Renormalization of Tensor Network States

Size: px
Start display at page:

Download "Renormalization of Tensor Network States"

Transcription

1 Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences

2 Numerical Renormalization Group brief introduction

3 Renormalization of Tensor Network States: Brief History 1975, Wilson proposed the Numerical Renormalization Group (RG) method to solve the single impurity Kondo model (0 dimensional problem) 1992, White proposed the Density Matrix Renormalization Group (DMRG), which becomes the most powerful method for studying 1D quantum lattice models Starting from 2000s, various tensor-based renormalization group methods were developed to solve 2D or 3D quantum or classical statistical models

4 Difference between RG and Numerical RG Renormalization Group (analytical) Renormalization of charge, mass, critical exponents and other few physical parameters System must be scaling invariant Numerical Renormalization Group Direct evaluation of quantum wave function/partition function The system not necessary to be scaling invariant

5 Basic Idea of Numerical Renormalization Group = N total a i i i=1 N N total b k k k=1 To find a small and optimized set of basis states k to represent accurately a wave function refine the wavefunction by local RG transformations

6 Numerical Renormalization Group = N total a i i N N total b k k i=1 k=1 To find a small and optimized set of basis states k to represent accurately a wave function Physics: Mathematics: compression of basis space (phase space) or compression of information low rank approximation of matrix or tensor

7 Is Quantum Wave Function Compressible? N total = 2 L2 B A L The answer: Entanglement Entropy Area Law S L ln N N ~ 2 L << 2 L2 = N total L Ising model Minimum number of basis states needed for accurately representing a ground state

8 Tensor Network States 1. Faithful representation of the partition functions of all classical and quantum lattice models 2. Variational ansatz of the ground state wave function of quantum lattice models

9 Virtual Bond Dimension D: How Large Needed? Entanglement entropy S = L L ln D D ~ e (independent of L) PEPS is exact ground state wavefunction in the limit D Projected Entangled Pair State (PEPS) D Local tensor Virtual basis Physical basis

10 2D Interacting Fermions: How Large D Needed? Entanglement entropy S = L lnl L ln D D ~ L α D grows in some power law with the system size Projected Entangled Pair State (PEPS) D Local tensor Virtual basis Physical basis

11 Comparison between DMRG and Tensor RG Stoudenmire and White, Annu. Rev. CMP 3, 111(2012) PEPS S=1/2 AF Heisenberg model on infinite square lattice Reference energy: VMC extrapolation Sandvik PRB 56, 11678(1997)

12 Problems to be solved by tensor renormalization group Classical statistical model How to trace out all tensor indices? Quantum lattice model Approach I: Directly evaluate the (2+1) partition function Approach II: Find the ground state wavefunction (PEPS) Evaluate the physical observables

13 Tensor representations of classical statistical models H. H. Zhao, et al, PRB 81, (2010)

14 What Are Tensor Network States? 1. Faithful representation of the partition functions of all classical and quantum lattice models 2D quantum systems are equivalent to 3D classical T xi x i y i y i ones

15 Example: one dimensional Ising model H = S i S i+1 S 1 S 2 S 3 S N-1 S N i Z exp SiSi 1 S... S i S 1 1 N... S N Tr A A A... A A S S S S S S S S N 1 N N 1 A A e e e e N max N 1D: partition function is a matrix product

16 Two-Dimensional Ising model H = ij S i S j Z = Tr exp H = Tr = Tr {S} exp H T Si S j S k S l S i S j = T Si S j S k S l = S i S j = exp H S l S k S l S k

17 Tensor-network representation is not unique H= -JSiS j ij Z Tr exp H ij Tr Ty x y ' x ' ij T U U U U 1 i i i i i S1 1 S1 2 S1 3 S S Singular Value Decomposition S 1 S 2 4 exp M exp H JS S S S ij i j i j M U U S S S S

18 Tensor-network representation in the dual lattice H= -JSiS j ij Z Tr exp H Tr T y x y ' J / 2 T e i x ' i i i i Duality transformation 1 S 1 S S 4 S 3 4 SS SS SS SS / H J S S S S S S S S

