Introduction to Quantum Monte Carlo

Size: px
Start display at page:

Download "Introduction to Quantum Monte Carlo"

Transcription

1 Entanglement in Strongly Correlated Benasque Feb. 6-17, 2017 Introduction to Quantum Monte Carlo Naoki KAWASHIMA (ISSP)

2 Why bother? Estimating scaling dimension by TRG, TNR, etc is very elegant, and when it works it produces very accurate results. But so far not many universality classes have been examined in this way. Quantum Monte Carlo is still one of the standard methods for studying large systems to obtain reliable characterization of critical points of a given system.

3 Importance Sampling Problem: Compute the momentum of inertia of a circle. X dxdy 2 2 y 2 2 x y 1 x Strategy I (random sampling) 1) Generate a point in [-1,1]x[-1,1] uniform randomly. 2) If the point is in the circle, S += x 2 +y 2. 3) Repeat 1) and 2), N times. 4) X := 4 x S / N

4 Importance Sampling Problem: Compute the moment of inertia of a circle. X 2 2 dxdy x y 2 2 x y 1 Strategy II (importance sampling) 0) Choose any point (x,y) in the circle. 1) Shift the point by a uniform random vector (dx,dy) where dx, dy is a uniform random number in [-D,D] 2) If the point (x+dx,y+dy) is still in the circle x := x+dx, y := y+dy 3) S += x 2 +y 2. 4) Repeat 1) through 3), N times. 5) X := π x S / N

5 Importance Sampling Random Sampling Importance Sampling V 2 d d 2 d d d 2 / 2 1 e 2d d 2 0 High dimensions kill random sampling.

6 Markov Chain X t : state at the t-th step X 0 X1 X 2 X 3 T X X : transition probability P X : the probability of having X at the t-th step t t t or simply, P X T X X P X t1 t1 t1 t t t X t P t1 T P t

7 Detailed Balance Designing a Markov chain We demand, T W T W ij j ji i e.g. W i e E i W i : the target distribution TW W

8 Ergodicity "After a sufficiently long time, any state can appear with non-zero probability." t t t t i, j T ij - T must be irreducible. - Cyclic solution should be excluded.

9 Renyi (1960) Gubernatis, Werner, NK (2016) Convergence and H-Theorem p "Error" W W 1 p p p 1 : the target distribution Free energy (or Kulback-Leibler Information), p F TI KL I KL p p pi log p p t IKL pt p Both and monotocally decrease, and converge to 0 in the limit t. i i i

10 Local Update for Ising Model W i e K W j e K T ji W i W j W j e K K e e K satisfies the detailed balance condition, T ij W j T ji W i

11 Failure of Local Update The configuration changes only locally at each step. Similar to a diffusion process, or a random walk. It takes a very long time to create/annihilate large magnetic clusters. Autocorrelation time diverges near the critical point.

12 Fortuin-Kasteleyn Formula Ising Model Fortuin and Kasteleyn (1969), KS1S 2 K K K e e S 1 S e e v 2 g g S S SG, g=0 g=1, Z V G S G, 1 2 g0,1 S S i G g ij S G

13 Markov Chain in (S,G) Space Z W S, G, W S, G V G S, G SG, S G S G t t t1 t1 W S, G W S, G T G S, T S G W ( S) W ( G)

14 Correlation Functions, S S Z V G S G S S ij G 1 i j i j SG, N 2 c G Z V G ij G ij G G if i and j are connected in G otherwise i and j are correlated i and j belong to the same cluster The size of the clusters in G is O(ξ)

15 Path-Integral

16 Graph Expansion H ij a ˆ g g ij g Ex: S=1/2 Antiferromagnetic Heisenberg Model 0 J J 1 1 Hij J J S, S H S, S S, S S, S 4 2 J J H ˆ ij ij gh 4 2 i j ij i j i j i j AF

17 Loop/Cluster Algorithm Z S S 1 H S S S Sik, k, bij k, b ij gkb,, i, k 1 j, k 1 b ik jk ˆ S S 1 a g S S S S G k b ij S G W S, G i, k 1 j, k 1 g ij ik jk g G ˆ a S S g S S g i, k 1 j, k 1 ij k, b ik jk kb, The same as the Fortuin-Kasteleyn formula!

