Quantum Stochastic Maps and Frobenius Perron Theorem

Size: px
Start display at page:

Download "Quantum Stochastic Maps and Frobenius Perron Theorem"

Transcription

1 Quantum Stochastic Maps and Frobenius Perron Theorem Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Institute of Physics, Jagiellonian University, Cracow, Poland and Center for Theoretical Physics, Polish Academy of Sciences KCIK Sopot, November 30, 2012 KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

2 Pure states in a finite dimensional Hilbert space H N Qubit = quantum bit; N = 2 ψ = cos ϑ eiφ sin ϑ 2 0 P 1 = Bloch sphere for N = 2 pure states Space of pure states for an arbitrary N: a complex projective space P N 1 of 2N 2 real dimensions. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

3 Unitary evolution Fubini-Study distance in P N 1 D FS ( ψ, ϕ ) := arccos ψ ϕ Unitary evolution Let U = exp(iht). Then ψ = U ψ. Since ψ ϕ 2 = ψ U U ϕ 2 any unitary evolution is a rotation in P N 1 hence it is an isometry (with respect to any standard distance!) Classical limit: what happend for large N? How an isometry may lead to classically chaotic dynamics? The limits t and N do not commute. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

4 Interacting Systems & Mixed Quantum States Set M N of all mixed states of size N M N := {ρ : H N H N ; ρ = ρ, ρ 0, Trρ = 1} example: M 2 = B 3 Ê 3 - Bloch ball with all pure states at the boundary The set M N is compact and convex: ρ = i a i ψ i ψ i where a i 0 and i a i = 1. It has N 2 1 real dimensions, M N Ê N2 1. How the set of all N = 3 mixed states looks like? An 8 dimensional convex set with only 4 dimensional subset of pure (extremal) states, which belong to its 7 dim boundary KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

5 Quantum maps Quantum operation: linear, completely positive trace preserving map positivity: Φ(ρ) 0, ρ M N complete positivity: [Φ ½ K ](σ) 0, σ M KN and K = 2, 3,... Enviromental form (interacting quantum system!) ρ = Φ(ρ) = Tr E [U (ρ ω E ) U ]. where ω E is an initial state of the environment while UU = ½. Kraus form ρ = Φ(ρ) = i A i ρa i, where the Kraus operators satisfy i A i A i = ½, which implies that the trace is preserved. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

6 Classical probabilistic dynamics & Markov chains Stochastic matrices Classical states: N-point probability distribution, p = {p 1,...p N }, where p i 0 and N i=1 p i = 1 Discrete dynamics: p i = S ij p j, where S is a stochastic matrix of size N and maps the simplex of classical states into itself, S : N 1 N 1. Frobenius Perron theorem Let S be a stochastic matrix: a) S ij 0 for i, j = 1,...,N, b) N i=1 S ij = 1 for all j = 1,...,N. Then i) the spectrum {z i } N i=1 of S belongs to the unit disk, ii) the leading eigenvalue equals unity, z 1 = 1, iii) the corresponding eigenstate p inv is invariant, Sp inv = p inv. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

7 Quantum stochastic maps (trace preserving, CP) Superoperator Φ : M N M N A quantum operation can be described by a matrix Φ of size N 2, ρ = Φρ or ρ mµ = Φmµ nν ρ nν. The superoperator Φ can be expressed in terms of the Kraus operators A i, Φ = i A i Ā i. Dynamical Matrix D: Sudarshan et al. (1961) obtained by reshuffling of a 4 index matrix Φ is Hermitian, Dmn µν := Φmµ nν, so that D Φ = D Φ =: ΦR. Theorem of Choi (1975). A map Φ is completely positive (CP) if and only if the dynamical matrix D Φ is positive, D 0. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

8 Spectral properties of a superoperator Φ Quantum analogue of the Frobenious-Perron theorem Let Φ represent a stochastic quantum map, i.e. a ) Φ R 0; (Choi theorem) b ) Tr A Φ R = ½ k Φ kk = δ ij. (trace preserving condition) ij Then i ) the spectrum {z i } N2 i=1 of Φ belongs to the unit disk, ii ) the leading eigenvalue equals unity, z 1 = 1, iii ) the corresponding eigenstate (with N 2 components) forms a matrix ω of size N, which is positive, ω 0, normalized, Trω = 1, and is invariant under the action of the map, Φ(ω) = ω. Classical case In the case of a diagonal dynamical matrix, D ij = d i δ ij reshaping its diagonal {d i } of length N 2 one obtains a matrix of size N, where S ij = D ii, of size N which is stochastic and recovers the standard F P theorem. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27 jj