19 Gauge Invariance PP 1 T 1 T 2 T 1 T 1 P T 2 P 1 T 2 To redefine the local tensors by inserting a pair of inverse matrices on each bond does not change the partition function

20 Coarse Graining Tensor Renormalization

21 RG Methods for Evaluating Partition Function Transfer matrix renormalization group (TMRG, Nishino/classical 1995, Xiang et al/quantum 1996) Corner transfer matrix renormalization group (CTMRG, Nishino 1996) Time evolving block decimation (TEBD, Vidal 2004) Tensor renormalization group (TRG, Levin, Nave, 2007) Second renormalization group (SRG, Xie et al 2009) TRG with HOSVD (HOTRG, HOSRG Xie et al 2012) Tensor network renormalization (TNR, Evenbly, Vidal 2015) Loop TNR (Yang et al 2016)

22 Which Method Should We Use? Accuracy Efficiency or cost (CPU and Memory) Applicability in 3D Scaling invariance at the critical point

23 Computational Cost Method CPU Time Minimum Memory TMRG/CTMRG d 3 D 3 L d 2 D 3 TEBD d 3 D 3 L d 2 D 3 TRG D 6 lnl D 4 SRG D 6 lnl D 4 HOTRG D 7 lnl D 4 HOSRG D 8 lnl D 6 TNR D 7 lnl D 5 Loop-TNR D 6 lnl D 4 d: physical dimension D: bond dimension L: lattice size

24 Applicability in 3D In principle, all methods can be generalized to 3D. But most of the methods are less efficient, the cost (both CPU time and memory) is very high. By far, the most efficient method in 3D is HOTRG and HOSRG

25 Removing Local Entanglement NTR and loop-ntr tend to remove the local entanglements, and work better than the other coarse graining RG methods at the critical regime Disentangler

26 Coarse grain tensor renormalization group Levin, Nave, PRL 99 (2007) Step I: Rewiring Step II: decimation M kj, il mji mlk m D n1 T T U V kj, n n il, n Singular value decomposition

27 Singular value decomposition of matrix Singular value decomposition ij i, n n j, n n1 n1 N f U V D U V i, n n j, n Schmidt decomposition n n n n sys env n2 is the eigenvalue of reduced density matrix i sys System j env, Environment f i j i j ij sys env

28 Coarse grain tensor renormalization group Step II: decimation Txyz SxikS yjiszkj ijk

29 Accuracy of TRG D = 24 Ising model on a triangular lattice

30 Second Renormalization of Tensor Network Model (SRG) TRG: truncation error of M is minimized by the singular value decomposition Z=Tr MM env But, what really needs to be minimized is the error of Z! SRG: The renormalization effect of M env to M is considered Xie et al, PRL 103, (2009) Zhao, et al, PRB 81, (2010) system environment

31 Poor-Man SRG: Entanglement Mean Field Approximation env env 1/ 2 1/ 2 1/ 2 1/ 2 Z=Tr MM Mkl, ij k l i j Mean field (or cavity) approximation M U V kj, il kj, n n il, n 4 n1... D Bond field measures the entanglement between U and V = 1/2 1/2 From environment From system

32 Accuracy of Poor Man s SRG T c = 4/ln3 D = 24 Ising model on a triangular lattice

33 SRG Evaluate the environment contribution M env using TRG TRG M env

34 ( n 1) M ijkl 1. Forward iteration M M (0) (1) M ( N ) ( n) M i ' j ' k ' l ' 2. Backward iteration M M ( N) ( N1) (0) M M env M M S S S S ( n1) ( n) ijkl i' j' k ' l ' k ' jp j ' pi i' lq l ' qk i' j' k ' l ' pq

35 Accuracy of SRG D = 24 Ising model on a triangular lattice

36 Coarse graining tensor renormalization by HOSVD HOSVD Higher-order singular value decomposition M (n) Lower-rank approximation D D 2 D Z. Y. Xie et al, PRB 86, (2012)

37 Coarse graining tensor renormalization by HOSVD Step 1: To contract two local tensors into one x = (x 1, x 2 ), x = (x 1, x 2 ) D D 2 D

