Rigorous free fermion entanglement renormalization from wavelets

Size: px
Start display at page:

Download "Rigorous free fermion entanglement renormalization from wavelets"

Transcription

1 Computational Complexity and High Energy Physics August 1st, 2017 Rigorous free fermion entanglement renormalization from wavelets arxiv: Jutho Haegeman Ghent University in collaboration with: Brian Swingle, Michael Walter, Jordan Cotler, Glen Evenbly, Volkher Scholz

2 OVERVIEW Tensor networks and quantum field theories MERA: quantum circuits, renormalization, wavelets One-dimensional Dirac fermions Fermi surface: Non-relativistic two-dimensional fermions Rigorous approximation result Outlook and extensions

3 TENSOR NETWORKS Quantum system of N spins: d H =(C d ) N = s 1,s 2,...,s s N 1 s 2 s N s n =1 d N dimensional vector rank N tensor s 1 s 2 s N approximate with a tensor network decomposition Diagrammatic notation vector: matrix: matrix product: Yang-Baxter equation: =

4 TENSOR NETWORKS Variational families of states for quantum many body systems, motivated by the structure of entanglement in low energy states (area law) = (MPS) 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i classical simulation (PEPS) (MERA) Complexity scaling (MPS): Hastings; Arad, Kitaev, Landau, Vazirani, Vidick,

5 AND QUANTUM FIELD THEORY (1) Variational approach to lattice gauge theory (Hamiltonians) Very successful for (1+1)d QFT, e.g. Schwinger model TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, (Partial) string breaking for heavy probe charges: V Q (L)/g (m/g = 1) 25 V Q (L)/g (m/g =0.5) 25 V Q (L)/g (m/g =0.25) Q L g L g L g Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, (2016)

6 AND QUANTUM FIELD THEORY (1) Variational approach to lattice gauge theory (Hamiltonians) Very successful for (1+1)d QFT, e.g. Schwinger model TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, (Partial) string breaking for heavy probe charges: 1.5 Ψ(z)γ 0 Ψ(z) (Q = 4.5) 2 E(z) /g (Q = 4.5) z g z g Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, (2016)

7 AND QUANTUM FIELD THEORY (1) Variational approach to lattice gauge theory (Hamiltonians) Very successful for (1+1)d QFT, e.g. Schwinger model TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, (Partial) string breaking for heavy probe charges: 0.25 S Q (z) (L g = 0.55) x 0.25 S Q (z) (L g = 2.55) 0.25 S Q (z) (L g = 7.35) 0.25 S Q (z) (L g = 13.15) z g z g z g z g Boye Buyens, Jutho Haegeman, Henri Verschelde, Frank Verstraete, Karel Van Acoleyen, PRX 6, (2016)

8 AND QUANTUM FIELD THEORY (1) Variational approach to lattice gauge theory (Hamiltonians) Very successful for (1+1)d QFT, e.g. Schwinger model TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, Real time evolution: quenches, onset of thermalization? E(t)/g E(t)/g E β0 ±0.05/g t g t g t g Boye Buyens, Jutho Haegeman, Florian Hebenstreit, Frank Verstraete, Karel Van Acoleyen, arxiv: N(t) N(t) N β0 ± S(t)

9 AND QUANTUM FIELD THEORY (1) Variational approach to lattice gauge theory (Hamiltonians) Very successful for (1+1)d QFT, e.g. Schwinger model TMR Byrnes et al, B Buyens et al, MC Bañuls et al, S Montangero et al, Can be extended to (2+1)d (and (3+1)d?): first explorations by L Tagliacozzo, E Zohar,

10 AND QUANTUM FIELD THEORY (2) Tensor networks for continuous systems: Continuous MPS: (Verstraete & Cirac, 2010) Chiral condensate in the Gross-Neveu model (N ) λ(λ)σ/ Λ exact a fit b D = 6 D = 8 D = 10 D = 16 Continuous MERA: So far: only Gaussians Interesting analytical tool to investigate relation with holography Advertisement: PhD & PostDoc positions λ -1 (Λ) = [(N - 1)g(Λ) 2 ] -1

11 MERA, RENORMALIZATION & WAVELETS Multiscale entanglement renormalization ansatz (G Vidal) 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i 0i Coarse-grain quantum state Variational ansatz Disentangle high energy degrees of freedom Quantum circuit that prepares state Captures power law decay of correlations, logarithmic violation of area law in (1+1)d, Possible relation with holography (AdS/CFT correspondence)

12 MERA, RENORMALIZATION & WAVELETS Tensor network renormalization interpretation: (G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen) d imaginary time evolution

13 MERA, RENORMALIZATION & WAVELETS Tensor network renormalization interpretation: (G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen) 2d imaginary time evolution

14 MERA, RENORMALIZATION & WAVELETS Tensor network renormalization interpretation: (G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen) 4d imaginary time evolution

15 MERA, RENORMALIZATION & WAVELETS Tensor network renormalization interpretation: (G Evenbly & G Vidal; S Yang, ZC Gu, XG Wen) 4d imaginary time evolution For classical stat mech systems: can also be done using non-negative matrix factorization M. Bal et al, PRL 118, (2017)

