ISIS Seminars, Rutherford Appleton

More information

Magnetic monopoles in spin ice

Magnetic monopoles in spin ice Magnetic monopoles in spin ice Claudio Castelnovo Oxford University Roderich Moessner MPI-PKS Dresden Shivaji Sondhi Princeton University Nature 451, 42 (2008) The fundamental question astroparticle physics

More information

Tutorial on frustrated magnetism

Tutorial on frustrated magnetism Tutorial on frustrated magnetism Roderich Moessner CNRS and ENS Paris Lorentz Center Leiden 9 August 2006 Overview Frustrated magnets What are they? Why study them? Classical frustration degeneracy and

More information

Topological phases and the Kasteleyn transition

Topological phases and the Kasteleyn transition Topological phases and the Kasteleyn transition Peter Holdsworth Ecole Normale Supérieure de Lyon 1. Ice and Spin-Ice, collective paramagnets 2. Topologically constrained states 3. Monopole excitations

More information

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS Classical spin liquids, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University Outline Geometrically

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Magnetic Monopoles in Spin Ice

Magnetic Monopoles in Spin Ice Magnetic Monopoles in Spin Ice Claudio Castelnovo University of Oxford Roderich Moessner Max Planck Institut Shivaji Sondhi Princeton University Nature 451, 42 (2008) International Conference on Highly

More information

Dynamics and Thermodynamics of Artificial Spin Ices - and the Role of Monopoles

Dynamics and Thermodynamics of Artificial Spin Ices - and the Role of Monopoles Dynamics and Thermodynamics of Artificial Spin Ices - and the Role of Monopoles Gunnar Möller Cavendish Laboratory University of Cambridge Roderich Moessner Max Planck Institute for the Physics of Complex

More information

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University

GEOMETRICALLY FRUSTRATED MAGNETS. John Chalker Physics Department, Oxford University GEOMETRICLLY FRUSTRTED MGNETS John Chalker Physics Department, Oxford University Outline How are geometrically frustrated magnets special? What they are not Evading long range order Degeneracy and fluctuations

More information

Jung Hoon Kim & Jung Hoon Han

Jung Hoon Kim & Jung Hoon Han Chiral spin states in the pyrochlore Heisenberg magnet : Fermionic mean-field theory & variational Monte-carlo calculations Jung Hoon Kim & Jung Hoon Han Department of Physics, Sungkyunkwan University,

More information

arxiv: v1 [physics.comp-ph] 27 Sep 2018

arxiv: v1 [physics.comp-ph] 27 Sep 2018 Comparison of diluted antiferromagnetic Ising models on frustrated lattices in a magnetic field arxiv:89.278v [physics.comp-ph] 27 Sep 28 Konstantin Soldatov,2, Alexey Peretyatko, Konstantin Nefedev,2,

More information

Spin liquids and frustrated magnetism. J. T. Chalker Theoretical Physics. Oxford University, 1, Keble Road, Oxford, OX1 3NP

Spin liquids and frustrated magnetism. J. T. Chalker Theoretical Physics. Oxford University, 1, Keble Road, Oxford, OX1 3NP Spin liquids and frustrated magnetism J. T. Chalker Theoretical Physics. Oxford University, 1, Keble Road, Oxford, OX1 3NP 1 Preface Lecture Notes Acknowledgements I am very grateful to all my collaborators

More information

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006

Degeneracy Breaking in Some Frustrated Magnets. Bangalore Mott Conference, July 2006 Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station Bangalore Mott Conference, July 2006 Outline Motivation: Why

More information

7 Frustrated Spin Systems

7 Frustrated Spin Systems 7 Frustrated Spin Systems Frédéric Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland Contents 1 Introduction 2 2 Competing interactions and degeneracy

More information

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris

Magnetoelastics in the frustrated spinel ZnCr 2 O 4. Roderich Moessner CNRS and ENS Paris Magnetoelastics in the frustrated spinel ZnCr 2 O 4 Roderich Moessner CNRS and ENS Paris CEA Saclay, June 2005 Overview Neutron scattering experiments on ZnCr 2 O 4 Modelling magnetism on the B sublattice

More information

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3

Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3 Spin Hamiltonian and Order out of Coulomb Phase in Pyrochlore Structure of FeF3 Farhad Shahbazi in collaboration with Azam Sadeghi (IUT) Mojtaba Alaei (IUT) Michel J. P. Gingras (UWaterloo) arxiv: 1407.0849