38 Coarse graining tensor renormalization by HOSVD Step 2: determine the unitary transformation matrices by the HOSVD M (n) D D 2 D

39 Coarse graining tensor renormalization by HOSVD Step 2: determine the unitary transformation matrices By the higher order singular value decomposition Higher order singular value decomposition

40 Coarse graining tensor renormalization by HOSVD Step 3: renormalize the tensor cut the tensor dimension according to the norm of the core tensor

41 Higher order singular value decomposition (HOSVD) Generalization of the singular value decomposition of matrix to tensor Core tensor all-orthogonal: pseudo-diagonal / ordering: Tucker decomposition L. de Latheauwer, B. de Moor, and J. Vandewalle, SIAM, J. Matrix Anal. Appl, 21, 1253 (2000).

42 Unitary Transformation Matrix Only horizontal bonds need to be cut if ε 1 < ε 2, U (n) = U L if ε 1 > ε 2, U (n) = U R truncation error = min(ε 1, ε 2 )

43 How to do HOSVD HOSVD can be achieved by successive SVD for each index of the tensor For example

44 Nishino Diagram of HOTRG

45 Second renormalization of tensor network states system environment Z=Tr MM env M env TRG: truncation error of M is minimized But, what really needs to be minimized is the error of Z! SRG: minimize the error of the partition function The renormalization effect of M env to M is included

46 How to Determine the Environment Tensor? SRG: forward iteration + backward iteration Forward iterations: use TRG to determine U (n) and T (n) Backward iterations : evaluate the environment tensors

47 HOSRG: Bond Density Matrix

48 HOTRG at 3D (or 2+1D)

49 Higher order singular value decomposition 3D HOTRG

50 Computational Cost 2D 3D Memory CPU time Memory CPU time HOTRG D 4 D 7 D 6 D 11 HOSRG D 5 D 8 D 7 D 12

51 Magnetization of 3D Ising model Z. Y. Xie et al, PRB 86, (2012) HOTRG (D=14): Monte Carlo: Series Expansion: Relative difference is less than 10-5 MC data: A. L. Talapov, H. W. J. Blote, J. Phys. A: Math. Gen. 29, 5727 (1996).

52 Specific Heat of 3D Ising model D = 14 Solid line: Monte Carlo data from X. M. Feng, and H. W. J. Blote, Phys. Rev. E 81, (2010)

53 Critical Temperature of 3D Ising model Bond dimension

54 Critical Temperature of 3D Ising model method year T c HOTRG D = 16 D = (1) NRG of Nishino et al (4) Monte Carlo Simulation (17) (6) High-temperature expansion S. Wang, et al, Chinese Physics Letters 31, (2014).

55 2D Quantum Ising model 2D QuantumTransverse Ising Model at T = 0K Z. Y. Xie et al, PRB 86, (2012)

56 Thermodynamics of the 2D Quantum Ising Model Internal Energy Magnetization

57 RG Flow of Local Tensors

58 Critical Behavior of Tensor Network Model fixing point ordered phase critical point disordered phase fixing point How does the tensor change with the RG steps?

59 Fix Point Tensor After a RG iteration, the scale is enlarged (the system size is reduced) and the entanglement between tensors is reduced The local tensor T (n) converges after many steps of iterations, and the converged tensor is completely disentangled

60 RG Flow of the Tensors The fixing point tensor is diagonal up to gauge uncertainty At high symmetric point, it is a rank-1 tensor. At low symmetric point (symmetry breaking), it is direct sum of two or more rank-1 tensors. T 1111 = 1 T 2222 = 1 T 1111 = 1 fixing point ordered phase critical point disordered phase fixing point

61 Central Charge at the Critical Point The fixing point tensor at the critical point contains the information on the central charge and scaling dimensions When the system size is smaller than the correlation length, it behaves like a critical system n are eigenvalues of c = 6 ln max π M ud = r T r,r,u,d

62 Application: Potts Model on Irregular Lattices Partial Symmetry Breaking and Phase Transition QN Chen et al, PRL 107, (2011) M. P. Qin, et al, PRB 90, (2014)

63 Potts model i = 1,,q Antiferromagnetic: J > 0 q < q c q = q c q > q c 1st/2nd phase transition at finite temperature critical at 0K no phase transition

64 Critical q for the antiferromagnetic Potts model Can q c > 4 in certain lattices? Lattice Coordination number q c honeycomb 3 <3 square 4 3 diced 4 3<q c <4 kagome 4 3 triangular 6 4 union-jack 6? centered diced 6?