9 Decoherence for quantum states and quantum maps Quantum states classical states = diagonal matrices Decoherence of a state: ρ ρ = diag(ρ) Quantum maps classical maps = stochastic matrices Decoherence of a map: The Choi matrix becomes diagonal, D D = diag(d) so that the map Φ = D R D R S where for any Kraus decomposition defining Φ(ρ) = i A iρa i the corresponding classical map S is given by the Hadamard product, S = i A i Āi If a quantum map Φ is trace preserving, i A i A i = ½ then the classical map S is stochastic, j S ij = 1. If additionally a quantum map Φ is unital, i A ia i = ½ then the classical map S is bistochastic, j S ij = i S ij = 1. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

10 Exemplary spectra of (typical) superoperators 1 Im(z) a) N = 2 1 Im(z) b) N = Re(z) Re(z) Spectra of several random superoperators Φ for a) N = 2 and b) N = 3 contain: i) the leading eigenvalue z 1 = 1 corresponding to the invariant state ω, ii) real eigenvalues, iii) complex eigenvalues inside the disk of radius r = z 2 1. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

11 Random (classical) stochastic matrices Ginibre ensemble of complex matrices Square matrix of size N, all elements of which are independent random complex Gaussian variables. An algorithm to generate S at random: 1) take a matrix X form the complex Ginibre ensemble 2) define the matrix S, S ij := X ij 2 / N X ij 2, which is stochastic by construction: each of its columns forms an independent random vector distributed uniformly in the probability simplex N 1. i=1 KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

12 Random quantum states How to generate a mixed quantum state at random? 1) Fix M 1 and take a N M random complex Ginibre matrix X; 2) Write down the positive matrix Y := XX, 3) Renormalize it to get a random state ρ, ρ := Y TrY. This matrix is positive, ρ 0 and normalised, Trρ = 1, so it represents a quantum state! Special case of M = N (square Ginibre matrices) Then random states are distributed uniformly with respect to the Hilbert-Schmidt (flat) measure, e.g. for M = N = 2 random mixed states cover uniformly the interior of the Bloch ball. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

13 Random (quantum) stochastic maps An algorithm to generate Φ at random: 1) Fix M 1 and take a N 2 M random complex Ginibre matrix X; 2) Find the positive matrix Y := Tr A XX and its square root Y ; 3) Write the dynamical matrix (Choi matrix) D = (½ N 1 Y )XX (½ N 1 Y ) ; 4) Reshuffle the Choi matrix to obtain the superoperator Φ = D R and use to produce a random map, ρ mµ = Φmµ ρ nν. nν Then Tr A D = ½, so the map Φ obtained in this way is stochastic! i.e. Φ is completely positive and trace preserving KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

14 Random stochastic maps II Probability distribution for random maps P(D) det(d M N2 ) δ(tr A D ½), In the special case M = N 2 the factor with the determinant vanishes, so there are no other constraints on the distribution of the random Choi matrix D, besides the partial trace relation, Tr A D = ½. Interaction with M dimensional enviroment 1 ) Chose a random unitary matrix U according to the Haar measure on U(NM) 2 ) Construct a random map defining ρ = Tr M [U(ρ ν ν )U ], where ν H M is an arbitrary (fixed) pure state of the environment. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

15 Bloch vector representation of any state ρ ρ = N 2 1 i=0 τ i λ i where λ i are generators of SU(N) such that tr ( λ i λ j) = δ ij and λ 0 = ½/ N and τ i are expansion coefficients. Since ρ = ρ, the generalized Bloch vector τ = [τ 0,...,τ N 2 1] is real. Stochastic map Φ in the Bloch representation The action of the map Φ can be represented as τ = Φ(τ) = Cτ + κ, where C is a real, asymmetric contraction [ ] matrix of size N 2 1 while κ is 1 0 a translation vector. Thus Φ = and the eigenvalues of C are κ C also eigenvalues of Φ. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

16 Random maps & random matrices Full rank, symmetric case M = N 2 For large N the measure for C can be described by the real Ginibre ensemble of non-hermitian Gaussian matrices. Spectral density in the unit disk The spectrum of Φ consists of: i) the leading eigenvalue z 1 = 1, ii) the component at the real axis, the distribution of which is asymptotically given by the step function P(x) = 1 2Θ(x 1)Θ(1 x), iii) complex eigenvalues, which cover the disk of radius r = z 2 1 uniformly according to the Girko distribution. Subleading eigenvalue r = z 2 The radius r is determined by the trace condition: Since the avearge TrD 2 = TrΦΦ const then r 1/N so the spectrum of the rescaled matrix Φ := NΦ covers the entire unit disk. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

17 Spectral density for random stochastic maps Numerical results a) Distribution of complex eigenvalues of 10 4 rescaled random operators Φ = NΦ already for N = 10 can be approximated by the circle law of Girko. b) Distribution of real eigenvalues P(x) of Φ plotted for N = 2, 3, 7 and 14 tends to the step function! KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