16 MERA, RENORMALIZATION & WAVELETS Wavelets and renormalization: multiscale analysis

17 MERA, RENORMALIZATION & WAVELETS Wavelets and renormalization: multiscale analysis

18 MERA, RENORMALIZATION & WAVELETS Wavelets and renormalization: multiscale analysis

19 MERA, RENORMALIZATION & WAVELETS Wavelets and MERA: G Evenbly & S White, PRL 116, (2016) A free fermion MERA (unitaries generated by quadratic operators) implements a wavelet transform at the single particle level. 0i 0i 0i 0i 0i 0i 0i 1i 0i 0i 0i 0i 0i 0i scaling coefficients 0i 0i 0i 0i 0i 0i 0i 0i 1i 0i 0i 0i 0i 0i wavelet coefficients

20 MERA, RENORMALIZATION & WAVELETS Wavelets and MERA: G Evenbly & S White, PRL 116, (2016) A free fermion MERA (unitaries generated by quadratic operators) implements a wavelet transform at the single particle level. 0i 0i 0i 0i 0i 0i 0i 0i 1i 0i 0i 0i 0i 0i wavelet coefficients Free fermion ground state: fill all negative energy modes fill set of modes that span the negative energy subspace (Fermi/Dirac sea) construct wavelets that are completely supported in either positive or negative energy subspace

21 1+1 DIRAC FERMIONS Massless Dirac fermions on the lattice: staggering (Kogut-Susskind) H D = H D = X n Z + b 1,n b 2,n b 2,n b 1,n+1 + b 2,n b 1,n b 1,n+1 b 2,n dk 2 apple b1 (k) b 2 (k) apple 0 e ik 1 e ik 1 0 apple b1 (k) b 2 (k) apple 0 e ik 1 e ik 1 0 apple 0 e ik 1 e ik 1 0 apple 1 1 ie ik/2 ie ik/2 = u(k) =u(k) apple 1 1 ie ik/2 ie ik/2 apple sin(k/2) 0 0 sin(k/2) apple sin(k/2) 0 0 sin(k/2), k 2 [, + ), k 2 [, + ) u(k) = 1 p 2 apple 1 1 isign(k)e ik/2 isign(k)e ik/2 = apple isign(k)e ik/2 1 p2 apple

22 1+1 DIRAC FERMIONS u(k) = 1 p 2 apple 1 1 isign(k)e ik/2 isign(k)e ik/2 = apple isign(k)e ik/2 1 p2 apple A pair of wavelet transforms such that wavelet filters in Fourier domain (g w (k),h w (k)) isign(k)e ik/2 difference. have equal magnitude and a relative phase Scaling filters (g s (k),h s (k)) e ik/2 should have phase difference (half shift or half delay condition) same phase difference for wavelets from higher levels of the transform (scale invariance). Impossible with filters of finite support approximation?

23 1+1 DIRAC FERMIONS Problem considered by Selesnick et al: a family of solutions, h s (k) =e i (k) g s (k) satisfying, in terms of two parameters K and L, leading to filters of width 2(K+L): K = 4 L = 6

24 FERMI SURFACES Non-relativistic fermions hopping at half filling: H 1 = X n2z a na n+1 + a n+1 a n b 1,n =( 1) n a 2n,b 2,n =( 1) n a 2n+1 H D H 2 = X (m,n)2z 2 a m,na m+1,n + a m+1,n a m,n + a m,na m,n+1 + a m,n+1 a m,n b 1,x,y =( 1) x+y a x+y,x y,b 2,x,y =( 1) x+y a x+y+1,x y H = Z [, ) 2 dk x dk y apple b1 (k x,k y ) b 2 (k x,k y ) apple 0 (1 e ik x )(1 e ik y ) (1 e ik x )(1 e ik y ) 0 apple b1 (k x,k y ) b 2 (k x,k y ) u(k x,k y )= apple isign(k x )e ik x/2 apple isign(k y )e ik y/2 1 p 2 apple

25 FERMI SURFACES Branching MERA (Evenbly & Vidal) R Shankar, RG approach to interacting fermions (RMP 66, 129)

26 FERMI SURFACES S 1d MERA (R) apple c 1 + S 1d MERA (R/2) apple...apple c 1 log 2 (R)+O(1) S 2d MERA (R) apple c 2 R + S 2d MERA (R/2) apple...apple 2c 2 R + O(1) S(R) apple c 2 R + 2(R/2)S 1d MERA (R/2) + S(R/2) apple... apple 2c 1 R log 2 R + O(R) [ S(R) apple c 2 R +2 S(R/2) apple apple c 2 R log 2 (R)+O(R)]

27 RIGOROUS APPROXIMATION RESULT Given pair of scaling filters: h s (k) e ik/2 g s (k) apple, 8k 2 [, + ) B = k s k 1 Let: f 2 `2(Z) :a(f) = X n2z f[n]a n G({f i }) = h a (f 1 )...a (f N )a ( f N+1 )...a(f 2N ) i Then: G({f i }) G({f i }) MERA apple 24 p N q C2 L/2 +6 (log 2 (C/ )) 2 Where: C =2 3/2p D({f i })B(K + L) L : number of layers in the MERA

28 RIGOROUS APPROXIMATION RESULT K=L=1 K=L=3

29 OUTLOOK AND EXTENSIONS Extensions Massive theories Pairing term: fermion number fermion parity conservation Outlook Dirac cones, topological insulators,? Relevance for interacting theories? (e.g. with asymptotic freedom)