More information

The Coulomb phase in frustrated systems

The Coulomb phase in frustrated systems The Coulomb phase in frustrated systems Christopher L. Henley, [Support: U.S. National Science Foundation] Waterloo/Toronto, March 2010 1 Outline 1. Examples: lattices/models/materials w/ Coulomb phase

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

A study of the effect of perturbations in spin ice systems: site dilution, weak exchange, quantum and finite-size effects

A study of the effect of perturbations in spin ice systems: site dilution, weak exchange, quantum and finite-size effects A study of the effect of perturbations in spin ice systems: site dilution, weak exchange, quantum and finite-size effects by Taoran Lin A thesis presented to the University of Waterloo in fulfillment of

More information

SPIN LIQUIDS AND FRUSTRATED MAGNETISM

SPIN LIQUIDS AND FRUSTRATED MAGNETISM SPIN LIQUIDS AND FRUSTRATED MAGNETISM Classical correlations, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University For written notes see: http://topo-houches.pks.mpg.de/

More information

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI

Spin Systems. Frustrated. \fa. 2nd Edition. H T Diep. World Scientific. University of Cergy-Pontoise, France. Editor HONG SINGAPORE KONG TAIPEI BEIJING HONG Frustrated Spin Systems 2nd Edition H T Diep University of Cergy-Pontoise, France Editor \fa World Scientific NEW JERSEY LONDON SINGAPORE SHANGHAI KONG TAIPEI CHENNAI CONTENTS Preface of the

More information

Magnetic Ordering of Dipolar Spin Ice in Moderate [111] Field

Magnetic Ordering of Dipolar Spin Ice in Moderate [111] Field Magnetic Ordering of Dipolar Spin Ice in Moderate [111] Field by Brian Yee A thesis presented to the University of Waterloo in fulfilment of the thesis requirement for the degree of Master of Science in

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014

arxiv: v1 [cond-mat.dis-nn] 12 Nov 2014 Representation for the Pyrochlore Lattice arxiv:1411.3050v1 [cond-mat.dis-nn] 12 Nov 2014 André Luis Passos a, Douglas F. de Albuquerque b, João Batista Santos Filho c Abstract a DFI, CCET, Universidade

More information

Lone pairs in the solid state: Frustration

Lone pairs in the solid state: Frustration Lone pairs in the solid state: Frustration Bi 2 Ti 2 O 6 O, the pyrochlore analogue of perovskite PbTiO 3, is cubic down to 2 K. [Hector, Wiggin, J. Solid State Chem. 177 (2004) 139] Question: Is the absence

More information

Frustrated diamond lattice antiferromagnets

Frustrated diamond lattice antiferromagnets Frustrated diamond lattice antiferromagnets ason Alicea (Caltech) Doron Bergman (Yale) Leon Balents (UCSB) Emanuel Gull (ETH Zurich) Simon Trebst (Station Q) Bergman et al., Nature Physics 3, 487 (007).

More information

GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE

GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE GROUND STATES OF THE CLASSICAL ANTIFERROMAGNET ON THE PYROCHLORE LATTICE By Matthew Lapa An Honors Thesis Submitted to the Department of Applied and Engineering Physics in Partial Fulfillment of the Requirements

More information

Frustration and ice. Similarities with the crystal structure of ice I h : the notion of spin ice.

Frustration and ice. Similarities with the crystal structure of ice I h : the notion of spin ice. Frustration and ice The cubic (Fd-3m) structure of pyrochlore (CaNa)Nb 2 O 6 F [A 2 B 2 O 7 or A 2 B 2 O 6 Oʹ] The A site often has lone-pair cations (Pb 2+ or Bi 3+ ). Polar materials in this structure

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer

Chapter 6 Antiferromagnetism and Other Magnetic Ordeer Chapter 6 Antiferromagnetism and Other Magnetic Ordeer 6.1 Mean Field Theory of Antiferromagnetism 6.2 Ferrimagnets 6.3 Frustration 6.4 Amorphous Magnets 6.5 Spin Glasses 6.6 Magnetic Model Compounds TCD

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets

Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Spin Ice and Quantum Spin Liquid in Geometrically Frustrated Magnets Haidong Zhou National High Magnetic Field Laboratory Tallahassee, FL Outline: 1. Introduction of Geometrically Frustrated Magnets (GFM)