65 Phase Transition with Partial Symmetry Breaking q=4 Potts Model on the UnionJack Lattice i = 1,,4 8 neighbors 4 neighbors Is there any phase transition?

66 Full versus partial symmetry breaking random orientation full symmetry breaking Entropy = 0 partial symmetry breaking Entropy is finite

67 Ground states and their entropies S = (N/2) ln * (3N/4) ln If red or green sublattice is ordered, the ground states are 3N/4 -fold degenerate S = (3N/4) ln both red and green sublattices are ordered, the ground states are 2 N/2 -fold degenerate: S = (N/2) ln 2

68 The red or green sublattice is ordered Entropy and Partial Order

69 Conjecture: there is a finite temperature phase transition There is a partial symmetry breaking at 0K q = 4 Potts model There is a finite T phase transition with two singularities: 1. ordered and disordered states 2. Z 2 between green and red

70 Phase Transition: Specific Heat Jump

71 Green or Red Sub-lattice Magnetization 1/16 q = 4 Potts model on the Union-Jack lattice

72 Partial order phase transition in other irregular lattices Checkerboard Lattice Centered Diced Lattice Diced Lattice

73 Critical q for the antiferromagnetic Potts model Lattice Coordination number q c honeycomb 3 <3 square 4 3 diced 4 3<q c <4 kagome 4 3 triangular 6 4 union-jack 6 >4 centered diced 6 >4

74 Summary In the past decade, various coarse graining RG methods have been developed to compute tensor network models These methods provide a powerful tool for studying 2D/3D or 2+1D lattice models More applications of these methods can and should be done in future

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice Renormalization of Tensor Network States Partial order and finite temperature phase transition in the Potts model on irregular lattice Tao Xiang Institute of Physics Chinese Academy of Sciences Background:

More information

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) 2018.10.29 ITP, Beijing Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Tensor network renormalization

Tensor network renormalization Coogee'15 Sydney Quantum Information Theory Workshop Tensor network renormalization Guifre Vidal In collaboration with GLEN EVENBLY IQIM Caltech UC Irvine Quantum Mechanics 1920-1930 Niels Bohr Albert

More information

c 2017 Society for Industrial and Applied Mathematics

c 2017 Society for Industrial and Applied Mathematics MULTISCALE MODEL. SIMUL. Vol. 15, No. 4, pp. 1423 1447 c 2017 Society for Industrial and Applied Mathematics TENSOR NETWORK SKELETONIZATION LEXING YING Abstract. We introduce a new coarse-graining algorithm,

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Efficient time evolution of one-dimensional quantum systems

Efficient time evolution of one-dimensional quantum systems Efficient time evolution of one-dimensional quantum systems Frank Pollmann Max-Planck-Institut für komplexer Systeme, Dresden, Germany Sep. 5, 2012 Hsinchu Problems we will address... Finding ground states

More information

Lecture 3: Tensor Product Ansatz

Lecture 3: Tensor Product Ansatz Lecture 3: Tensor Product nsatz Graduate Lectures Dr Gunnar Möller Cavendish Laboratory, University of Cambridge slide credits: Philippe Corboz (ETH / msterdam) January 2014 Cavendish Laboratory Part I:

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Tensor network renormalization

Tensor network renormalization Walter Burke Institute for Theoretical Physics INAUGURAL CELEBRATION AND SYMPOSIUM Caltech, Feb 23-24, 2015 Tensor network renormalization Guifre Vidal Sherman Fairchild Prize Postdoctoral Fellow (2003-2005)