18 Convergence to equilibrium and decoherence rate Average trace distance to invariant state ω = Φ(ω) L(t) = Tr Φ t (ρ 0 ) ω ψ, where the average is performed over an ensemble of initially pure random states, ρ 0 = ψ ψ. Numerical result confirm an exponential convergence, L(t) exp( αt). a) Average trace distance of random pure states to the invariant state of Φ as a function of time for M = N 2 and N = 4( ), 6( ), 8( ). b) mean convergence rate α Φ scales as ln N = 1 2 lnm KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

19 Unistochastic Maps defined by an interaction of the ancilla of the same dimension initially in the maximally mixed state, ρ = Φ U (ρ) = Tr env [ U(ρ 1 N ½ N)U ] Unistochastic maps are unital, Φ U (½) = ½, hence bistochastic. Is every bistochastic map unistochastic? No! One qubit bistochastic maps = Pauli channels, ρ = Φ p (ρ) Φ p (ρ) = 3 i=0 p i σ i ρσ i, where p i = 1 while σ 0 = ½ and remaining three σ i denote Pauli matrices. Let η = (η 1, η 2, η 3 ) be the damping vector containing three axis of the ellipsoid - the image of the Bloch ball by a bistochastic map. Set B 2 of one-qubit bistochastic maps = regular tetrahedron with corners at η = (1, 1, 1), (1, 1, 1), ( 1, 1, 1), ( 1, 1, 1) corresponding to σ i with i = 0,...,3. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

20 One Qubit Unistochastic Maps Unistochastic maps do satisfy following restrictions for the damping vector η = (η 1, η 2, η 3 ) η 1 η 2 η 3, η 2 η 3 η 1, η 3 η 1 η 2. The set U 2 forms a (non-convex!) subset of the tetrahedron B 2 of bistochastic maps, Musz, Kuś Życzkowski, 2012 Example: The following Pauli channel Φ p (ρ) = 3 i=1 1 3 σ iρσ i, of rank three is not unistochastic. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

21 Interacting quantum dynamical systems Generalized quantum baker map with measurements a) Quantisation [ of Balazs and ] Voros applied for the asymmetric map B = F FN/K 0 N, where N/K Æ. 0 F N(K 1)/K where F N denotes the Fourier matrix of size N. Then ρ = Bρ i B b) M measurement operators projecting into orthogonal subspaces ρ i+1 = M i=1 P iρ P i c) vertical shift by /2, (Alicki, Loziński, Pakoński, Życzkowski 2004) Standard classical model K = 2, dynamical entropy H = ln2; Asymmetric model, K > 2, entropy decreases to zero as K. Classical limit: N with K N. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

22 Exemplary spectra of superoperator for L fold generalized baker map B L & measurement with M Kraus operators for N = 64 and M = 2: 1 a) 1 b) 1 c) K = 64, L = K = 4, L = K = L = 32 a) weak chaos (K = 64 and L = 1), b) strong chaos (K = 4 and L = 4) universal behaviour: λ 1 = 1 and uniform disk of eigenvalues of radius R, c) weak chaos (K = 32 and L = 32). KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

23 Random quantum operation (stochastic maps) a) Interaction with M dim. enviroment (Cappellini et al. 2009) 1) Fix the size of ancilla M 1, 2) Chose a random unitary matrix U according to the Haar measure 3) Take a fixed pure state ν H M and construct a random map ρ = Tr M [U(ρ ν ν )U ], b) Random external fields (bistochastic) Φ R (ρ) = M p m U m ρu m m=1 with p m = 1, where U m are random Haar unitary matrices, U m U m = ½, m = 1,,,M. c) Projected Unitary Matrices Φ P (ρ) = M m=1 P muρu P m, where U is a random Haar unitary and P m = P m = P 2 m are projection operators on mutually orthogonal subspaces of the same dimension d = N/M. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27 m

24 Exemplary spectra of superoperators for random operations acting N = 64 dim Hilbert space H 64 with M = 2 Kraus operators 1 a) 1 1 b) c) 0.5 im(λ) re(λ) re(λ) re(λ) a) ensemble Φ E of random coupling with an environment, b) ensemble Φ R of Random external fields, c) ensemble Φ P of Projected Unitary Matrices this ensemble describes well the deterministic generalized quantum baker map (under the assumption of strong chaos and strong decoherence!) KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

25 Radius R of the essential spectrum If measurement is done by projection on M subspaces of the same size d = N/M the radius scales as R 1/ M. 1 1 Im λ 0 Im λ Re λ Re λ Spectra of superoperator of generalized baker map for N = 64, a) M = 2, R 1/ 2, b) M = 8, R 1/ 8, c) Radius R as a function of the number M of Kraus operators for baker map (+) and random operations ( ). The radius R determines the decoherence rate hskip 1.5cm and the speed of convergence to equilibrium! KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

26 Concluding Remarks I Quantum Chaos: a) in case of closed systems one studies unitary evolution operators and characterizes their spectral properties, b) for open, interacting systems one analyzes non unitary time evolution described by quantum stochastic maps. a link between a) open quantum systems b) ensembles of random operations c) real Ginibre ensemble of random matrices was established. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