30 QUESTIONS?

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d

Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Tensor network simulation of QED on infinite lattices: learning from (1 + 1)d, and prospects for (2 + 1)d Román Orús University of Mainz (Germany) K. Zapp, RO, Phys. Rev. D 95, 114508 (2017) Goal of this

More information

Disentangling Topological Insulators by Tensor Networks

Disentangling Topological Insulators by Tensor Networks Disentangling Topological Insulators by Tensor Networks Shinsei Ryu Univ. of Illinois, Urbana-Champaign Collaborators: Ali Mollabashi (IPM Tehran) Masahiro Nozaki (Kyoto) Tadashi Takayanagi (Kyoto) Xueda

More information

Holographic Branching and Entanglement Renormalization

Holographic Branching and Entanglement Renormalization KITP, December 7 th 2010 Holographic Branching and Entanglement Renormalization Glen Evenbly Guifre Vidal Tensor Network Methods (DMRG, PEPS, TERG, MERA) Potentially offer general formalism to efficiently

More information

Tensor network renormalization

Tensor network renormalization Walter Burke Institute for Theoretical Physics INAUGURAL CELEBRATION AND SYMPOSIUM Caltech, Feb 23-24, 2015 Tensor network renormalization Guifre Vidal Sherman Fairchild Prize Postdoctoral Fellow (2003-2005)

More information

Tensor Networks, Renormalization and Holography (overview)

Tensor Networks, Renormalization and Holography (overview) KITP Conference Closing the entanglement gap: Quantum information, quantum matter, and quantum fields June 1 st -5 th 2015 Tensor Networks, Renormalization and Holography (overview) Guifre Vidal KITP Conference

More information

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM

Quantum Fields, Gravity, and Complexity. Brian Swingle UMD WIP w/ Isaac Kim, IBM Quantum Fields, Gravity, and Complexity Brian Swingle UMD WIP w/ Isaac Kim, IBM Influence of quantum information Easy Hard (at present) Easy Hard (at present)!! QI-inspired classical, e.g. tensor networks

More information

Matrix Product Operators: Algebras and Applications

Matrix Product Operators: Algebras and Applications Matrix Product Operators: Algebras and Applications Frank Verstraete Ghent University and University of Vienna Nick Bultinck, Jutho Haegeman, Michael Marien Burak Sahinoglu, Dominic Williamson Ignacio

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, ETH Zurich / EPF Lausanne, Switzerland Collaborators: University of Queensland: Guifre Vidal, Roman Orus, Glen Evenbly, Jacob Jordan University of Vienna: Frank

More information

Quantum Electrodynamics with Ultracold Atoms

Quantum Electrodynamics with Ultracold Atoms Quantum Electrodynamics with Ultracold Atoms Valentin Kasper Harvard University Collaborators: F. Hebenstreit, F. Jendrzejewski, M. K. Oberthaler, and J. Berges Motivation for QED (1+1) Theoretical Motivation

More information

Time-dependent variational principle for quantum many-body systems

Time-dependent variational principle for quantum many-body systems Quantum Information in Quantum Many-Body Physics October 21, 2011 Centre de Recherches Mathematiques, Montréal Time-dependent variational principle for quantum many-body systems PRL 107, 070601 (2011)

More information

Introduction to Tensor Networks: PEPS, Fermions, and More

Introduction to Tensor Networks: PEPS, Fermions, and More Introduction to Tensor Networks: PEPS, Fermions, and More Román Orús Institut für Physik, Johannes Gutenberg-Universität, Mainz (Germany)! School on computational methods in quantum materials Jouvence,

More information

Lecture 3: Tensor Product Ansatz

Lecture 3: Tensor Product Ansatz Lecture 3: Tensor Product nsatz Graduate Lectures Dr Gunnar Möller Cavendish Laboratory, University of Cambridge slide credits: Philippe Corboz (ETH / msterdam) January 2014 Cavendish Laboratory Part I:

More information

It from Qubit Summer School

It from Qubit Summer School It from Qubit Summer School July 27 th, 2016 Tensor Networks Guifre Vidal NSERC Wednesday 27 th 9AM ecture Tensor Networks 2:30PM Problem session 5PM Focus ecture MARKUS HAURU MERA: a tensor network for

More information

Neural Network Representation of Tensor Network and Chiral States

Neural Network Representation of Tensor Network and Chiral States Neural Network Representation of Tensor Network and Chiral States Yichen Huang ( 黄溢辰 ) 1 and Joel E. Moore 2 1 Institute for Quantum Information and Matter California Institute of Technology 2 Department

More information

Entanglement and variational methods for strongly correlated quantum many-body systems

Entanglement and variational methods for strongly correlated quantum many-body systems Entanglement and variational methods for strongly correlated quantum many-body systems Frank Verstraete J. Haegeman, M. Marien, V. Stojevic, K. Van Acoleyen, L. Vanderstraeten D. Nagaj, V. Eissler, M.