More information

arxiv: v1 [cond-mat.str-el] 24 Sep 2015

arxiv: v1 [cond-mat.str-el] 24 Sep 2015 Algorithms for tensor network renormalization G. Evenbly 1 1 Department of Physics and Astronomy, University of California, Irvine, CA 92697-4575 USA (Dated: September 25, 2015) arxiv:1509.07484v1 [cond-mat.str-el]

More information

Advanced Computation for Complex Materials

Advanced Computation for Complex Materials Advanced Computation for Complex Materials Computational Progress is brainpower limited, not machine limited Algorithms Physics Major progress in algorithms Quantum Monte Carlo Density Matrix Renormalization

More information

arxiv: v1 [quant-ph] 18 Jul 2017

arxiv: v1 [quant-ph] 18 Jul 2017 Implicitly disentangled renormalization arxiv:1707.05770v1 [quant-ph] 18 Jul 017 Glen Evenbly 1 1 Département de Physique and Institut Quantique, Université de Sherbrooke, Québec, Canada (Dated: July 19,

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme

Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme Many-Body Fermion Density Matrix: Operator-Based Truncation Scheme SIEW-ANN CHEONG and C. L. HENLEY, LASSP, Cornell U March 25, 2004 Support: NSF grants DMR-9981744, DMR-0079992 The Big Picture GOAL Ground

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

The Density Matrix Renormalization Group: Introduction and Overview

The Density Matrix Renormalization Group: Introduction and Overview The Density Matrix Renormalization Group: Introduction and Overview Introduction to DMRG as a low entanglement approximation Entanglement Matrix Product States Minimizing the energy and DMRG sweeping The

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

Plaquette Renormalized Tensor Network States: Application to Frustrated Systems

Plaquette Renormalized Tensor Network States: Application to Frustrated Systems Workshop on QIS and QMP, Dec 20, 2009 Plaquette Renormalized Tensor Network States: Application to Frustrated Systems Ying-Jer Kao and Center for Quantum Science and Engineering Hsin-Chih Hsiao, Ji-Feng

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

arxiv:quant-ph/ v2 24 Dec 2003

arxiv:quant-ph/ v2 24 Dec 2003 Quantum Entanglement in Heisenberg Antiferromagnets V. Subrahmanyam Department of Physics, Indian Institute of Technology, Kanpur, India. arxiv:quant-ph/0309004 v2 24 Dec 2003 Entanglement sharing among

More information

arxiv: v3 [cond-mat.str-el] 15 Sep 2015

arxiv: v3 [cond-mat.str-el] 15 Sep 2015 Tensor Network Renormalization G. Evenbly 1 and G. Vidal 2 1 Institute for Quantum Information and Matter, California Institute of Technology, Pasadena CA 91125, USA 2 Perimeter Institute for Theoretical

More information

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization

8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization 8.334: Statistical Mechanics II Problem Set # 4 Due: 4/9/14 Transfer Matrices & Position space renormalization This problem set is partly intended to introduce the transfer matrix method, which is used

More information

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa Entanglement signatures of QED3 in the kagome spin liquid William Witczak-Krempa Aspen, March 2018 Chronologically: X. Chen, KITP Santa Barbara T. Faulkner, UIUC E. Fradkin, UIUC S. Whitsitt, Harvard S.

More information

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X

J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S (98)90604-X J. Phys.: Condens. Matter 10 (1998) L159 L165. Printed in the UK PII: S0953-8984(98)90604-X LETTER TO THE EDITOR Calculation of the susceptibility of the S = 1 antiferromagnetic Heisenberg chain with single-ion

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

Machine Learning with Tensor Networks

Machine Learning with Tensor Networks Machine Learning with Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 Beijing Jun 2017 Machine learning has physics in its DNA # " # #

More information

Entanglement spectra in the NRG

Entanglement spectra in the NRG PRB 84, 125130 (2011) Entanglement spectra in the NRG Andreas Weichselbaum Ludwig Maximilians Universität, München Arnold Sommerfeld Center (ASC) Acknowledgement Jan von Delft (LMU) Theo Costi (Jülich)