27 Concluding Remarks II We analyzed spectral properties of quantum stochastic maps and formulated a quantum analogue of the Frobenius-Perron theorem. Universality of the spectra: in the case of i) strong chaos and ii) strong decoherence (e.g. projection onto M subspaces of the same size) the spectra consist of a leading eigenvalue λ 1 = 1 and other eigenvalues covering the disk of radius R 1/ M. Sequential action of a fixed map Φ brings exponentially fast all pure states to the invariant state ω = Φ(ω). The rate of convergence α is determined by modulus of the subleading eigenvalue R = λ 2 as α = lnr. In the case of weak decoherence the spectrum is non-universal. KŻ (IF UJ/CFT PAN ) Quantum Frobenius Perron November 30, / 27

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

arxiv: v2 [nlin.si] 15 Oct 2008

arxiv: v2 [nlin.si] 15 Oct 2008 Random Quantum Operations Wojciech Bruzda 1, Valerio Cappellini 1, Hans-Jürgen Sommers 2, and Karol Życzkowski1,3 1 Mark Kac Complex Systems Research Centre, Institute of Physics, Jagiellonian University,

More information

Induced Ginibre Ensemble and random operations

Induced Ginibre Ensemble and random operations Induced Ginibre Ensemble and random operations Karol Życzkowski in collaboration with Wojciech Bruzda, Marek Smaczyński, Wojciech Roga Jonith Fischmann, Boris Khoruzhenko (London), Ion Nechita (Touluse),

More information

Structured Hadamard matrices and quantum information

Structured Hadamard matrices and quantum information Structured Hadamard matrices and quantum information Karol Życzkowski in collaboration with Adam G asiorowski, Grzegorz Rajchel (Warsaw) Dardo Goyeneche (Concepcion/ Cracow/ Gdansk) Daniel Alsina, José

More information

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Karol Życzkowski Institute of Physics, Jagiellonian University, Cracow and Center for Theoretical Physics, PAS, Warsaw

More information

Quantum chaos in composite systems

Quantum chaos in composite systems Quantum chaos in composite systems Karol Życzkowski in collaboration with Lukasz Pawela and Zbigniew Pucha la (Gliwice) Smoluchowski Institute of Physics, Jagiellonian University, Cracow and Center for

More information

arxiv: v1 [quant-ph] 15 Mar 2010

arxiv: v1 [quant-ph] 15 Mar 2010 Universality of spectra for interacting quantum chaotic systems Wojciech Bruzda, Marek Smaczyński, Valerio Cappellini, Hans-Jürgen Sommers 2, and Karol Życzkowski,3 Mark Kac Complex Systems Research Centre,

More information

arxiv:quant-ph/ v1 20 Jan 2004

arxiv:quant-ph/ v1 20 Jan 2004 On duality between quantum maps and quantum states Karol Życzkowski 1,2 and Ingemar Bengtsson 3 1 Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, ul. Reymonta 4, 30-059 Kraków, Poland 2

More information

Numerical range and random matrices

Numerical range and random matrices Numerical range and random matrices Karol Życzkowski in collaboration with P. Gawron, J. Miszczak, Z. Pucha la (Gliwice), C. Dunkl (Virginia), J. Holbrook (Guelph), B. Collins (Ottawa) and A. Litvak (Edmonton)

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Restricted Numerical Range and some its applications

Restricted Numerical Range and some its applications Restricted Numerical Range and some its applications Karol Życzkowski in collaboration with P. Gawron, J. Miszczak, Z. Pucha la (Gliwice), L. Skowronek (Kraków), M.D. Choi (Toronto), C. Dunkl (Virginia)

More information

Composition of quantum states and dynamical subadditivity

Composition of quantum states and dynamical subadditivity IOP PUBLISHIG JOURAL OF PHYSICS A: MATHEMATICAL AD THEORETICAL J. Phys. A: Math. Theor. 41 (2008) 035305 (15pp) doi:10.1088/1751-8113/41/3/035305 Composition of quantum states and dynamical subadditivity

More information

Violation of CP symmetry. Charles Dunkl (University of Virginia)

Violation of CP symmetry. Charles Dunkl (University of Virginia) Violation of CP symmetry form a point of view of a mathematician Karol Życzkowski in collaboration with Charles Dunkl (University of Virginia) J. Math. Phys. 50, 123521 (2009). ZFCz IF UJ, Kraków January

More information

An Interpolation Problem by Completely Positive Maps and its. Quantum Cloning

An Interpolation Problem by Completely Positive Maps and its. Quantum Cloning An Interpolation Problem by Completely Positive Maps and its Application in Quantum Cloning College of Mathematics and Information Science, Shaanxi Normal University, Xi an, China, 710062 gzhihua@tom.com