More information

Tensor network renormalization

Tensor network renormalization Coogee'15 Sydney Quantum Information Theory Workshop Tensor network renormalization Guifre Vidal In collaboration with GLEN EVENBLY IQIM Caltech UC Irvine Quantum Mechanics 1920-1930 Niels Bohr Albert

More information

From Path Integral to Tensor Networks for AdS/CFT

From Path Integral to Tensor Networks for AdS/CFT Seminar @ Osaka U 2016/11/15 From Path Integral to Tensor Networks for AdS/CFT Kento Watanabe (Center for Gravitational Physics, YITP, Kyoto U) 1609.04645v2 [hep-th] w/ Tadashi Takayanagi (YITP + Kavli

More information

Matrix product approximations to multipoint functions in two-dimensional conformal field theory

Matrix product approximations to multipoint functions in two-dimensional conformal field theory Matrix product approximations to multipoint functions in two-dimensional conformal field theory Robert Koenig (TUM) and Volkher B. Scholz (Ghent University) based on arxiv:1509.07414 and 1601.00470 (published

More information

Quantum Hamiltonian Complexity. Itai Arad

Quantum Hamiltonian Complexity. Itai Arad 1 18 / Quantum Hamiltonian Complexity Itai Arad Centre of Quantum Technologies National University of Singapore QIP 2015 2 18 / Quantum Hamiltonian Complexity condensed matter physics QHC complexity theory

More information

arxiv: v1 [hep-lat] 31 Oct 2014

arxiv: v1 [hep-lat] 31 Oct 2014 arxiv:1411.0020v1 [hep-lat] 31 Oct 2014 Matri product states for Hamiltonian lattice gauge theories a, J. Haegeman a, F. Verstraete ab a Department of Physics and Astronomy, Ghent University, Krijgslaan

More information

Fermionic tensor networks

Fermionic tensor networks Fermionic tensor networks Philippe Corboz, Institute for Theoretical Physics, ETH Zurich Bosons vs Fermions P. Corboz and G. Vidal, Phys. Rev. B 80, 165129 (2009) : fermionic 2D MERA P. Corboz, R. Orus,

More information

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing

Introduction to tensor network state -- concept and algorithm. Z. Y. Xie ( 谢志远 ) ITP, Beijing Introduction to tensor network state -- concept and algorithm Z. Y. Xie ( 谢志远 ) 2018.10.29 ITP, Beijing Outline Illusion of complexity of Hilbert space Matrix product state (MPS) as lowly-entangled state

More information

An introduction to tensornetwork

An introduction to tensornetwork An introduction to tensornetwork states and MERA Sissa Journal Club Andrea De Luca 29/01/2010 A typical problem We are given: A lattice with N sites On each site a C d hilbert space A quantum hamiltonian

More information

Entanglement spectrum and Matrix Product States

Entanglement spectrum and Matrix Product States Entanglement spectrum and Matrix Product States Frank Verstraete J. Haegeman, D. Draxler, B. Pirvu, V. Stojevic, V. Zauner, I. Pizorn I. Cirac (MPQ), T. Osborne (Hannover), N. Schuch (Aachen) Outline Valence

More information

Matrix Product States for Lattice Field Theories

Matrix Product States for Lattice Field Theories a, K. Cichy bc, J. I. Cirac a, K. Jansen b and H. Saito bd a Max-Planck-Institut für Quantenoptik, Hans-Kopfermann-Str. 1, 85748 Garching, Germany b NIC, DESY Zeuthen, Platanenallee 6, 15738 Zeuthen, Germany

More information

Loop optimization for tensor network renormalization

Loop optimization for tensor network renormalization Yukawa Institute for Theoretical Physics, Kyoto University, Japan June, 6 Loop optimization for tensor network renormalization Shuo Yang! Perimeter Institute for Theoretical Physics, Waterloo, Canada Zheng-Cheng

More information

Scale invariance on the lattice

Scale invariance on the lattice Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale invariance on the lattice Guifre Vidal Coogee'16 Sydney Quantum Information Theory Workshop Feb 2 nd - 5 th, 2016 Scale

More information

arxiv: v1 [math-ph] 7 Aug 2016

arxiv: v1 [math-ph] 7 Aug 2016 Analytic Optimization of a MERA network and its Relevance to Quantum Integrability and Wavelet Hiroaki Matsueda Sendai National College of Technology, Sendai 989-3128, Japan arxiv:168.225v1 [math-ph] 7

More information

Holographic Geometries from Tensor Network States

Holographic Geometries from Tensor Network States Holographic Geometries from Tensor Network States J. Molina-Vilaplana 1 1 Universidad Politécnica de Cartagena Perspectives on Quantum Many-Body Entanglement, Mainz, Sep 2013 1 Introduction & Motivation

More information

The density matrix renormalization group and tensor network methods

The density matrix renormalization group and tensor network methods The density matrix renormalization group and tensor network methods Outline Steve White Exploiting the low entanglement of ground states Matrix product states and DMRG 1D 2D Tensor network states Some

More information

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo

Tensor network methods in condensed matter physics. ISSP, University of Tokyo, Tsuyoshi Okubo Tensor network methods in condensed matter physics ISSP, University of Tokyo, Tsuyoshi Okubo Contents Possible target of tensor network methods! Tensor network methods! Tensor network states as ground

More information

Fermionic topological quantum states as tensor networks

Fermionic topological quantum states as tensor networks order in topological quantum states as Jens Eisert, Freie Universität Berlin Joint work with Carolin Wille and Oliver Buerschaper Symmetry, topology, and quantum phases of matter: From to physical realizations,

More information

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks.