18 Loop/Cluster Algorithm S=1/2 XY Model

19 Continuous-Time Limit Placing a stone with probability lim a in a cell of height Placing a stone with density a

20 S=1/2 XY Model (Loop Algorithm) Super Fluid Density Stiffness t 2 F s 2 e F H t ij Tr e ij ij e i H t ij ij T L 1 2 Wx y b j b i h. c. ij iff Lx i interaction ij // e x i Harada-Kawashima 1998 Tc = (5)J

21 When Loop Update Fails A two-site problem H J S i S j H S z i S z j Magnetic Field competing against exchange couplings The cause of the problem... The effect of magnetic field is NOT taken into account in the graph generation.

22 High-T Expansion and Worms Ising Model W G ij Z 1 tanh K SiS j tanh K S tanh G G 0 closed graphs K 0 G How can we construct a Markov chain for effective sampling?

23 Extending Graph Space Ising Model graphs with 2 odd vertices G G tanh W G a K "the number of odd vertices in G" G

24 Worm Update for Ising Model Prokof'ev and Svistunov (2001)

25 SSE (Worm Update Version) Worm update for S=1/2 AF Heisenberg model The effect of magnetic field is taken into account in the "scattering probability" of the worm.

26 Application of Classical Monte Carlo --- AKLT state ---

27 TN representation of AKLT State Unitary transformation for bipartite lattice vac!! 1 m z j m i z i b a m z m m S vac vac j i j i j i j i b b a a a b b a Schwinger boson representation spin singlet projector P Projection to S=1 states T T T α β

28 Reduced Density Operator U V (SVD) A Tr B U 4 U "Overlap Matrix" V 2 V Studying is sufficient. Katsura, NK, Kirillov, Korepin and Tanaka (2010)

29 2D AKLT State Katsura, NK, Kirillov, Korepin and Tanaka (2010) Lou, Tanaka, Katsura, and NK (2011) 0,1 of n.n. :, 1, ij i j ij i i i i n n n n z i i

30 Monte Carlo sampling of Overlap Matrix pair creation/ annihilation Local update is sufficient horizontal flip P const, P, freq.of having, Normalization... Tr on the boundary 1 Katsura, NK, Kirillov, Korepin and Tanaka (2010)

31 Boundary Hamiltonian e H B ( is arbitrary) Cirac, Poilblanc, Schuch and Verstraete (2011) Lou, Tanaka, Katsura, and NK (2011) square honeycomb U H H B B U Is H B meaningful? 2 des Cloizeaux- Pearson mode?

32 CFT of Boundary Hamiltonian B e H B The ground state of the boundary Hamiltonian Entanglement entropy of T=0 boundary density operator S B T 0 B l Tr l1, l2,, L y 0 T 0 T 0 l Tr l log l cf: Calabrese-Cardy 2004 S B l c 3 ln B f l const, f l B 0 Lou, Tanaka, Katsura, and NK (2011) L y l sin Ly S B l H B Ly=16 Lx=5 c 1.01(7) l

33 Application of Loop Update --- SU(N) Heisenberg Model ---

34 SU(N) Heisenberg Model A natural extension of the SU(2) AF Heisenberg model S S r r H J N r, r' generators of SU(N) rotation represented by some representation the same with the conjugate S r S representation r R S, S S S,,, 1,2,, N Representation: n=1 (fundamental representation.),,,,etc n=2 n=3 n=4

35 2D Analogue of "Haldane" States Prediction from 1/N expansion Arovas & Auerbach (1988) Read & Sachdev (1989) Nc ~ 5.3 n For numerical evidences, see n=1 : Tanabe & NK: PRL (2007) n=2,3 : Okubo,Harada,Lou & NK : PRB (2015)

36 Magnetic/Non-Magnetic Transition (SU(N) JQ-Model) SU(2) symmetry broken. Space symmetry not broken. SU(2) symmetry not broken. Space symmetry broken. Text book symmetry breaking paradigm predict the 1st order transition 1 1 H JSi S j Q Si S j Sk Sl ( ij) p i, j, k, l 4 4 =Q/J

37 SU(3) and SU(4) J-Q Models J. Lou, A. Sandvik, N.K (2009) SU(3) J-Q s 0.38(3), 0.65(3) SU(4) J-Q s 0.42(5), 0.70(2)

38 Universality? For N 1, s 1. T. Senthil, et al, Science 303, 1490 (2004) M. Levin and T. Senthil, Phys. Rev. B 70, R (2004). For N 1, d N 1. CP N-1 Field Theory: M. A. Metlitski, et al, PRB 78, (2008) G. Murthy and S. Sachdev, Nucl. Phys. B 344, 557 (1990). 2D JQ-Model (Lou, Sandvik, N.K.)