More information

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models

Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Conformal Quantum Criticality Order and Deconfinement in Quantum Dimer Models Eduardo Fradkin Department of Physics University of Illinois at Urbana-Champaign Collaborators Eddy Ardonne, UIUC Paul Fendley,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

Dimer model implementations of quantum loop gases. C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley

Dimer model implementations of quantum loop gases. C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley Dimer model implementations of quantum loop gases C. Herdman, J. DuBois, J. Korsbakken, K. B. Whaley UC Berkeley Outline d-isotopic quantum loop gases and dimer model implementations generalized RK points

More information

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2

Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 Flat band and localized excitations in the magnetic spectrum of the fully frustrated dimerized magnet Ba 2 CoSi 2 O 6 Cl 2 γ 1 tr φ θ φ θ i Nobuo Furukawa Dept. of Physics, Aoyama Gakuin Univ. Collaborators

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah

Quasi-1d Frustrated Antiferromagnets. Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quasi-1d Frustrated Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Outline Frustration in quasi-1d systems Excitations: magnons versus spinons Neutron scattering

More information

Mean-field theory for confinement transitions and magnetization plateaux in spin ice

Mean-field theory for confinement transitions and magnetization plateaux in spin ice Mean-field theory for confinement transitions and magnetization plateaux in spin ice Stephen Powell School of Physics and Astronomy, The University of Nottingham, Nottingham, NG7 2RD, United Kingdom We

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Magnetic Monopoles in Spin Ice

Magnetic Monopoles in Spin Ice Magnetic Monopoles in Spin Ice Tim Herfurth Institut für Theoretische Physik Goethe-Universität Frankfurt July 6th, 2011 Outline 1 Spin Ice Water Ice What is Spin Ice? 2 Magnetic Monopoles Origin of Magnetic

More information

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits

Observation of topological phenomena in a programmable lattice of 1800 superconducting qubits Observation of topological phenomena in a programmable lattice of 18 superconducting qubits Andrew D. King Qubits North America 218 Nature 56 456 46, 218 Interdisciplinary teamwork Theory Simulation QA

More information

RICHARD MASON. A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY

RICHARD MASON. A thesis submitted to The University of Birmingham for the degree of DOCTOR OF PHILOSOPHY TRANSFER FUNCTION APPROACHES TO THE ONE-DIMENSIONAL THERMODYNAMICS OF CLASSICAL MAGNETS, AND THE LONG-RANGE DIPOLE INTERACTION IN RARE-EARTH PYROCHLORES by RICHARD MASON A thesis submitted to The University

More information

Artificial spin ice: Frustration by design

Artificial spin ice: Frustration by design Artificial spin ice: Frustration by design Peter Schiffer Pennsylvania State University Joe Snyder, Ben Ueland, Rafael Freitas, Ari Mizel Princeton: Bob Cava, Joanna Slusky, Garret Lau Ruifang Wang, Cristiano

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

Low-temperature properties of classical geometrically frustrated antiferromagnets

Low-temperature properties of classical geometrically frustrated antiferromagnets PHYSICAL REVIEW B VOLUME 58, NUMBER 18 1 NOVEMBER 1998-II Low-temperature properties of classical geometrically frustrated antiferromagnets R. Moessner and J. T. Chalker Theoretical Physics, Oxford University,

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

The monopole physics of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon

The monopole physics of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon The monopole physics of spin ice P.C.W. Holdsworth Ecole Normale Supérieure de Lyon 1. The dumbbell model of spin ice. 2. Specific heat for lattice Coulomb gas and spin ice 3. Spin ice phase diagram and

More information

An intermediate state between the kagome-ice and the fully polarized state in Dy 2 Ti 2 O 7

An intermediate state between the kagome-ice and the fully polarized state in Dy 2 Ti 2 O 7 Papers in Physics, vol. 7, art. 070009 (2015) www.papersinphysics.org Received: 17 May 2015, Accepted: 12 June 2015 Edited by: A. Vindigni Reviewed by: M. Perfetti, Dipartimento di Chimica, Universitá

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

Advanced Statistical Physics: Frustration

Advanced Statistical Physics: Frustration Advanced Statistical Physics: Frustration Leticia F. Cugliandolo leticia@lpthe.jussieu.fr Université Pierre et Marie Curie Paris VI Laboratoire de Physique Théorique et Hautes Energies Monday 15 th October,