More information

Universality of spectra for interacting quantum chaotic systems

Universality of spectra for interacting quantum chaotic systems Universality of spectra for interacting quantum chaotic systems Wojciech Bruzda, arek Smaczyński, Valerio Cappellini, Hans-Jürgen Sommers, 2 and Karol Życzkowski,3 ark Kac Complex Systems Research Centre,

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

Maximally entangled states and combinatorial designes

Maximally entangled states and combinatorial designes Maximally entangled states and combinatorial designes Karol Życzkowski in collaboration with Dardo Goyeneche (Concepcion/ Cracow/ Warsaw) Jagiellonian University (Cracow) & Polish Academy of Sciences (Warsaw)

More information

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Jagiellonian University, Cracow,

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

Complex Hadamard matrices and some of their applications

Complex Hadamard matrices and some of their applications Complex Hadamard matrices and some of their applications Karol Życzkowski in collaboration with W. Bruzda and W. S lomczyński (Cracow) W. Tadej (Warsaw) and I. Bengtsson (Stockholm) Institute of Physics,

More information

Composition of quantum operations and products of random matrices

Composition of quantum operations and products of random matrices Composition of quantum operations and products of random matrices Wojciech Roga 1, Marek Smaczyński 1 and Karol Życzkowski1,2 arxiv:1105.3830v1 [quant-ph] 19 May 2011 1 InstytutFizykiim.Smoluchowskiego,UniwersytetJagielloński,PL-30-059Kraków,

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Fidelity and other distance metrics Brad Lackey 3 November 2016 FIDELITY AND OTHER DISTANCE METRICS 1 of 17 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance

More information

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev The Superposition Principle (Physicists): If a quantum

More information

Multipartite entangled states, orthogonal arrays & Hadamard matrices. Karol Życzkowski in collaboration with Dardo Goyeneche (Concepcion - Chile)

Multipartite entangled states, orthogonal arrays & Hadamard matrices. Karol Życzkowski in collaboration with Dardo Goyeneche (Concepcion - Chile) Multipartite entangled states, orthogonal arrays & Hadamard matrices Karol Życzkowski in collaboration with Dardo Goyeneche (Concepcion - Chile) Institute of Physics, Jagiellonian University, Cracow, Poland

More information

Linear Algebra and Dirac Notation, Pt. 2

Linear Algebra and Dirac Notation, Pt. 2 Linear Algebra and Dirac Notation, Pt. 2 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 2 February 1, 2017 1 / 14

More information

Homework 3 - Solutions

Homework 3 - Solutions Homework 3 - Solutions The Transpose an Partial Transpose. 1 Let { 1, 2,, } be an orthonormal basis for C. The transpose map efine with respect to this basis is a superoperator Γ that acts on an operator

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Chapter 2 The Density Matrix

Chapter 2 The Density Matrix Chapter 2 The Density Matrix We are going to require a more general description of a quantum state than that given by a state vector. The density matrix provides such a description. Its use is required

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

Entropic characterization of quantum operations

Entropic characterization of quantum operations Entropic characterization of quantum operations W. Roga 1, M. Fannes 2 and K. Życzkowski1,3 arxiv:1101.4105v1 [quant-ph] 21 Jan 2011 1 Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński, PL-30-059

More information

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement

Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Entropic Uncertainty Relations, Unbiased bases and Quantification of Quantum Entanglement Karol Życzkowski in collaboration with Lukasz Rudnicki (Warsaw) Pawe l Horodecki (Gdańsk) Phys. Rev. Lett. 107,

More information

arxiv: v1 [quant-ph] 19 Jun 2007

arxiv: v1 [quant-ph] 19 Jun 2007 Composition of quantum states and dynamical subadditivity arxiv:0706.2791v1 [quant-ph] 19 Jun 2007 W. Roga 1, M. Fannes 2 and K. Życzkowski1,3 1 Instytut Fizyki im. Smoluchowskiego, Uniwersytet Jagielloński,

More information

Chapter 5. Density matrix formalism

Chapter 5. Density matrix formalism Chapter 5 Density matrix formalism In chap we formulated quantum mechanics for isolated systems. In practice systems interect with their environnement and we need a description that takes this feature

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 9 (2017) Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/qic710 1 More state distinguishing

More information

A geometric analysis of the Markovian evolution of open quantum systems

A geometric analysis of the Markovian evolution of open quantum systems A geometric analysis of the Markovian evolution of open quantum systems University of Zaragoza, BIFI, Spain Joint work with J. F. Cariñena, J. Clemente-Gallardo, G. Marmo Martes Cuantico, June 13th, 2017

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information

Ensembles and incomplete information

Ensembles and incomplete information p. 1/32 Ensembles and incomplete information So far in this course, we have described quantum systems by states that are normalized vectors in a complex Hilbert space. This works so long as (a) the system