39 Monopole Scaling Dimension up to O(N -1 ) D O 2 N N N N D N

40 Further Evidences for DCP Kaul, Sandvik: PRL108_ (2012) Introducing "ferromagnatic" interaction to favor the Neel state for large N. Kaul, Melko and Sandvik: arxiv: Bilayer system show 1st order transition.

41 An inconvenient truth Harada et al (2013) System-size-restricted finite-size scaling yields strongly size dependent estimates of scaling dimensions

42 Application of worm update --- Bose Hubbard Model ---

43 "Big Wedding Cake" in ultracold atoms t / U 0.05, r 0.08, L 3 0 / U 3.3, ~ 2.610, t 5.0. Fisher et al (1989) The number of bosons N (1) 64 ~ Kato and N.K., PRE (2009) 3,

44 Supersolid on Triangular Lattice Wessel and Troyer: PRL 95, (2005) BHM with hardcores and n.n. interaction T=0 "superflow path" No vacancy condensation below n=1/3, and no interstitial condensation above n=1/3.

45 Continuous Space MC Corboz, Boninsegni, Pollet and Troyer (2008) Can Helium-4 on graphite surface be super-solid? T 0.5K, A IC, A 2 C, F C, A Solid state was observed only when the first layer is fixed.

46 Remaining Puzzle... Experiment (Nakamura et al (2016)) suggests existence of an intermediate phase "C2". What is "C2" phase? Why two peaks in C-T curve in C2 phase?

47 Summary When it is not poisoned by negative signs, Monte Carlo method is suitable for many systems, and complementary to the tensor network methods.

48 END

Entanglement in Valence-Bond-Solid States on Symmetric Graphs

Entanglement in Valence-Bond-Solid States on Symmetric Graphs Entanglement in Valence-Bond-Solid States on Symmetric Graphs Shu Tanaka A, Hosho Katsura B, Naoki Kawashima C Anatol N. Kirillov D, and Vladimir E. Korepin E A. Kinki University B. Gakushuin University

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis

Quantum Monte Carlo Simulations in the Valence Bond Basis NUMERICAL APPROACHES TO QUANTUM MANY-BODY SYSTEMS, IPAM, January 29, 2009 Quantum Monte Carlo Simulations in the Valence Bond Basis Anders W. Sandvik, Boston University Collaborators Kevin Beach (U. of

More information

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University

Quantum Monte Carlo simulations of deconfined quantum criticality at. the 2D Néel-VBS transition. Anders W. Sandvik, Boston University Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Quantum Monte Carlo simulations of deconfined quantum criticality at the 2D Néel-VBS transition Anders

More information

Quantum spin systems - models and computational methods

Quantum spin systems - models and computational methods Summer School on Computational Statistical Physics August 4-11, 2010, NCCU, Taipei, Taiwan Quantum spin systems - models and computational methods Anders W. Sandvik, Boston University Lecture outline Introduction

More information

Ground State Projector QMC in the valence-bond basis

Ground State Projector QMC in the valence-bond basis Quantum Monte Carlo Methods at Work for Novel Phases of Matter Trieste, Italy, Jan 23 - Feb 3, 2012 Ground State Projector QMC in the valence-bond basis Anders. Sandvik, Boston University Outline: The

More information

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University

Quantum Monte Carlo Simulations in the Valence Bond Basis. Anders Sandvik, Boston University Quantum Monte Carlo Simulations in the Valence Bond Basis Anders Sandvik, Boston University Outline The valence bond basis for S=1/2 spins Projector QMC in the valence bond basis Heisenberg model with

More information

Second Lecture: Quantum Monte Carlo Techniques

Second Lecture: Quantum Monte Carlo Techniques Second Lecture: Quantum Monte Carlo Techniques Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml aml@pks.mpg.de Lecture Notes at http:www.pks.mpg.de/~aml/leshouches

More information

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim (2009). doi: / /150/

with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim   (2009). doi: / /150/ Title Quantum Monte Carlo simulation of S with four spin interaction Author(s) Tsukamoto, M.; Harada, K.; Kawashim Citation Journal of Physics: Conference Seri Issue Date 2009 URL http://hdl.handle.net/2433/200787

More information

Classical Monte Carlo Simulations

Classical Monte Carlo Simulations Classical Monte Carlo Simulations Hyejin Ju April 17, 2012 1 Introduction Why do we need numerics? One of the main goals of condensed matter is to compute expectation values O = 1 Z Tr{O e βĥ} (1) and