More information

The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon

The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice. P.C.W. Holdsworth Ecole Normale Supérieure de Lyon The AC Wien effect: non-linear non-equilibrium susceptibility of spin ice P.C.W. Holdsworth Ecole Normale Supérieure de Lyon 1. The Wien effect 2. The dumbbell model of spin ice. 3. The Wien effect in

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 5: MAGNETIC STRUCTURES - Mean field theory and magnetic order - Classification of magnetic structures - Collinear and non-collinear magnetic structures. - Magnetic

More information

arxiv:cond-mat/ v1 12 Dec 2006

arxiv:cond-mat/ v1 12 Dec 2006 Universal properties of highly frustrated quantum magnets in strong magnetic fields Oleg Derzhko 1,2,3, Johannes Richter 3,2, Andreas Honecker 4, and Heinz-Jürgen Schmidt 5 1 Institute for Condensed Matter

More information

Direct observation of the ice rule in artificial kagome spin ice

Direct observation of the ice rule in artificial kagome spin ice 1/31/2008 Direct observation of the ice rule in artificial kagome spin ice Yi Qi 1, T. Brintlinger 1,2, and John Cumings 1* 1 Department of Materials Science and Engineering 2 Center for Nanophysics and

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Power-law spin correlations in pyrochlore antiferromagnets

Power-law spin correlations in pyrochlore antiferromagnets PHYSICAL REVIEW B 7, 04424 2005 Power-law spin correlations in pyrochlore antiferromagnets C. L. Henley Department of Physics, Cornell University, Ithaca, New York 4853-250 Received 0 July 2004; published

More information

Ordering due to disorder and gauge-like degeneracy in the large-s antiferromagnet on the highly frustrated pyrochlore lattice

Ordering due to disorder and gauge-like degeneracy in the large-s antiferromagnet on the highly frustrated pyrochlore lattice Ordering due to disorder and gauge-like degeneracy in the large-s antiferromagnet on the highly frustrated pyrochlore lattice Uzi Hizi and Christopher L. Henley, [Support: U.S. National Science Foundation]

More information

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS

SECOND PUBLIC EXAMINATION. Honour School of Physics Part C: 4 Year Course. Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS 2753 SECOND PUBLIC EXAMINATION Honour School of Physics Part C: 4 Year Course Honour School of Physics and Philosophy Part C C3: CONDENSED MATTER PHYSICS TRINITY TERM 2011 Wednesday, 22 June, 9.30 am 12.30

More information

Quantum Spin-Metals in Weak Mott Insulators

Quantum Spin-Metals in Weak Mott Insulators Quantum Spin-Metals in Weak Mott Insulators MPA Fisher (with O. Motrunich, Donna Sheng, Simon Trebst) Quantum Critical Phenomena conference Toronto 9/27/08 Quantum Spin-metals - spin liquids with Bose

More information

Spin ice behavior in Dy 2 Sn 2-x Sb x O 7+x/2 and Dy 2 NbScO 7

Spin ice behavior in Dy 2 Sn 2-x Sb x O 7+x/2 and Dy 2 NbScO 7 Spin ice behavior in Dy 2 Sn 2-x Sb x O 7+x/2 and Dy 2 NbScO 7 X. Ke 1*, B. G. Ueland 1*, D.V. West 2, M. L. Dahlberg 1, R. J. Cava 2, and P. Schiffer 1 1 Department of Physics and Materials Research Institute,

More information

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo

Z2 topological phase in quantum antiferromagnets. Masaki Oshikawa. ISSP, University of Tokyo Z2 topological phase in quantum antiferromagnets Masaki Oshikawa ISSP, University of Tokyo RVB spin liquid 4 spins on a square: Groundstate is exactly + ) singlet pair a.k.a. valence bond So, the groundstate

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Effective Hamiltonian for the pyrochlore antiferromagnet: Semiclassical derivation and degeneracy

Effective Hamiltonian for the pyrochlore antiferromagnet: Semiclassical derivation and degeneracy PHYSICAL REVIEW B 73, 054403 2006 Effective Hamiltonian for the pyrochlore antiferromagnet: Semiclassical derivation and degeneracy U. Hizi* and C. L. Henley Laboratory of Atomic and Solid State Physics,

More information

TitleMagnetic anisotropy of the spin-ice. Citation PHYSICAL REVIEW B (2002), 65(5)