More information

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS

CLASSIFICATION OF SU(2)-SYMMETRIC TENSOR NETWORKS LSSIFITION OF SU(2)-SYMMETRI TENSOR NETWORKS Matthieu Mambrini Laboratoire de Physique Théorique NRS & Université de Toulouse M.M., R. Orús, D. Poilblanc, Phys. Rev. 94, 2524 (26) D. Poilblanc, M.M., arxiv:72.595

More information

Corner Transfer Matrix Renormalization Group Method

Corner Transfer Matrix Renormalization Group Method Corner Transfer Matrix Renormalization Group Method T. Nishino 1 and K. Okunishi 2 arxiv:cond-mat/9507087v5 20 Sep 1995 1 Physics Department, Graduate School of Science, Tohoku University, Sendai 980-77,

More information

WORLD SCIENTIFIC (2014)

WORLD SCIENTIFIC (2014) WORLD SCIENTIFIC (2014) LIST OF PROBLEMS Chapter 1: Magnetism of Free Electrons and Atoms 1. Orbital and spin moments of an electron: Using the theory of angular momentum, calculate the orbital

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

Renormalization Group analysis of 2D Ising model

Renormalization Group analysis of 2D Ising model Renormalization Group analysis of D Ising model Amir Bar January 7, 013 1 Introduction In this tutorial we will see explicitly how RG can be used to probe the phase diagram of d > 1 systems, focusing as

More information

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School T ensor N et works I ztok Pizorn Frank Verstraete University of Vienna 2010 M ichigan Quantum Summer School Matrix product states (MPS) Introduction to matrix product states Ground states of finite systems

More information

Introduction to Quantum Monte Carlo

Introduction to Quantum Monte Carlo Entanglement in Strongly Correlated Systems @ Benasque Feb. 6-17, 2017 Introduction to Quantum Monte Carlo Naoki KAWASHIMA (ISSP) 2017.02.06-07 Why bother? Estimating scaling dimension by TRG, TNR, etc

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems

Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Multi-Linear Mappings, SVD, HOSVD, and the Numerical Solution of Ill-Conditioned Tensor Least Squares Problems Lars Eldén Department of Mathematics, Linköping University 1 April 2005 ERCIM April 2005 Multi-Linear

More information

An introduction to tensornetwork

An introduction to tensornetwork An introduction to tensornetwork states and MERA Sissa Journal Club Andrea De Luca 29/01/2010 A typical problem We are given: A lattice with N sites On each site a C d hilbert space A quantum hamiltonian

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank

More information

Matrix Product States

Matrix Product States Matrix Product States Ian McCulloch University of Queensland Centre for Engineered Quantum Systems 28 August 2017 Hilbert space (Hilbert) space is big. Really big. You just won t believe how vastly, hugely,

More information

Excursion: MPS & DMRG

Excursion: MPS & DMRG Excursion: MPS & DMRG Johannes.Schachenmayer@gmail.com Acronyms for: - Matrix product states - Density matrix renormalization group Numerical methods for simulations of time dynamics of large 1D quantum

More information

Coupled Cluster Method for Quantum Spin Systems

Coupled Cluster Method for Quantum Spin Systems Coupled Cluster Method for Quantum Spin Systems Sven E. Krüger Department of Electrical Engineering, IESK, Cognitive Systems Universität Magdeburg, PF 4120, 39016 Magdeburg, Germany sven.krueger@e-technik.uni-magdeburg.de

More information

Time-dependent DMRG:

Time-dependent DMRG: The time-dependent DMRG and its applications Adrian Feiguin Time-dependent DMRG: ^ ^ ih Ψ( t) = 0 t t [ H ( t) E ] Ψ( )... In a truncated basis: t=3 τ t=4 τ t=5τ t=2 τ t= τ t=0 Hilbert space S.R.White

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

Journal Club: Brief Introduction to Tensor Network

Journal Club: Brief Introduction to Tensor Network Journal Club: Brief Introduction to Tensor Network Wei-Han Hsiao a a The University of Chicago E-mail: weihanhsiao@uchicago.edu Abstract: This note summarizes the talk given on March 8th 2016 which was

