Numerical range and random matrices

Size: px
Start display at page:

Download "Numerical range and random matrices"

Transcription

1 Numerical range and random matrices Karol Życzkowski in collaboration with P. Gawron, J. Miszczak, Z. Pucha la (Gliwice), C. Dunkl (Virginia), J. Holbrook (Guelph), B. Collins (Ottawa) and A. Litvak (Edmonton) Universität Bielefeld, November 7, 013 KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

2 Numerical Range (Field of Values) Definition For any operator A acting on H N one defines its NUMERICAL RANGE (Wertevorrat) as a subset of the complex plane defined by: Λ(A) = { ψ A ψ : ψ H N, ψ ψ = 1}. (1) In physics: Rayleigh quotient, R(A) := x A x / x x Hermitian case For any hermitian operator A = A with spectrum λ 1 λ λ N its numerical range forms an interval: the set of all possible expectation values of the observable A among arbitrary pure states, Λ(A) = [λ 1, λ N ]. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

3 Numerical range and its properties Compactness Λ(A) is a compact subset of C. Convexity: Hausdorff-Toeplitz theorem - Λ(A) is a convex subset of C. Example Numerical range for random matrices of order N = 6 a) normal, b) generic (non-normal) e e KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

4 Numerical range for matrices of order N =. with spectrum {λ 1, λ } a) normal matrix A Λ(A) = closed interval [λ 1, λ ] b) not normal matrix A Λ(A) = elliptical disk with λ 1, λ as focal points and minor axis, d = TrAA λ 1 λ (Murnaghan, 193; Li, 1996). [ ] 0 1 Example : Jordan matrix, J =. 0 0 Its numerical range forms a circular disk, Λ(J) = D(0, r = 1/). The set of N = pure quantum states The set of N = pure quantum states normalized as ψ ψ = 1 forms the Bloch sphere, S = CP 1. A projection of the Bloch sphere onto a plane forms an ellipse, (which could be degenerated to an interval). KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

5 Numerical range & quantum states: Set of normalized pure states of a finite size N: Let Ω N = CP N 1 denotes the set of all pure states in H N. Example: for N = one obtains Bloch sphere, Ω = CP 1. Probability distributions on complex plane supported in Λ(A) - Fix an arbitrary operator A of size N, - Generate random pure states ψ of size N (with respect to unitary invariant, Fubini Study measure) and analyze their contribution ψ A ψ to the numerical range on the complex plane... Probability distribution: (a numerical shadow ) P A (z) := is supported on Λ(A). How it looks like? Ω N dψ δ ( z ψ A ψ ) KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

6 Normal case: a shadow of the classical simplex... Normal matrices of size N = with spectrum {λ 1, λ } Distribution P A (z) covers uniformly the interval [λ 1, λ ] on the complex plane, Examples for diagonal matrices A of size two and three 1.0 Density plot of numerical range of operator [1, 0; 0, i] 1.0 Density plot of numerical range of operator diag(1, i, i) Normal matrices of order N = 3 with spectrum {λ 1, λ, λ 3 } Distribution P A (z) covers uniformly the triangle (λ 1, λ, λ 3 ) on the KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

7 Examples for diagonal matrices A of size four. Observe shadow of the edges of the tetrahedron = the set of all classical mixed states for N = 4. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow / Normal case: a shadow of the classical simplex... Normal matrices of size N = 4 with spectrum {λ 1, λ, λ 3, λ 4 } Distribution P A (z) covers the quadrangle (λ 1, λ, λ 3, λ 4 ) with the density determined by projection of the regular tetrahedron (3 simplex) on the complex plane 1.0 Density plot of numerical range of operator diag(1, exp(iπ/3), exp(iπ/3), 1)

8 Numerical shadow for N = Non normal matrices of size N = Distribution P A (z) covers entire (eliptical) disk on the complex plane with non-uniform (!) density determined by projection of (empty!) Bloch sphere, S = CP 1 on the complex plane. 1.0 Density plot of numerical range of operator [0, 1; 0, 1/].0 Density plot of numerical range of operator [0, 1; 0, 1] Examples for non-normal matrices A of size two. Note the shadow of the projective space CP 1 = S = set of quantum pure states for N =. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