More information

PHY305: Notes on Entanglement and the Density Matrix

PHY305: Notes on Entanglement and the Density Matrix PHY305: Notes on Entanglement and the Density Matrix Here follows a short summary of the definitions of qubits, EPR states, entanglement, the density matrix, pure states, mixed states, measurement, and

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

The Convex Hull of Spin Coherent States

The Convex Hull of Spin Coherent States The Convex Hull of Spin Coherent States Author: Muhammad Sadiq Supervisor: Prof. Ingemar Bengtsson Stockholm University Fysikum, May 28, 2009. Abstract Pure coherent states are known as the most classical

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION

NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION International Journal of Quantum Information Vol. 7, Supplement (9) 97 13 c World Scientific Publishing Company NON-GAUSSIANITY AND PURITY IN FINITE DIMENSION MARCO G. GENONI, and MATTEO G. A. PARIS,,

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY

FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY FRAMES IN QUANTUM AND CLASSICAL INFORMATION THEORY Emina Soljanin Mathematical Sciences Research Center, Bell Labs April 16, 23 A FRAME 1 A sequence {x i } of vectors in a Hilbert space with the property

More information

arxiv: v3 [quant-ph] 5 Jun 2015

arxiv: v3 [quant-ph] 5 Jun 2015 Entanglement and swap of quantum states in two qubits Takaya Ikuto and Satoshi Ishizaka Graduate School of Integrated Arts and Sciences, Hiroshima University, Higashihiroshima, 739-8521, Japan (Dated:

More information

Quantum Information & Quantum Computing

Quantum Information & Quantum Computing Math 478, Phys 478, CS4803, February 9, 006 1 Georgia Tech Math, Physics & Computing Math 478, Phys 478, CS4803 Quantum Information & Quantum Computing Problems Set 1 Due February 9, 006 Part I : 1. Read

More information

Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive

Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive Geometry of sets of quantum maps: a generic positive map acting on a high-dimensional system is not completely positive Stanis law J. Szarek 1,2, Elisabeth Werner 1,3, and Karol Życzkowski4,5 1 Case Western

More information

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2 Quantum decoherence p. 1/2 Quantum decoherence Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, 2007 Quantum decoherence p. 2/2 Outline Quantum decoherence: 1. Basics of quantum

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

Quantum Entanglement and Error Correction

Quantum Entanglement and Error Correction Quantum Entanglement and Error Correction Fall 2016 Bei Zeng University of Guelph Course Information Instructor: Bei Zeng, email: beizeng@icloud.com TA: Dr. Cheng Guo, email: cheng323232@163.com Wechat

More information

Is the world more classical or more quantum?

Is the world more classical or more quantum? Is the world more classical or more quantum? A. Lovas, A. Andai BUTE, Department of Analysis XXVI International Fall Workshop on Geometry and Physics Braga, 4-7 September 2017 A. Lovas, A. Andai Is the

More information

Quantum Physics II (8.05) Fall 2002 Assignment 3

Quantum Physics II (8.05) Fall 2002 Assignment 3 Quantum Physics II (8.05) Fall 00 Assignment Readings The readings below will take you through the material for Problem Sets and 4. Cohen-Tannoudji Ch. II, III. Shankar Ch. 1 continues to be helpful. Sakurai

More information

Density Matrices. Chapter Introduction

Density Matrices. Chapter Introduction Chapter 15 Density Matrices 15.1 Introduction Density matrices are employed in quantum mechanics to give a partial description of a quantum system, one from which certain details have been omitted. For

More information

Compression, Matrix Range and Completely Positive Map

Compression, Matrix Range and Completely Positive Map Compression, Matrix Range and Completely Positive Map Iowa State University Iowa-Nebraska Functional Analysis Seminar November 5, 2016 Definitions and notations H, K : Hilbert space. If dim H = n

More information

arxiv: v1 [quant-ph] 14 Feb 2014

arxiv: v1 [quant-ph] 14 Feb 2014 EQUIVALENCE CLASSES AND LOCAL ASYMPTOTIC NORMALITY IN SYSTEM IDENTIFICATION FOR QUANTUM MARKOV CHAINS MADALIN GUTA AND JUKKA KIUKAS arxiv:1402.3535v1 [quant-ph] 14 Feb 2014 Abstract. We consider the problems

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK)

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK) Mathematical Methods for Quantum Information Theory Part I: Matrix Analysis Koenraad Audenaert (RHUL, UK) September 14, 2008 Preface Books on Matrix Analysis: R. Bhatia, Matrix Analysis, Springer, 1997.