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Solving the sign problem for a class of frustrated antiferromagnets

Solving the sign problem for a class of frustrated antiferromagnets Solving the sign problem for a class of frustrated antiferromagnets Fabien Alet Laboratoire de Physique Théorique Toulouse with : Kedar Damle (TIFR Mumbai), Sumiran Pujari (Toulouse Kentucky TIFR Mumbai)

More information

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates)

Non-magnetic states. The Néel states are product states; φ N a. , E ij = 3J ij /4 2 The Néel states have higher energy (expectations; not eigenstates) Non-magnetic states Two spins, i and j, in isolation, H ij = J ijsi S j = J ij [Si z Sj z + 1 2 (S+ i S j + S i S+ j )] For Jij>0 the ground state is the singlet; φ s ij = i j i j, E ij = 3J ij /4 2 The

More information

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Properties of monopole operators in 3d gauge theories

Properties of monopole operators in 3d gauge theories Properties of monopole operators in 3d gauge theories Silviu S. Pufu Princeton University Based on: arxiv:1303.6125 arxiv:1309.1160 (with Ethan Dyer and Mark Mezei) work in progress with Ethan Dyer, Mark

More information

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition

From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition From an Antiferromagnet to a Valence Bond Solid: Evidence for a First Order Phase Transition arxiv:0710.396v1 [cond-mat.str-el] 1 Oct 007 F.-J. Jiang a, M. Nyfeler a, S. Chandrasekharan b, and U.-J. Wiese

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Frustration without competition: the SU(N) model of quantum permutations on a lattice

Frustration without competition: the SU(N) model of quantum permutations on a lattice Frustration without competition: the SU(N) model of quantum permutations on a lattice F. Mila Ecole Polytechnique Fédérale de Lausanne Switzerland Collaborators P. Corboz (Zürich), A. Läuchli (Innsbruck),

More information

Gapless Spin Liquids in Two Dimensions

Gapless Spin Liquids in Two Dimensions Gapless Spin Liquids in Two Dimensions MPA Fisher (with O. Motrunich, Donna Sheng, Matt Block) Boulder Summerschool 7/20/10 Interest Quantum Phases of 2d electrons (spins) with emergent rather than broken

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

Efficient description of many body systems with prjected entangled pair states

Efficient description of many body systems with prjected entangled pair states Efficient description of many body systems with prjected entangled pair states J. IGNACIO CIRAC Workshop on Quantum Information Science and many-body systems, National Cheng Kung University, Tainan, Taiwan,

More information

2. Spin liquids and valence bond solids

2. Spin liquids and valence bond solids Outline 1. Coupled dimer antiferromagnets Landau-Ginzburg quantum criticality 2. Spin liquids and valence bond solids (a) Schwinger-boson mean-field theory - square lattice (b) Gauge theories of perturbative

More information

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator

Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Superfluidity near the Mott transition of cold bosonic atoms: validating a quantum simulator Collaborators Simulations of bosons Lode Pollet (Harvard) Boris Svistunov (UMass) Nikolay Prokof ev (UMass)

More information

Stochastic series expansion (SSE) and ground-state projection

Stochastic series expansion (SSE) and ground-state projection Institute of Physics, Chinese Academy of Sciences, Beijing, October 31, 2014 Stochastic series expansion (SSE) and ground-state projection Anders W Sandvik, Boston University Review article on quantum

More information

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling

Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Fully symmetric and non-fractionalized Mott insulators at fractional site-filling Itamar Kimchi University of California, Berkeley EQPCM @ ISSP June 19, 2013 PRL 2013 (kagome), 1207.0498...[PNAS] (honeycomb)

More information

Quantum Entanglement in Exactly Solvable Models

Quantum Entanglement in Exactly Solvable Models Quantum Entanglement in Exactly Solvable Models Hosho Katsura Department of Applied Physics, University of Tokyo Collaborators: Takaaki Hirano (U. Tokyo Sony), Yasuyuki Hatsuda (U. Tokyo) Prof. Yasuhiro

More information

Techniques for translationally invariant matrix product states

Techniques for translationally invariant matrix product states Techniques for translationally invariant matrix product states Ian McCulloch University of Queensland Centre for Engineered Quantum Systems (EQuS) 7 Dec 2017 Ian McCulloch (UQ) imps 7 Dec 2017 1 / 33 Outline