9 Shadows of three dimensional objects... KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

10 Quantum States and Numerical Range/Shadow Classical States & normal matrices Proposition 1.Let C N denote the set of classical states (probability distributions) of size N, which forms the regular simplex N 1 in R N 1. Then the set of similar images of orthogonal projections of C N on a plane is equivalent to the set of all possible numerical ranges Λ(A) of all normal matrices A of order N (such that AA = A A). Quantum States & non normal matrices Proposition.Let M N denotes the set of quantum states (hermitian positive matrices, ρ = ρ 0, of size N normalized as Tr ρ = 1), embedded in R N 1 with respect to Euclidean geometry induced by Hilbert-Schmidt distance. Then the set of similar images of orthogonal projections M N on a -plane is equivalent to the set of all possible numerical ranges Λ(A) of all matrices A of order N. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

11 Normal case: a shadow of the 4-D simplex... Normal matrices of size N = 5 with spectrum (λ 1, λ, λ 3, λ 4, λ 5 ) Distribution P A (z) covers the pentagon {exp(πj/5)}, j = 0,..., 4 with the density determined by projection of the 4-D simplex on the complex plane KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

12 How complex / real projective space looks like? Not normal matrices of size N = 3 Distribution PA (z) covers the numerical range Λ(A) on the complex plane with a non-uniform density Density plot of numerical range of operator O5 subject to complex states Density plot of numerical range of operator O5 subject to real states im 1.0 im re C P 0.5 re 0.0 R 0.5 P shadow of the projective space Ω3 = (left) and (right) for a N = 3 non-normal matrix A = [0, 1, 1; 0, i, 1; 0, 0, 1] KZ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

13 Numerical range for matrices of order N = 3. Classification by Keeler, Rodman, Spitkovsky 1997 Numerical range Λ of a 3 3 matrix A forms: a) Λ(A) is a compact set of an ovular shape (which contains three eigenvalues!) the generic case, b) a compact set with one flat part (e.g. convex hull of a cardioid), c) a compact set with two flat parts (e.g. convex hull of an ellipse and a point outside it), d) triangle of eigenvalues, Λ(A) = (λ 1, λ, λ 3 ) for any normal matrix A. These four cases describe the shape of possible projections of the complex projective space CP (embedded into R 8 ) onto a plane. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

14 Shadows of typical matrices of size N = 3 correspond to the four classes of N = 3 numerical ranges by Keeler et al. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

15 Unitary dynamics in the shadow (as a background) Examplary unitary dynamics of N = 3 pure state in CP ψ(t) = U ψ(0) = e iht ψ(0) (green line) z(t) := ψ(t) A ψ(t) = ψ(0) U AU ψ(t) superimposed on the numerical shadow of three exemplary matrices A 1, A and A 3 of size N = 3. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

16 Shadows of typical matrices of size N = 4 [Classification of numerical ranges for N = 4 is not yet complete...] KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

17 Large N limit and random matrices I Non hermitian Ginibre matrices of size N normalized as TrGG = N I 0 1 I 0 1 I 0 1 ρ r R R R N = 10 N = 100 N = 1000 Numerical range and spectrum of random Ginibre matrices of size N. Note circular disk of eigenvalues of Girko and the non normality belt. Result I In the limit N the numerical range of a random Ginibre matrix G converges (in the Hausdorff distance) to the disk of radius. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

18 Large N limit and random matrices II Diagonalized Ginibre matrices of size N normalized as TrGG = N I 0 I 0 I 0 ρ r R R R N = 10 N = 100 N = 1000 As diagonal matrix G = ZGZ = diag ( Eig(G) ) is normal, the numerical range W (G ) forms the convex hull of its spectrum and asymptotically converges to the unit disk of Girko. Note absence of the non normality belt! KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

19 Large N limit and random matrices III Strictly tri diagonal random matrices T (with T ij = ξ for i > j) of size N normalized as TrTT = N I 0 1 I 0 1 I 0 1 r R R R N = 10 N = 100 N = 1000 The spectrum of T by definition includes the origin, {0}. Its numerical range W (T ) forms a disk with a thick non normality belt. Result II In the limit N the numerical range of a triangular matrix T converges (in the Hausdorff distance) to the disk of radius. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