TitleMagnetic anisotropy of the spin-ice. Citation PHYSICAL REVIEW B (2002), 65(5) TitleMagnetic anisotropy of the spin-ice Author(s) Fukazawa, H; Melko, RG; Higashinaka MJP Citation PHYSICAL REVIEW B (2002), 65(5) Issue Date 2002-02-01 URL http://hdl.handle.net/2433/49928 RightCopyright

More information

From classical to quantum dynamics at Rokhsar Kivelson points

From classical to quantum dynamics at Rokhsar Kivelson points INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 16 (2004) S891 S898 PII: S0953-8984(04)74180-6 From classical to quantum dynamics at Rokhsar Kivelson points

More information

Zero Point Entropy in Stuffed Spin Ice

Zero Point Entropy in Stuffed Spin Ice 1 Zero Point Entropy in Stuffed Spin Ice G.C. Lau 1, R.S. Freitas 2, B.G. Ueland 2, B.D. Muegge 1, E.L. Duncan 1, P. Schiffer 2, and R.J. Cava 1 1 Department of Chemistry, Princeton University, Princeton

More information

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen

A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen A Theory of Water and Ionic Solution, with Particular Reference to Hydrogen and Hydroxyl Ions, J. D. Bernal and R. H. Fowler, J. Chem. Phys. 1 (1933) 515-548. Ice-I h : a = 7.82 Å ; c = 7.36 Å P6 3 cm

More information

Dzyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet

Dzyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet Dyaloshinsky-Moriya-induced order in the spin-liquid phase of the S =1/2 pyrochlore antiferromagnet Valeri N. Kotov, 1, * Maged Elhajal, 2 Michael E. Zhitomirsky, and Frédéric Mila 1 1 Institute of Theoretical

More information

POWER-LAW CORRELATED PHASE IN RANDOM-FIELD XY MODELS AND RANDOMLY PINNED CHARGE-DENSITY WAVES Ronald Fisch Dept. of Physics Washington Univ. St. Louis, MO 63130 ABSTRACT: Monte Carlo simulations have been

More information

Quasi-1d Antiferromagnets

Quasi-1d Antiferromagnets Quasi-1d Antiferromagnets Leon Balents, UCSB Masanori Kohno, NIMS, Tsukuba Oleg Starykh, U. Utah Quantum Fluids, Nordita 2007 Outline Motivation: Quantum magnetism and the search for spin liquids Neutron

More information

Dimers on the triangular kagome lattice

Dimers on the triangular kagome lattice Dimers on the triangular kagome lattice Y. L. Loh, Dao-Xin Yao, and E. W. Carlson Department of Physics, Purdue University, West Lafayette, Indiana 47907, USA Received 4 April 2008; revised manuscript

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Triangular Ising model with nearestand

Triangular Ising model with nearestand Chapter 3 Triangular Ising model with nearestand next-nearest-neighbor couplings in a field We study the Ising model on the triangular lattice with nearest-neighbor couplings K nn, next-nearest-neighbor

More information

Quantum order-by-disorder in Kitaev model on a triangular lattice

Quantum order-by-disorder in Kitaev model on a triangular lattice Quantum order-by-disorder in Kitaev model on a triangular lattice George Jackeli Max-Planck Institute & University of Stuttgart, Germany Andronikashvili Institute of Physics, Tbilisi, Georgia GJ & Avella,

More information

Magnetism at finite temperature: molecular field, phase transitions

Magnetism at finite temperature: molecular field, phase transitions Magnetism at finite temperature: molecular field, phase transitions -The Heisenberg model in molecular field approximation: ferro, antiferromagnetism. Ordering temperature; thermodynamics - Mean field

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

arxiv: v1 [cond-mat.stat-mech] 22 Jan 2009

arxiv: v1 [cond-mat.stat-mech] 22 Jan 2009 1 arxiv:0901.3492v1 [cond-mat.stat-mech] 22 Jan 2009 Geometrically frustrated antiferromagnets: statistical mechanics and dynamics J. T. Chalker Theoretical Physics, Oxford University, 1, Keble Road, Oxford

More information

LOW TEMPERATURE MAGNETIC ORDERING OF FRUSTRATED RARE-EARTH PYROCHLORES

LOW TEMPERATURE MAGNETIC ORDERING OF FRUSTRATED RARE-EARTH PYROCHLORES LOW TEMPERATURE MAGNETIC ORDERING OF FRUSTRATED RARE-EARTH PYROCHLORES by AMY K.R. BRIFFA A thesis submitted to the University of Birmingham for the degree of DOCTOR OF PHILOSOPHY School of Physics And

More information

Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra

Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra PHYSICAL REVIEW B 70, 214401 (2004) Weak antiferromagnetism and dimer order in quantum systems of coupled tetrahedra Valeri N. Kotov, 1, * Michael E. Zhitomirsky, 2 Maged Elhajal, 1 and Frédéric Mila 1

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

Cover Page. The handle holds various files of this Leiden University dissertation.