More information

Entanglement spectrum as a tool for onedimensional

Entanglement spectrum as a tool for onedimensional Entanglement spectrum as a tool for onedimensional critical systems MPI-PKS, Dresden, November 2012 Joel Moore University of California, Berkeley, and Lawrence Berkeley National Laboratory Outline ballistic

More information

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16

Paramagnetic phases of Kagome lattice quantum Ising models p.1/16 Paramagnetic phases of Kagome lattice quantum Ising models Predrag Nikolić In collaboration with T. Senthil Massachusetts Institute of Technology Paramagnetic phases of Kagome lattice quantum Ising models

More information

Deconfined Quantum Critical Points

Deconfined Quantum Critical Points Deconfined Quantum Critical Points Leon Balents T. Senthil, MIT A. Vishwanath, UCB S. Sachdev, Yale M.P.A. Fisher, UCSB Outline Introduction: what is a DQCP Disordered and VBS ground states and gauge theory

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart

Wang-Landau sampling for Quantum Monte Carlo. Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Wang-Landau sampling for Quantum Monte Carlo Stefan Wessel Institut für Theoretische Physik III Universität Stuttgart Overview Classical Monte Carlo First order phase transitions Classical Wang-Landau

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Author(s) Kawashima, Maoki; Miyashita, Seiji;

Author(s) Kawashima, Maoki; Miyashita, Seiji; Title Quantum Phase Transition of Heisenberg Antiferromagnet Two-Dim Author(s) Todo, Synge; Yasuda, Chitoshi; Kato Kawashima, Maoki; Miyashita, Seiji; Citation Progress of Theoretical Physics Sup 512 Issue

More information

Spin liquid phases in strongly correlated lattice models

Spin liquid phases in strongly correlated lattice models Spin liquid phases in strongly correlated lattice models Sandro Sorella Wenjun Hu, F. Becca SISSA, IOM DEMOCRITOS, Trieste Seiji Yunoki, Y. Otsuka Riken, Kobe, Japan (K-computer) Williamsburg, 14 June

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Quantum Phase Transitions in Low Dimensional Magnets

Quantum Phase Transitions in Low Dimensional Magnets 2006.08.03 Computational Approaches to Quantum Critical Phenomena @ ISSP Quantum Phase Transitions in Low Dimensional Magnets Synge Todo ( ) Department of Applied Physics, University of Tokyo

More information

Numerical diagonalization studies of quantum spin chains

Numerical diagonalization studies of quantum spin chains PY 502, Computational Physics, Fall 2016 Anders W. Sandvik, Boston University Numerical diagonalization studies of quantum spin chains Introduction to computational studies of spin chains Using basis states

More information

Lecture 2: Deconfined quantum criticality

Lecture 2: Deconfined quantum criticality Lecture 2: Deconfined quantum criticality T. Senthil (MIT) General theoretical questions Fate of Landau-Ginzburg-Wilson ideas at quantum phase transitions? (More precise) Could Landau order parameters

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model

2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model 2D tensor network study of the S=1 bilinear-biquadratic Heisenberg model Philippe Corboz, Institute for Theoretical Physics, University of Amsterdam AF phase Haldane phase 3-SL 120 phase? ipeps 2D tensor

More information

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) 2018.10.29 ITP, Beijing Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state

More information

Simulations of Quantum Dimer Models

Simulations of Quantum Dimer Models Simulations of Quantum Dimer Models Didier Poilblanc Laboratoire de Physique Théorique CNRS & Université de Toulouse 1 A wide range of applications Disordered frustrated quantum magnets Correlated fermions

More information

Small and large Fermi surfaces in metals with local moments

Small and large Fermi surfaces in metals with local moments Small and large Fermi surfaces in metals with local moments T. Senthil (MIT) Subir Sachdev Matthias Vojta (Augsburg) cond-mat/0209144 Transparencies online at http://pantheon.yale.edu/~subir Luttinger

More information

Topological phases and the Kasteleyn transition

Topological phases and the Kasteleyn transition Topological phases and the Kasteleyn transition Peter Holdsworth Ecole Normale Supérieure de Lyon 1. Ice and Spin-Ice, collective paramagnets 2. Topologically constrained states 3. Monopole excitations

More information

Optimized statistical ensembles for slowly equilibrating classical and quantum systems

Optimized statistical ensembles for slowly equilibrating classical and quantum systems Optimized statistical ensembles for slowly equilibrating classical and quantum systems IPAM, January 2009 Simon Trebst Microsoft Station Q University of California, Santa Barbara Collaborators: David Huse,