IPAM/UCLA, Sat 24 th Jan Numerical Approaches to Quantum Many-Body Systems. QS2009 tutorials. lecture: Tensor Networks. IPAM/UCLA, Sat 24 th Jan 2009 umerical Approaches to Quantum Many-Body Systems QS2009 tutorials lecture: Tensor etworks Guifre Vidal Outline Tensor etworks Computation of expected values Optimization of

More information

Topological Phases in One Dimension

Topological Phases in One Dimension Topological Phases in One Dimension Lukasz Fidkowski and Alexei Kitaev arxiv:1008.4138 Topological phases in 2 dimensions: - Integer quantum Hall effect - quantized σ xy - robust chiral edge modes - Fractional

More information

Preparing Projected Entangled Pair States on a Quantum Computer

Preparing Projected Entangled Pair States on a Quantum Computer Preparing Projected Entangled Pair States on a Quantum Computer Martin Schwarz, Kristan Temme, Frank Verstraete University of Vienna, Faculty of Physics, Boltzmanngasse 5, 1090 Vienna, Austria Toby Cubitt,

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 7 - JGU Mainz Vorstellung der Arbeitsgruppen WS 15-16 recent developments in control of quantum objects (e.g., cold atoms, trapped ions) General Framework

More information

arxiv: v1 [quant-ph] 6 Jun 2011

arxiv: v1 [quant-ph] 6 Jun 2011 Tensor network states and geometry G. Evenbly 1, G. Vidal 1,2 1 School of Mathematics and Physics, the University of Queensland, Brisbane 4072, Australia 2 Perimeter Institute for Theoretical Physics,

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Renormalization of Tensor- Network States Tao Xiang

Renormalization of Tensor- Network States Tao Xiang Renormalization of Tensor- Network States Tao Xiang Institute of Physics/Institute of Theoretical Physics Chinese Academy of Sciences txiang@iphy.ac.cn Physical Background: characteristic energy scales

More information

3 Symmetry Protected Topological Phase

3 Symmetry Protected Topological Phase Physics 3b Lecture 16 Caltech, 05/30/18 3 Symmetry Protected Topological Phase 3.1 Breakdown of noninteracting SPT phases with interaction Building on our previous discussion of the Majorana chain and

More information

arxiv: v1 [hep-lat] 2 Nov 2016

arxiv: v1 [hep-lat] 2 Nov 2016 Density induced phase transitions in QED - A study with matrix product states Mari Carmen Bañuls, 1 Krzysztof Cichy,,3 J. Ignacio Cirac, 1 Karl Jansen, 4 and Stefan Kühn 1 1 Max-Planck-Institut für Quantenoptik,

More information

Quantum many-body systems and tensor networks: simulation methods and applications

Quantum many-body systems and tensor networks: simulation methods and applications Quantum many-body systems and tensor networks: simulation methods and applications Román Orús School of Physical Sciences, University of Queensland, Brisbane (Australia) Department of Physics and Astronomy,

More information

Dirac fermions in condensed matters

Dirac fermions in condensed matters Dirac fermions in condensed matters Bohm Jung Yang Department of Physics and Astronomy, Seoul National University Outline 1. Dirac fermions in relativistic wave equations 2. How do Dirac fermions appear

More information

Simulation of Quantum Many-Body Systems

Simulation of Quantum Many-Body Systems Numerical Quantum Simulation of Matteo Rizzi - KOMET 337 - JGU Mainz Vorstellung der Arbeitsgruppen WS 14-15 QMBS: An interdisciplinary topic entanglement structure of relevant states anyons for q-memory

More information

Universal Topological Phase of 2D Stabilizer Codes

Universal Topological Phase of 2D Stabilizer Codes H. Bombin, G. Duclos-Cianci, D. Poulin arxiv:1103.4606 H. Bombin arxiv:1107.2707 Universal Topological Phase of 2D Stabilizer Codes Héctor Bombín Perimeter Institute collaborators David Poulin Guillaume

More information

arxiv: v1 [quant-ph] 18 Jul 2017

arxiv: v1 [quant-ph] 18 Jul 2017 Implicitly disentangled renormalization arxiv:1707.05770v1 [quant-ph] 18 Jul 017 Glen Evenbly 1 1 Département de Physique and Institut Quantique, Université de Sherbrooke, Québec, Canada (Dated: July 19,

More information

Noise-resilient quantum circuits

Noise-resilient quantum circuits Noise-resilient quantum circuits Isaac H. Kim IBM T. J. Watson Research Center Yorktown Heights, NY Oct 10th, 2017 arxiv:1703.02093, arxiv:1703.00032, arxiv:17??.?????(w. Brian Swingle) Why don t we have

More information

Quantum Algorithms for Quantum Field Theories

Quantum Algorithms for Quantum Field Theories Quantum Algorithms for Quantum Field Theories Stephen Jordan Joint work with Keith Lee John Preskill Science, 336:1130 (2012) Jan 24, 2012 The full description of quantum mechanics for a large system with

More information

Holographic Kondo and Fano Resonances

Holographic Kondo and Fano Resonances Holographic Kondo and Fano Resonances Andy O Bannon Disorder in Condensed Matter and Black Holes Lorentz Center, Leiden, the Netherlands January 13, 2017 Credits Johanna Erdmenger Würzburg Carlos Hoyos