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

Constructive quantum scaling of unitary matrices

Constructive quantum scaling of unitary matrices Quantum Inf Process (016) 15:5145 5154 DOI 10.1007/s1118-016-1448-z Constructive quantum scaling of unitary matrices Adam Glos 1, Przemysław Sadowski 1 Received: 4 March 016 / Accepted: 1 September 016

More information

Non-Completely Positive Maps: Properties and Applications

Non-Completely Positive Maps: Properties and Applications Non-Completely Positive Maps: Properties and Applications By Christopher Wood A thesis submitted to Macquarie University in partial fulfilment of the degree of Bachelor of Science with Honours Department

More information

The Monge metric on the sphere and geometry of quantum states

The Monge metric on the sphere and geometry of quantum states INSTITUTE OF PHYSICS PUBLISHING JOURNAL OF PHYSICS A: MATHEMATICAL AND GENERAL J. Phys. A: Math. Gen. 34 (21) 6689 6722 PII: S35-447(1)188-7 The Monge metric on the sphere and geometry of quantum states

More information

The PANORAMA. Numerical Ranges in. Modern Times. Man-Duen Choi 蔡文端. For the 12 th WONRA.

The PANORAMA. Numerical Ranges in. Modern Times. Man-Duen Choi 蔡文端. For the 12 th WONRA. The PANORAMA of Numerical Ranges in Modern Times Man-Duen Choi 蔡文端 choi@math.toronto.edu For the 12 th WONRA In the last century, Toeplitz-Hausdorff Theorem, Ando-Arveson Dilation Theorem, In the 21 st

More information

An Analysis of Completely-Positive Trace-Preserving Maps on M 2

An Analysis of Completely-Positive Trace-Preserving Maps on M 2 An Analysis of Completely-Positive Trace-Preserving Maps on M 2 arxiv:quant-ph/0101003v2 3 Nov 2001 Mary Beth Ruskai Department of Mathematics University of Massachusetts Lowell Lowell, MA 01854 USA bruskai@cs.uml.edu

More information

Applications of the Stroboscopic Tomography to Selected 2-Level Decoherence Models

Applications of the Stroboscopic Tomography to Selected 2-Level Decoherence Models Int J Theor Phys (016) 55:658 668 DOI 10.1007/s10773-015-703- Applications of the Stroboscopic Tomography to Selected -Level Decoherence Models Artur Czerwiński 1, Received: 17 February 015 / Accepted:

More information

Ponownie o zasadach nieoznaczoności:

Ponownie o zasadach nieoznaczoności: .. Ponownie o zasadach nieoznaczoności: Specjalne seminarium okolicznościowe CFT, 19 czerwca 2013 KŻ (CFT/UJ) Entropic uncertainty relations June 19, 2013 1 / 20 Majorization Entropic Uncertainty Relations

More information

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 The Bloch Sphere Ian Glendinning February 16, 2005 QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 Outline Introduction Definition of the Bloch sphere Derivation of the Bloch sphere Properties

More information

2-Dimensional Density Matrices

2-Dimensional Density Matrices A Transformational Property of -Dimensional Density Matrices Nicholas Wheeler January 03 Introduction. This note derives from recent work related to decoherence models described by Zurek and Albrecht.

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

An Analysis of Completely-Positive Trace-Preserving Maps on M 2

An Analysis of Completely-Positive Trace-Preserving Maps on M 2 arxiv:quant-ph/0101003v1 31 Dec 2000 An Analysis of Completely-Positive Trace-Preserving Maps on M 2 Mary Beth Ruskai Department of Mathematics University of Massachusetts Lowell Lowell, MA 01854 USA bruskai@cs.uml.edu

More information

Algebraic Theory of Entanglement

Algebraic Theory of Entanglement Algebraic Theory of (arxiv: 1205.2882) 1 (in collaboration with T.R. Govindarajan, A. Queiroz and A.F. Reyes-Lega) 1 Physics Department, Syracuse University, Syracuse, N.Y. and The Institute of Mathematical

More information

Paradigms of Probabilistic Modelling

Paradigms of Probabilistic Modelling Paradigms of Probabilistic Modelling Hermann G. Matthies Brunswick, Germany wire@tu-bs.de http://www.wire.tu-bs.de abstract RV-measure.tex,v 4.5 2017/07/06 01:56:46 hgm Exp Overview 2 1. Motivation challenges

More information

Operator norm convergence for sequence of matrices and application to QIT

Operator norm convergence for sequence of matrices and application to QIT Operator norm convergence for sequence of matrices and application to QIT Benoît Collins University of Ottawa & AIMR, Tohoku University Cambridge, INI, October 15, 2013 Overview Overview Plan: 1. Norm

More information

Hyperbolic Geometry on Geometric Surfaces

Hyperbolic Geometry on Geometric Surfaces Mathematics Seminar, 15 September 2010 Outline Introduction Hyperbolic geometry Abstract surfaces The hemisphere model as a geometric surface The Poincaré disk model as a geometric surface Conclusion Introduction

More information

Experimentally feasible measures of distance between quantum operations

Experimentally feasible measures of distance between quantum operations Quantum Inf Process DOI 10.1007/s11128-010-0166-1 Experimentally feasible measures of distance between quantum operations Zbigniew Puchała Jarosław Adam Miszczak Piotr Gawron Bartłomiej Gardas Received:

More information

Introduction to Quantum Error Correction

Introduction to Quantum Error Correction Introduction to Quantum Error Correction Nielsen & Chuang Quantum Information and Quantum Computation, CUP 2000, Ch. 10 Gottesman quant-ph/0004072 Steane quant-ph/0304016 Gottesman quant-ph/9903099 Errors

More information

Non white sample covariance matrices.