More information

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation

Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Chiral Haldane-SPT phases of SU(N) quantum spin chains in the adjoint representation Thomas Quella University of Cologne Presentation given on 18 Feb 2016 at the Benasque Workshop Entanglement in Strongly

More information

Luigi Paolasini

Luigi Paolasini Luigi Paolasini paolasini@esrf.fr LECTURE 7: Magnetic excitations - Phase transitions and the Landau mean-field theory. - Heisenberg and Ising models. - Magnetic excitations. External parameter, as for

More information

The Mermin-Wagner Theorem

The Mermin-Wagner Theorem June 24, 2010 Conclusion In one and two dimensions, continuous symmetries cannot be spontaneously broken at finite temperature in systems with sufficiently short-range interactions. Contents 1 How symmetry

More information

Symmetry protected topological phases in quantum spin systems

Symmetry protected topological phases in quantum spin systems 10sor network workshop @Kashiwanoha Future Center May 14 (Thu.), 2015 Symmetry protected topological phases in quantum spin systems NIMS U. Tokyo Shintaro Takayoshi Collaboration with A. Tanaka (NIMS)

More information

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics

Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Quantum s=1/2 antiferromagnet on the Bethe lattice at percolation I. Low-energy states, DMRG, and diagnostics Hitesh J. Changlani, Shivam Ghosh, Sumiran Pujari, Christopher L. Henley Laboratory of Atomic

More information

arxiv: v4 [cond-mat.stat-mech] 11 Apr 2014

arxiv: v4 [cond-mat.stat-mech] 11 Apr 2014 Parallelized Quantum Monte Carlo Algorithm with Nonlocal Worm Updates Akiko Masaki-Kato 1, Takafumi Suzuki 2, Kenji Harada 3, Synge Todo 1,4, and Naoki Kawashima 1 1 Institute for Solid State Physics,

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea

Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets. In collaboration with: Olexei Motrunich & Jason Alicea Critical Spin-liquid Phases in Spin-1/2 Triangular Antiferromagnets In collaboration with: Olexei Motrunich & Jason Alicea I. Background Outline Avoiding conventional symmetry-breaking in s=1/2 AF Topological

More information

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3

Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 Emergent SU(4) symmetry and quantum spin-orbital liquid in 3 α-zrcl3 arxiv:1709.05252 Masahiko G. Yamada the Institute for Solid State Physics, the University of Tokyo with Masaki Oshikawa (ISSP) and George

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Magnetic response of the J 1 -J 2 Spin Hamiltonian and its Implication for FeAs

Magnetic response of the J 1 -J 2 Spin Hamiltonian and its Implication for FeAs 1 Magnetic response of the J 1 -J 2 Spin Hamiltonian and its Implication for FeAs arxiv:0904.3809 Zhihua Yang(SKKU) In collaboration with: Jung Hoon Kim(SKKU), Prof. Jung Hoon Han(SKKU) 5/1/2009 Introduction

More information

A new perspective on long range SU(N) spin models

A new perspective on long range SU(N) spin models A new perspective on long range SU(N) spin models Thomas Quella University of Cologne Workshop on Lie Theory and Mathematical Physics Centre de Recherches Mathématiques (CRM), Montreal Based on work with

More information

Matrix-Product states: Properties and Extensions

Matrix-Product states: Properties and Extensions New Development of Numerical Simulations in Low-Dimensional Quantum Systems: From Density Matrix Renormalization Group to Tensor Network Formulations October 27-29, 2010, Yukawa Institute for Theoretical

More information

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain

Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain TNSAA 2018-2019 Dec. 3-6, 2018, Kobe, Japan Scaling analysis of snapshot spectra in the world-line quantum Monte Carlo for the transverse-field Ising chain Kouichi Seki, Kouichi Okunishi Niigata University,

More information

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 )

Revealing fermionic quantum criticality from new Monte Carlo techniques. Zi Yang Meng ( 孟子杨 ) Revealing fermionic quantum criticality from new Monte Carlo techniques Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators and References Xiao Yan Xu Zi Hong Liu Chuang Chen Gao Pei Pan Yang

More information

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University

Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University PY502, Computational Physics, December 12, 2017 Quantum Annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Advancing Research in Basic Science and Mathematics Example:

More information

Diagrammatic Monte Carlo

Diagrammatic Monte Carlo Sign Problems and Complex Actions, ECT*, Trento, March 2-6, 2009 Diagrammatic Monte Carlo Boris Svistunov University of Massachusetts, Amherst Nikolay Prokof ev Kris Van Houcke (Umass/Ghent) Evgeny Kozik

More information

Surface effects in frustrated magnetic materials: phase transition and spin resistivity

Surface effects in frustrated magnetic materials: phase transition and spin resistivity Surface effects in frustrated magnetic materials: phase transition and spin resistivity H T Diep (lptm, ucp) in collaboration with Yann Magnin, V. T. Ngo, K. Akabli Plan: I. Introduction II. Surface spin-waves,

More information

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1

LPTM. Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets. Andreas Honecker 1 Quantum-Monte-Carlo Approach to the Thermodynamics of Highly Frustrated Spin-½ Antiferromagnets LPTM Laboratoire de Physique Théorique et Modélisation Andreas Honecker 1 Laboratoire de Physique Théorique

More information

Spin liquids in frustrated magnets

Spin liquids in frustrated magnets May 20, 2010 Contents 1 Frustration 2 3 4 Exotic excitations 5 Frustration The presence of competing forces that cannot be simultaneously satisfied. Heisenberg-Hamiltonian H = 1 J ij S i S j 2 ij The ground

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club

Simulating Quantum Systems through Matrix Product States. Laura Foini SISSA Journal Club Simulating Quantum Systems through Matrix Product States Laura Foini SISSA Journal Club 15-04-2010 Motivations Theoretical interest in Matrix Product States Wide spectrum of their numerical applications

More information

News on tensor network algorithms

News on tensor network algorithms News on tensor network algorithms Román Orús Donostia International Physics Center (DIPC) December 6th 2018 S. S. Jahromi, RO, M. Kargarian, A. Langari, PRB 97, 115162 (2018) S. S. Jahromi, RO, PRB 98,

More information

Monte Caro simulations

Monte Caro simulations Monte Caro simulations Monte Carlo methods - based on random numbers Stanislav Ulam s terminology - his uncle frequented the Casino in Monte Carlo Random (pseudo random) number generator on the computer

More information

7 Monte Carlo Simulations of Quantum Spin Models

7 Monte Carlo Simulations of Quantum Spin Models 7 Monte Carlo Simulations of Quantum Spin Models Stefan Wessel Institute for Theoretical Solid State Physics RWTH Aachen University Contents 1 Introduction 2 2 World lines and local updates 2 2.1 Suzuki-Trotter

More information

Spin liquids on ladders and in 2d

Spin liquids on ladders and in 2d Spin liquids on ladders and in 2d MPA Fisher (with O. Motrunich) Minnesota, FTPI, 5/3/08 Interest: Quantum Spin liquid phases of 2d Mott insulators Background: Three classes of 2d Spin liquids a) Topological

More information

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 )

Quantum Monte Carlo investigations of correlated electron systems, present and future. Zi Yang Meng ( 孟子杨 ) Quantum Monte Carlo investigations of correlated electron systems, present and future Zi Yang Meng ( 孟子杨 ) http://ziyangmeng.iphy.ac.cn Collaborators Xiao Yan Xu Yoni Schattner Zi Hong Liu Erez Berg Chuang

More information

Entanglement in Valence-Bond-Solid States and Quantum Search

Entanglement in Valence-Bond-Solid States and Quantum Search Entanglement in Valence-Bond-Solid States and Quantum Search A Dissertation Presented by Ying Xu to The Graduate School in Partial Fulfillment of the Requirements for the Degree of Doctor of Philosophy

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

Tensor network simulations of strongly correlated quantum systems

Tensor network simulations of strongly correlated quantum systems CENTRE FOR QUANTUM TECHNOLOGIES NATIONAL UNIVERSITY OF SINGAPORE AND CLARENDON LABORATORY UNIVERSITY OF OXFORD Tensor network simulations of strongly correlated quantum systems Stephen Clark LXXT[[[GSQPEFS\EGYOEGXMZMXMIWUYERXYQGSYVWI

More information

Quantum entanglement and the phases of matter

Quantum entanglement and the phases of matter Quantum entanglement and the phases of matter University of Cincinnati March 30, 2012 sachdev.physics.harvard.edu HARVARD Sommerfeld-Bloch theory of metals, insulators, and superconductors: many-electron