More information

arxiv: v1 [cond-mat.str-el] 7 Aug 2011

arxiv: v1 [cond-mat.str-el] 7 Aug 2011 Topological Geometric Entanglement of Blocks Román Orús 1, 2 and Tzu-Chieh Wei 3, 4 1 School of Mathematics and Physics, The University of Queensland, QLD 4072, Australia 2 Max-Planck-Institut für Quantenoptik,

More information

Positive Tensor Network approach for simulating open quantum many-body systems

Positive Tensor Network approach for simulating open quantum many-body systems Positive Tensor Network approach for simulating open quantum many-body systems 19 / 9 / 2016 A. Werner, D. Jaschke, P. Silvi, M. Kliesch, T. Calarco, J. Eisert and S. Montangero PRL 116, 237201 (2016)

More information

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals

Quantum Field Theory. Kerson Huang. Second, Revised, and Enlarged Edition WILEY- VCH. From Operators to Path Integrals Kerson Huang Quantum Field Theory From Operators to Path Integrals Second, Revised, and Enlarged Edition WILEY- VCH WILEY-VCH Verlag GmbH & Co. KGaA I vh Contents Preface XIII 1 Introducing Quantum Fields

More information

4 Matrix product states

4 Matrix product states Physics 3b Lecture 5 Caltech, 05//7 4 Matrix product states Matrix product state (MPS) is a highly useful tool in the study of interacting quantum systems in one dimension, both analytically and numerically.

More information

From graphene to Z2 topological insulator

From graphene to Z2 topological insulator From graphene to Z2 topological insulator single Dirac topological AL mass U U valley WL ordinary mass or ripples WL U WL AL AL U AL WL Rashba Ken-Ichiro Imura Condensed-Matter Theory / Tohoku Univ. Dirac

More information

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University

Quantum Field Theory. and the Standard Model. !H Cambridge UNIVERSITY PRESS MATTHEW D. SCHWARTZ. Harvard University Quantum Field Theory and the Standard Model MATTHEW D. Harvard University SCHWARTZ!H Cambridge UNIVERSITY PRESS t Contents v Preface page xv Part I Field theory 1 1 Microscopic theory of radiation 3 1.1

More information

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo

Quantum simulation with string-bond states: Joining PEPS and Monte Carlo Quantum simulation with string-bond states: Joining PEPS and Monte Carlo N. Schuch 1, A. Sfondrini 1,2, F. Mezzacapo 1, J. Cerrillo 1,3, M. Wolf 1,4, F. Verstraete 5, I. Cirac 1 1 Max-Planck-Institute

More information

Renormalization of Tensor Network States

Renormalization of Tensor Network States Renormalization of Tensor Network States I. Coarse Graining Tensor Renormalization Tao Xiang Institute of Physics Chinese Academy of Sciences txiang@iphy.ac.cn Numerical Renormalization Group brief introduction

More information

Efficient description of many body systems with prjected entangled pair states

Efficient description of many body systems with prjected entangled pair states Efficient description of many body systems with prjected entangled pair states J. IGNACIO CIRAC Workshop on Quantum Information Science and many-body systems, National Cheng Kung University, Tainan, Taiwan,

More information

Effective Field Theories of Topological Insulators

Effective Field Theories of Topological Insulators Effective Field Theories of Topological Insulators Eduardo Fradkin University of Illinois at Urbana-Champaign Workshop on Field Theoretic Computer Simulations for Particle Physics and Condensed Matter

More information

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France

Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN. Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France Shunsuke Furukawa Condensed Matter Theory Lab., RIKEN in collaboration with Gregoire Misguich Vincent Pasquier Service de Physique Theorique, CEA Saclay, France : ground state of the total system Reduced

More information

Topological Kondo Insulator SmB 6. Tetsuya Takimoto

Topological Kondo Insulator SmB 6. Tetsuya Takimoto Topological Kondo Insulator SmB 6 J. Phys. Soc. Jpn. 80 123720, (2011). Tetsuya Takimoto Department of Physics, Hanyang University Collaborator: Ki-Hoon Lee (POSTECH) Content 1. Introduction of SmB 6 in-gap

More information

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model

Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Momentum-space and Hybrid Real- Momentum Space DMRG applied to the Hubbard Model Örs Legeza Reinhard M. Noack Collaborators Georg Ehlers Jeno Sólyom Gergely Barcza Steven R. White Collaborators Georg Ehlers

More information

MERA for Spin Chains with Critical Lines

MERA for Spin Chains with Critical Lines MERA for Spin Chains with Critical Lines Jacob C. Bridgeman Aroon O Brien Stephen D. Bartlett Andrew C. Doherty ARC Centre for Engineered Quantum Systems, The University of Sydney, Australia January 16,

More information

Local Algorithms for 1D Quantum Systems

Local Algorithms for 1D Quantum Systems Local Algorithms for 1D Quantum Systems I. Arad, Z. Landau, U. Vazirani, T. Vidick I. Arad, Z. Landau, U. Vazirani, T. Vidick () Local Algorithms for 1D Quantum Systems 1 / 14 Many-body physics Are physical

More information

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories

Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories Universal terms in the Entanglement Entropy of Scale Invariant 2+1 Dimensional Quantum Field Theories Eduardo Fradkin Department of Physics and Institute for Condensed Matter Theory, University of Illinois