More information

8.334: Statistical Mechanics II Spring 2014 Test 3 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 3 Review Problems 8.334: Statistical Mechanics II Spring 014 Test 3 Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

quasi-particle pictures from continuous unitary transformations

quasi-particle pictures from continuous unitary transformations quasi-particle pictures from continuous unitary transformations Kai Phillip Schmidt 24.02.2016 quasi-particle pictures from continuous unitary transformations overview Entanglement in Strongly Correlated

More information

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007

The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 The 4th Windsor Summer School on Condensed Matter Theory Quantum Transport and Dynamics in Nanostructures Great Park, Windsor, UK, August 6-18, 2007 Kondo Effect in Metals and Quantum Dots Jan von Delft

More information

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks. IPAM/UCLA, Sat 24 th Jan 2009 umerical Approaches to Quantum Many-Body Systems QS2009 tutorials lecture: Tensor etworks Guifre Vidal Outline Tensor etworks Computation of expected values Optimization of

More information

Typical quantum states at finite temperature

Typical quantum states at finite temperature Typical quantum states at finite temperature How should one think about typical quantum states at finite temperature? Density Matrices versus pure states Why eigenstates are not typical Measuring the heat

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

Positive Tensor Network approach for simulating open quantum many-body systems

Positive Tensor Network approach for simulating open quantum many-body systems Positive Tensor Network approach for simulating open quantum many-body systems 19 / 9 / 2016 A. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert and S. Montangero PRL 116, 237201 (2016)

More information

arxiv: v2 [cond-mat.str-el] 6 Nov 2013

arxiv: v2 [cond-mat.str-el] 6 Nov 2013 Symmetry Protected Quantum State Renormalization Ching-Yu Huang, Xie Chen, and Feng-Li Lin 3 Max-Planck-Institut für Physik komplexer Systeme, 087 Dresden, Germany Department of Physics, University of

More information

arxiv: v2 [quant-ph] 31 Oct 2013

arxiv: v2 [quant-ph] 31 Oct 2013 Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz arxiv:1109.5334v2 [quant-ph] 31 Oct 2013 G. Evenbly 1 and G. Vidal 2 1 The University of Queensland, Brisbane, Queensland 4072,

More information

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

Quantum Hamiltonian Complexity. Itai Arad

Quantum Hamiltonian Complexity. Itai Arad 1 18 / Quantum Hamiltonian Complexity Itai Arad Centre of Quantum Technologies National University of Singapore QIP 2015 2 18 / Quantum Hamiltonian Complexity condensed matter physics QHC complexity theory

More information

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009

arxiv: v4 [cond-mat.stat-mech] 13 Mar 2009 The itebd algorithm beyond unitary evolution R. Orús and G. Vidal School of Physical Sciences, The University of Queensland, QLD 4072, Australia arxiv:0711.3960v4 [cond-mat.stat-mech] 13 Mar 2009 The infinite

More information

Series expansions from the corner transfer matrix renormalization group method

Series expansions from the corner transfer matrix renormalization group method Series expansions from the corner transfer matrix renormalization group method 1 Andrew Rechnitzer 2 1 LaBRI/The University of Melbourne 2 University of British Columbia January 27, 2011 What is the CTMRG

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

Finite bond dimension scaling with the corner transfer matrix renormalization group method

Finite bond dimension scaling with the corner transfer matrix renormalization group method MSc Physics Track: Theoretical Physics MASTER THESIS Finite bond dimension scaling with the corner transfer matrix renormalization group method Geert Kapteijns 10275037 July 2017 60 ECTS Supervisor: Dr.