Cover Page. The handle   holds various files of this Leiden University dissertation. Cover Page The handle http://hdl.handle.net/1887/49403 holds various files of this Leiden University dissertation. Author: Keesman, R. Title: Topological phases and phase transitions in magnets and ice

More information

Magnetic ordering of local moments

Magnetic ordering of local moments Magnetic ordering Types of magnetic structure Ground state of the Heisenberg ferromagnet and antiferromagnet Spin wave High temperature susceptibility Mean field theory Magnetic ordering of local moments

More information

SPT: a window into highly entangled phases

SPT: a window into highly entangled phases SPT: a window into highly entangled phases T. Senthil (MIT) Collaborators: Chong Wang, A. Potter Why study SPT? 1. Because it may be there... Focus on electronic systems with realistic symmetries in d

More information

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007

arxiv:cond-mat/ v2 [cond-mat.str-el] 17 Sep 2007 Universal properties of highly frustrated quantum magnets in strong magnetic fields arxiv:cond-mat/0612281v2 [cond-mat.str-el] 17 Sep 2007 Oleg Derzhko 1,2,3, Johannes Richter 3,2, Andreas Honecker 4,

More information

Edinburgh Research Explorer

Edinburgh Research Explorer Edinburgh Research Explorer Short-range magnetic order in the frustrated pyrochlore antiferromagnet CsNiCrF6 Citation for published version: Zinkin, MP, Harris, M & Zeiske, T 1997, 'Short-range magnetic

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Spin liquid and quantum phase transition without symmetry breaking in a frustrated three-dimensional Ising model

Spin liquid and quantum phase transition without symmetry breaking in a frustrated three-dimensional Ising model Spin liquid and quantum phase transition without symmetry breaking in a frustrated three-dimensional Ising model Masterarbeit zur Erlangung des akademischen Grades Master of Science vorgelegt von Julia

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Restricted Spin Set Lattice Models A route to Topological Order

Restricted Spin Set Lattice Models A route to Topological Order Restricted Spin Set Lattice Models A route to Topological Order R. Zach Lamberty with Stefanos Papanikolaou and Christopher L. Henley Supported by NSF grant DMR-1005466 and an NSF GRF APS March Meeting

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

The Pennsylvania State University. The Graduate School. Department of Physics STUDY OF ARTIFICIAL FRUSTRATED ARRAYS OF SINGLE-DOMAIN FERROMAGNETS

The Pennsylvania State University. The Graduate School. Department of Physics STUDY OF ARTIFICIAL FRUSTRATED ARRAYS OF SINGLE-DOMAIN FERROMAGNETS The Pennsylvania State University The Graduate School Department of Physics STUDY OF ARTIFICIAL FRUSTRATED ARRAYS OF SINGLE-DOMAIN FERROMAGNETS A Dissertation in Physics by Jie Li 2011 Jie Li Submitted

More information

W. P. Wolf 795 generacy corresponding to an odd number of electrons in the ion, and most of the materials studied have satisfied this criterion. Ions

W. P. Wolf 795 generacy corresponding to an odd number of electrons in the ion, and most of the materials studied have satisfied this criterion. Ions 794 Brazilian Journal of Physics, vol. 30, no. 4, December, 2000 The Ising Model and Real Magnetic Materials W. P. Wolf Yale University, Department of Applied Physics, P.O. Box 208284, New Haven, Connecticut

More information

Out of equilibrium dynamics in the bidimensional spin-ice model

Out of equilibrium dynamics in the bidimensional spin-ice model epl draft Out of equilibrium dynamics in the bidimensional spin-ice model Demian Levis and Leticia F. Cugliandolo Université Pierre et Marie Curie - Paris 6, Laboratoire de Physique Théorique et Hautes

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea

Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Unconventional magnetic order in 3D Kitaev materials revealed by resonant x-ray diffraction Radu Coldea Oxford Collaborators Alun Biffin (Oxford->PSI) Roger D. Johnson S. Choi P. Manuel A. Bombardi Sample

More information