More information

arxiv: v2 [quant-ph] 31 Oct 2013

arxiv: v2 [quant-ph] 31 Oct 2013 Quantum Criticality with the Multi-scale Entanglement Renormalization Ansatz arxiv:1109.5334v2 [quant-ph] 31 Oct 2013 G. Evenbly 1 and G. Vidal 2 1 The University of Queensland, Brisbane, Queensland 4072,

More information

Quantum phase transitions in condensed matter physics, with connections to string theory

Quantum phase transitions in condensed matter physics, with connections to string theory Quantum phase transitions in condensed matter physics, with connections to string theory sachdev.physics.harvard.edu HARVARD High temperature superconductors Cuprates High temperature superconductors Pnictides

More information

Machine Learning with Quantum-Inspired Tensor Networks

Machine Learning with Quantum-Inspired Tensor Networks Machine Learning with Quantum-Inspired Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 RIKEN AICS - Mar 2017 Collaboration with David

More information

Matrix product states for the fractional quantum Hall effect

Matrix product states for the fractional quantum Hall effect Matrix product states for the fractional quantum Hall effect Roger Mong (California Institute of Technology) University of Virginia Feb 24, 2014 Collaborators Michael Zaletel UC Berkeley (Stanford/Station

More information

Topological Insulators in 3D and Bosonization

Topological Insulators in 3D and Bosonization Topological Insulators in 3D and Bosonization Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter: bulk and edge Fermions and bosons on the (1+1)-dimensional

More information

Composite Dirac liquids

Composite Dirac liquids Composite Dirac liquids Composite Fermi liquid non-interacting 3D TI surface Interactions Composite Dirac liquid ~ Jason Alicea, Caltech David Mross, Andrew Essin, & JA, Physical Review X 5, 011011 (2015)

More information

arxiv: v2 [cond-mat.str-el] 28 Apr 2010

arxiv: v2 [cond-mat.str-el] 28 Apr 2010 Simulation of strongly correlated fermions in two spatial dimensions with fermionic Projected Entangled-Pair States arxiv:0912.0646v2 [cond-mat.str-el] 28 Apr 2010 Philippe Corboz, 1 Román Orús, 1 Bela

More information

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India.

Entanglement Entropy In Gauge Theories. Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India. Entanglement Entropy In Gauge Theories Sandip Trivedi Tata Institute of Fundamental Research, Mumbai, India. On The Entanglement Entropy For Gauge Theories, arxiv: 1501.2593 Sudip Ghosh, Ronak Soni and

More information

Gravity Actions from Tensor Networks

Gravity Actions from Tensor Networks Gravity Actions from Tensor Networks [hep-th/1609.04645] with T. Takayanagi and K. Watanabe and ongoing work with P. Caputa, N. Kundu, T. Takayanagi, K. Watanabe Masamichi Miyaji Yukawa Institute for Theoretical

More information

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School

T ensor N et works. I ztok Pizorn Frank Verstraete. University of Vienna M ichigan Quantum Summer School T ensor N et works I ztok Pizorn Frank Verstraete University of Vienna 2010 M ichigan Quantum Summer School Matrix product states (MPS) Introduction to matrix product states Ground states of finite systems

More information

AC conductivity of a holographic strange metal

AC conductivity of a holographic strange metal AC conductivity of a holographic strange metal F. Peña-Benítez INFN - Perugia 1507.05633 in collaboration with Elias Kiritsis Workshop on Holography and Condensed Matter 1 motivation holography is a good

More information

Universal phase transitions in Topological lattice models

Universal phase transitions in Topological lattice models Universal phase transitions in Topological lattice models F. J. Burnell Collaborators: J. Slingerland S. H. Simon September 2, 2010 Overview Matter: classified by orders Symmetry Breaking (Ferromagnet)

More information

Time Evolving Block Decimation Algorithm

Time Evolving Block Decimation Algorithm Time Evolving Block Decimation Algorithm Application to bosons on a lattice Jakub Zakrzewski Marian Smoluchowski Institute of Physics and Mark Kac Complex Systems Research Center, Jagiellonian University,

More information

(Effective) Field Theory and Emergence in Condensed Matter

(Effective) Field Theory and Emergence in Condensed Matter (Effective) Field Theory and Emergence in Condensed Matter T. Senthil (MIT) Effective field theory in condensed matter physics Microscopic models (e.g, Hubbard/t-J, lattice spin Hamiltonians, etc) `Low

More information

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models

Supersymmetry breaking and Nambu-Goldstone fermions in lattice models YKIS2016@YITP (2016/6/15) Supersymmetry breaking and Nambu-Goldstone fermions in lattice models Hosho Katsura (Department of Physics, UTokyo) Collaborators: Yu Nakayama (IPMU Rikkyo) Noriaki Sannomiya

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

A new perspective on long range SU(N) spin models

A new perspective on long range SU(N) spin models A new perspective on long range SU(N) spin models Thomas Quella University of Cologne Workshop on Lie Theory and Mathematical Physics Centre de Recherches Mathématiques (CRM), Montreal Based on work with

More information

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity

Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity Review of Holographic (and other) computations of Entanglement Entropy, and its role in gravity Entanglement Entropy what is entanglement entropy? general tool; divide quantum system into two parts and

More information

Quantum Simulation. 9 December Scott Crawford Justin Bonnar

Quantum Simulation. 9 December Scott Crawford Justin Bonnar Quantum Simulation 9 December 2008 Scott Crawford Justin Bonnar Quantum Simulation Studies the efficient classical simulation of quantum circuits Understanding what is (and is not) efficiently simulable