Non white sample covariance matrices. Non white sample covariance matrices. S. Péché, Université Grenoble 1, joint work with O. Ledoit, Uni. Zurich 17-21/05/2010, Université Marne la Vallée Workshop Probability and Geometry in High Dimensions

More information

REPRESENTATION THEORY WEEK 7

REPRESENTATION THEORY WEEK 7 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable

More information

Unitary rotations. October 28, 2014

Unitary rotations. October 28, 2014 Unitary rotations October 8, 04 The special unitary group in dimensions It turns out that all orthogonal groups SO n), rotations in n real dimensions) may be written as special cases of rotations in a

More information

An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity

An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity University of Denver Digital Commons @ DU Mathematics Preprint Series Department of Mathematics 214 An Isometric Dynamics for a Causal Set Approach to Discrete Quantum Gravity S. Gudder Follow this and

More information

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12

1 Fundamental physical postulates. C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 C/CS/Phys C191 Quantum Mechanics in a Nutshell I 10/04/07 Fall 2007 Lecture 12 In this and the next lecture we summarize the essential physical and mathematical aspects of quantum mechanics relevant to

More information

CLASSIFICATION OF COMPLETELY POSITIVE MAPS 1. INTRODUCTION

CLASSIFICATION OF COMPLETELY POSITIVE MAPS 1. INTRODUCTION CLASSIFICATION OF COMPLETELY POSITIVE MAPS STEPHAN HOYER ABSTRACT. We define a completely positive map and classify all completely positive linear maps. We further classify all such maps that are trace-preserving

More information

Gaussian automorphisms whose ergodic self-joinings are Gaussian

Gaussian automorphisms whose ergodic self-joinings are Gaussian F U N D A M E N T A MATHEMATICAE 164 (2000) Gaussian automorphisms whose ergodic self-joinings are Gaussian by M. L e m a ńc z y k (Toruń), F. P a r r e a u (Paris) and J.-P. T h o u v e n o t (Paris)

More information

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2

Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 Multiplicativity of Maximal p Norms in Werner Holevo Channels for 1 < p 2 arxiv:quant-ph/0410063v1 8 Oct 2004 Nilanjana Datta Statistical Laboratory Centre for Mathematical Sciences University of Cambridge

More information

On positive maps in quantum information.

On positive maps in quantum information. On positive maps in quantum information. Wladyslaw Adam Majewski Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: fizwam@univ.gda.pl IFTiA Gdańsk University

More information

In a D-dimensional Hilbert space, a symmetric informationally complete POVM is a

In a D-dimensional Hilbert space, a symmetric informationally complete POVM is a To: C. A. Fuchs and P. Rungta From: C. M. Caves Subject: Symmetric informationally complete POVMs 1999 September 9; modified 00 June 18 to include material on G In a -dimensional Hilbert space, a symmetric

More information

Shared Purity of Multipartite Quantum States

Shared Purity of Multipartite Quantum States Shared Purity of Multipartite Quantum States Anindya Biswas Harish-Chandra Research Institute December 3, 2013 Anindya Biswas (HRI) Shared Purity December 3, 2013 1 / 38 Outline of the talk 1 Motivation

More information

Contraction Coefficients for Noisy Quantum Channels

Contraction Coefficients for Noisy Quantum Channels Contraction Coefficients for Noisy Quantum Channels Mary Beth Ruskai ruskai@member.ams.org joint work with F. Hiai Daejeon February, 2016 1 M. B. Ruskai Contraction of Quantum Channels Recall Relative

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

CS286.2 Lecture 13: Quantum de Finetti Theorems

CS286.2 Lecture 13: Quantum de Finetti Theorems CS86. Lecture 13: Quantum de Finetti Theorems Scribe: Thom Bohdanowicz Before stating a quantum de Finetti theorem for density operators, we should define permutation invariance for quantum states. Let

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

S.K. Saikin May 22, Lecture 13

S.K. Saikin May 22, Lecture 13 S.K. Saikin May, 007 13 Decoherence I Lecture 13 A physical qubit is never isolated from its environment completely. As a trivial example, as in the case of a solid state qubit implementation, the physical

More information

arxiv: v2 [quant-ph] 17 Aug 2017

arxiv: v2 [quant-ph] 17 Aug 2017 Absolutely separating quantum maps and channels arxiv:1703.00344v [quant-ph] 17 Aug 017 1. Introduction S N Filippov 1,, K Yu Magadov 1 and M A Jivulescu 3 1 Moscow Institute of Physics and Technology,

More information