More information

Degeneracy Breaking in Some Frustrated Magnets

Degeneracy Breaking in Some Frustrated Magnets Degeneracy Breaking in Some Frustrated Magnets Doron Bergman Greg Fiete Ryuichi Shindou Simon Trebst UCSB Physics KITP UCSB Physics Q Station cond-mat: 0510202 (prl) 0511176 (prb) 0605467 0607210 0608131

More information

Renormalization Group for the Two-Dimensional Ising Model

Renormalization Group for the Two-Dimensional Ising Model Chapter 8 Renormalization Group for the Two-Dimensional Ising Model The two-dimensional (2D) Ising model is arguably the most important in statistical physics. This special status is due to Lars Onsager

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation

Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation Ising Model on Hyperbolic Lattices: toward Transverse Field Ising Model under Hyperbolic Deformation T. Nishino, T. Iharagi (Kobe Universty) A. Gendiar (Slovak Academy of Sciences) H. Ueda (Osaka University)

More information

Quantum Lattice Models & Introduction to Exact Diagonalization

Quantum Lattice Models & Introduction to Exact Diagonalization Quantum Lattice Models & Introduction to Exact Diagonalization H! = E! Andreas Läuchli IRRMA EPF Lausanne ALPS User Workshop CSCS Manno, 28/9/2004 Outline of this lecture: Quantum Lattice Models Lattices

More information

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method

Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method PHYSICAL REVIEW B VOLUME 59, NUMBER 9 1 MARCH 1999-I Impurity corrections to the thermodynamics in spin chains using a transfer-matrix DMRG method Stefan Rommer and Sebastian Eggert Institute of Theoretical

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

Entanglement in Topological Phases

Entanglement in Topological Phases Entanglement in Topological Phases Dylan Liu August 31, 2012 Abstract In this report, the research conducted on entanglement in topological phases is detailed and summarized. This includes background developed

More information

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz

Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Efficient Representation of Ground States of Many-body Quantum Systems: Matrix-Product Projected States Ansatz Systematic! Fermionic! D>1?! Chung-Pin Chou 1, Frank Pollmann 2, Ting-Kuo Lee 1 1 Institute

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

Phase transition and spontaneous symmetry breaking

Phase transition and spontaneous symmetry breaking Phys60.nb 111 8 Phase transition and spontaneous symmetry breaking 8.1. Questions: Q1: Symmetry: if a the Hamiltonian of a system has certain symmetry, can the system have a lower symmetry? Q: Analyticity:

More information

7 Frustrated Spin Systems

7 Frustrated Spin Systems 7 Frustrated Spin Systems Frédéric Mila Institute of Theoretical Physics Ecole Polytechnique Fédérale de Lausanne 1015 Lausanne, Switzerland Contents 1 Introduction 2 2 Competing interactions and degeneracy

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Thermodynamics of quantum Heisenberg spin chains

Thermodynamics of quantum Heisenberg spin chains PHYSICAL REVIEW B VOLUME 58, NUMBER 14 Thermodynamics of quantum Heisenberg spin chains 1 OCTOBER 1998-II Tao Xiang Research Centre in Superconductivity, University of Cambridge, Madingley Road, Cambridge

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks

Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Numerical Linear and Multilinear Algebra in Quantum Tensor Networks Konrad Waldherr October 20, 2013 Joint work with Thomas Huckle QCCC 2013, Prien, October 20, 2013 1 Outline Numerical (Multi-) Linear

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Outline: with T. Senthil, Bangalore A. Vishwanath, UCB S. Sachdev, Yale L. Balents, UCSB conventional quantum critical points Landau paradigm Seeking a new paradigm -

More information

Newton s Method and Localization

Newton s Method and Localization Newton s Method and Localization Workshop on Analytical Aspects of Mathematical Physics John Imbrie May 30, 2013 Overview Diagonalizing the Hamiltonian is a goal in quantum theory. I would like to discuss

More information

High-Temperature Criticality in Strongly Constrained Quantum Systems

High-Temperature Criticality in Strongly Constrained Quantum Systems High-Temperature Criticality in Strongly Constrained Quantum Systems Claudio Chamon Collaborators: Claudio Castelnovo - BU Christopher Mudry - PSI, Switzerland Pierre Pujol - ENS Lyon, France PRB 2006

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

Disentangling Topological Insulators by Tensor Networks

Disentangling Topological Insulators by Tensor Networks Disentangling Topological Insulators by Tensor Networks Shinsei Ryu Univ. of Illinois, Urbana-Champaign Collaborators: Ali Mollabashi (IPM Tehran) Masahiro Nozaki (Kyoto) Tadashi Takayanagi (Kyoto) Xueda

More information