More information

Field Theory Description of Topological States of Matter

Field Theory Description of Topological States of Matter Field Theory Description of Topological States of Matter Andrea Cappelli, INFN Florence (w. E. Randellini, J. Sisti) Outline Topological states of matter Quantum Hall effect: bulk and edge Effective field

More information

Compensating strong coupling with large charge

Compensating strong coupling with large charge Compensating strong coupling with large charge Orestis Loukas Institute for Theoretical Physics and Albert Einstein Center for Fundamental Physics, Bern based on arxiv: 1610.04495, 1612.08985 together

More information

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012

Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Entanglement, holography, and strange metals Gordon Research Conference Correlated Electron Systems Mount Holyoke, June 27, 2012 Lecture at the 100th anniversary Solvay conference, Theory of the Quantum

More information

3.14. The model of Haldane on a honeycomb lattice

3.14. The model of Haldane on a honeycomb lattice 4 Phys60.n..7. Marginal case: 4 t Dirac points at k=(,). Not an insulator. No topological index...8. case IV: 4 t All the four special points has z 0. We just use u I for the whole BZ. No singularity.

More information

Defining Chiral Gauge Theories Beyond Perturbation Theory

Defining Chiral Gauge Theories Beyond Perturbation Theory Defining Chiral Gauge Theories Beyond Perturbation Theory Lattice Regulating Chiral Gauge Theories Dorota M Grabowska UC Berkeley Work done with David B. Kaplan: Phys. Rev. Lett. 116 (2016), no. 21 211602

More information

A Holographic Model of the Kondo Effect (Part 1)

A Holographic Model of the Kondo Effect (Part 1) A Holographic Model of the Kondo Effect (Part 1) Andy O Bannon Quantum Field Theory, String Theory, and Condensed Matter Physics Kolymbari, Greece September 1, 2014 Credits Based on 1310.3271 Johanna Erdmenger

More information

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed

Helicity/Chirality. Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Helicity/Chirality Helicities of (ultra-relativistic) massless particles are (approximately) conserved Right-handed Left-handed Conservation of chiral charge is a property of massless Dirac theory (classically)

More information

Machine Learning with Tensor Networks

Machine Learning with Tensor Networks Machine Learning with Tensor Networks E.M. Stoudenmire and David J. Schwab Advances in Neural Information Processing 29 arxiv:1605.05775 Beijing Jun 2017 Machine learning has physics in its DNA # " # #

More information

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington)

Anomalous hydrodynamics and gravity. Dam T. Son (INT, University of Washington) Anomalous hydrodynamics and gravity Dam T. Son (INT, University of Washington) Summary of the talk Hydrodynamics: an old theory, describing finite temperature systems The presence of anomaly modifies hydrodynamics

More information

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa

Entanglement signatures of QED3 in the kagome spin liquid. William Witczak-Krempa Entanglement signatures of QED3 in the kagome spin liquid William Witczak-Krempa Aspen, March 2018 Chronologically: X. Chen, KITP Santa Barbara T. Faulkner, UIUC E. Fradkin, UIUC S. Whitsitt, Harvard S.

More information

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE

SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE SPIN-LIQUIDS ON THE KAGOME LATTICE: CHIRAL TOPOLOGICAL, AND GAPLESS NON-FERMI-LIQUID PHASE ANDREAS W.W. LUDWIG (UC-Santa Barbara) work done in collaboration with: Bela Bauer (Microsoft Station-Q, Santa

More information

Many-Body physics meets Quantum Information

Many-Body physics meets Quantum Information Many-Body physics meets Quantum Information Rosario Fazio Scuola Normale Superiore, Pisa & NEST, Istituto di Nanoscienze - CNR, Pisa Quantum Computers Interaction between qubits two-level systems Many-Body

More information

An origin of light and electrons a unification of gauge interaction and Fermi statistics

An origin of light and electrons a unification of gauge interaction and Fermi statistics An origin of light and electrons a unification of gauge interaction and Fermi statistics Michael Levin and Xiao-Gang Wen http://dao.mit.edu/ wen Artificial light and quantum orders... PRB 68 115413 (2003)

More information

Valence Bonds in Random Quantum Magnets

Valence Bonds in Random Quantum Magnets Valence Bonds in Random Quantum Magnets theory and application to YbMgGaO 4 Yukawa Institute, Kyoto, November 2017 Itamar Kimchi I.K., Adam Nahum, T. Senthil, arxiv:1710.06860 Valence Bonds in Random Quantum

More information

arxiv: v2 [hep-th] 18 Feb 2011

arxiv: v2 [hep-th] 18 Feb 2011 Applying the variational principle to (1 + 1) dimensional relativistic quantum field theories arxiv:16.249v2 [hep-th] 18 Feb 211 UGent, Department of Physics and Astronomy, Krijgslaan 281 S9, B-9 Gent,

More information

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab

The Standard Model of Electroweak Physics. Christopher T. Hill Head of Theoretical Physics Fermilab The Standard Model of Electroweak Physics Christopher T. Hill Head of Theoretical Physics Fermilab Lecture I: Incarnations of Symmetry Noether s Theorem is as important to us now as the Pythagorean Theorem

More information