More information

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden

H ψ = E ψ. Introduction to Exact Diagonalization. Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden H ψ = E ψ Introduction to Exact Diagonalization Andreas Läuchli, New states of quantum matter MPI für Physik komplexer Systeme - Dresden http://www.pks.mpg.de/~aml laeuchli@comp-phys.org Simulations of

More information

Frustration and Area law

Frustration and Area law Frustration and Area law When the frustration goes odd S. M. Giampaolo Institut Ruder Bošković, Zagreb, Croatia Workshop: Exactly Solvable Quantum Chains Natal 18-29 June 2018 Coauthors F. Franchini Institut

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS

LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS LIBERATION ON THE WALLS IN GAUGE THEORIES AND ANTI-FERROMAGNETS Tin Sulejmanpasic North Carolina State University Erich Poppitz, Mohamed Anber, TS Phys.Rev. D92 (2015) 2, 021701 and with Anders Sandvik,

More information

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice

Renormalization of Tensor Network States. Partial order and finite temperature phase transition in the Potts model on irregular lattice Renormalization of Tensor Network States Partial order and finite temperature phase transition in the Potts model on irregular lattice Tao Xiang Institute of Physics Chinese Academy of Sciences Background:

More information

Vortices and other topological defects in ultracold atomic gases

Vortices and other topological defects in ultracold atomic gases Vortices and other topological defects in ultracold atomic gases Michikazu Kobayashi (Kyoto Univ.) 1. Introduction of topological defects in ultracold atoms 2. Kosterlitz-Thouless transition in spinor

More information

3.15. Some symmetry properties of the Berry curvature and the Chern number.

3.15. Some symmetry properties of the Berry curvature and the Chern number. 50 Phys620.nb z M 3 at the K point z M 3 3 t ' sin 3 t ' sin (3.36) (3.362) Therefore, as long as M 3 3 t ' sin, the system is an topological insulator ( z flips sign). If M 3 3 t ' sin, z is always positive

More information

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models

Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models Interaction-induced Symmetry Protected Topological Phase in Harper-Hofstadter models arxiv:1609.03760 Lode Pollet Dario Hügel Hugo Strand, Philipp Werner (Uni Fribourg) Algorithmic developments diagrammatic

More information

arxiv: v2 [cond-mat.stat-mech] 13 Oct 2010

arxiv: v2 [cond-mat.stat-mech] 13 Oct 2010 Markov Chain Monte Carlo Method without Detailed Balance Hidemaro Suwa 1 and Synge Todo 1,2 1 Department of Applied Physics, University of Tokyo, Tokyo 113-8656, Japan 2 CREST, Japan Science and Technology

More information

Quantum mechanics without particles

Quantum mechanics without particles Quantum mechanics without particles Institute Lecture, Indian Institute of Technology, Kanpur January 21, 2014 sachdev.physics.harvard.edu HARVARD Outline 1. Key ideas from quantum mechanics 2. Many-particle

More information

Which Spin Liquid Is It?

Which Spin Liquid Is It? Which Spin Liquid Is It? Some results concerning the character and stability of various spin liquid phases, and Some speculations concerning candidate spin-liquid phases as the explanation of the peculiar

More information

Nematicity and quantum paramagnetism in FeSe

Nematicity and quantum paramagnetism in FeSe Nematicity and quantum paramagnetism in FeSe Fa Wang 1,, Steven A. Kivelson 3 & Dung-Hai Lee 4,5, 1 International Center for Quantum Materials, School of Physics, Peking University, Beijing 100871, China.

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Fermionic partial transpose fermionic entanglement and fermionic SPT phases

Fermionic partial transpose fermionic entanglement and fermionic SPT phases Fermionic partial transpose fermionic entanglement and fermionic SPT phases Shinsei Ryu University of Chicago November 7, 2017 Outline 1. Bosonic case (Haldane chain) What is partial tranpose? Why it is

More information

Vortex States in a Non-Abelian Magnetic Field

Vortex States in a Non-Abelian Magnetic Field Vortex States in a Non-Abelian Magnetic Field Predrag Nikolić George Mason University Institute for Quantum Matter @ Johns Hopkins University SESAPS November 10, 2016 Acknowledgments Collin Broholm IQM

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

Magnetism and Superconductivity in Decorated Lattices

Magnetism and Superconductivity in Decorated Lattices Magnetism and Superconductivity in Decorated Lattices Mott Insulators and Antiferromagnetism- The Hubbard Hamiltonian Illustration: The Square Lattice Bipartite doesn t mean N A = N B : The Lieb Lattice

More information