20 Large N limit and random matrices Theorem (CGLZ 013, arxiv: ) Let R > 0 and let {X n } n be a sequence of complex random matrices or order n such that for every θ R with probability one Then with probability one lim Re( e iθ ) X n = R n lim d ( H W (Xn ), D(0, R) ) = 0. n Examples: For random Ginibre matrix G and random triagonal matrix T one can show that the norm does not depend on the phase θ and (upon the normalization used) converges to R =. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

21 Concluding Remarks Standard Numerical Range (NR) is a useful algebraic tool... We introduce a concept of numerical shadow of an operator. If A is normal one obtains images of the set of classical mixed states, and the set of quantum pure states plays the role for the generic, non normal A. The set of all possible projections of the N 1 dimensional set of quantum states of order N onto a plane is equivalent (up to shift and rescaling) to the set of numerical ranges of matrices of order N. projections of the set of classical states (i.e. probability simplex) are equivalent to the set of numerical ranges of all normal matrices of a given order. Numerical range of a large random Ginibre matrix forms a disk of radius R =. KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

22 Some References C. F. Dunkl, P. Gawron, J. A. Holbrook, Z. Pucha la and K. Życzkowski, Numerical shadows: Measures and densities on the numerical range, Lin. Algebra Appl 434, (011). C. F. Dunkl, P. Gawron, J. A. Holbrook, J. Miszczak, Z. Pucha la and K. Życzkowski, Numerical shadow and geometry of quantum states, J. Phys. A (19pp) (011). Z. Pucha la, J. A. Miszczak, P. Gawron, C. F. Dunkl, J. A. Holbrook, and K. Życzkowski, Restricted numerical shadow and geometry of quantum entanglement, J. Phys. A 45, (8pp) (01). A. Litvak. B. Collins, P. Gawron and K. Życzkowski, Numerical range of random matrices, preprint arxiv: T. Gallay and D. Serre, Numerical measure of a complex matrix, Commun. Pure Apl. Math. 65, (01). KŻ (Uni - Bielefeld) Numerical Range & Numerical Shadow /

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem

Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Numerical Range of non-hermitian random Ginibre matrices and the Dvoretzky theorem Karol Życzkowski Institute of Physics, Jagiellonian University, Cracow and Center for Theoretical Physics, PAS, Warsaw

More information

Restricted Numerical Range and some its applications

Restricted Numerical Range and some its applications Restricted Numerical Range and some its applications Karol Życzkowski in collaboration with P. Gawron, J. Miszczak, Z. Pucha la (Gliwice), L. Skowronek (Kraków), M.D. Choi (Toronto), C. Dunkl (Virginia)

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

Quantum Stochastic Maps and Frobenius Perron Theorem

Quantum Stochastic Maps and Frobenius Perron Theorem Quantum Stochastic Maps and Frobenius Perron Theorem Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Institute of Physics, Jagiellonian University, Cracow,

More information

Classification of joint numerical ranges of three hermitian matrices of size three

Classification of joint numerical ranges of three hermitian matrices of size three Classification of joint numerical ranges of three hermitian matrices of size three talk at The 14th Workshop on Numerical Ranges and Numerical Radii Max-Planck-Institute MPQ, München, Germany June 15th,

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

NUMERICAL RANGE FOR RANDOM MATRICES

NUMERICAL RANGE FOR RANDOM MATRICES NUMERICAL RANGE FOR RANDOM MATRICES BENOÎT COLLINS, PIOTR GAWRON, ALEXANDER E. LITVAK 3, KAROL ŻYCZKOWSKI 4,5 ABSTRACT. We analyze the numerical range of high-dimensional random matrices, obtaining limit

More information

Structured Hadamard matrices and quantum information

Structured Hadamard matrices and quantum information Structured Hadamard matrices and quantum information Karol Życzkowski in collaboration with Adam G asiorowski, Grzegorz Rajchel (Warsaw) Dardo Goyeneche (Concepcion/ Cracow/ Gdansk) Daniel Alsina, José

More information

Violation of CP symmetry. Charles Dunkl (University of Virginia)

Violation of CP symmetry. Charles Dunkl (University of Virginia) Violation of CP symmetry form a point of view of a mathematician Karol Życzkowski in collaboration with Charles Dunkl (University of Virginia) J. Math. Phys. 50, 123521 (2009). ZFCz IF UJ, Kraków January

More information

Compression, Matrix Range and Completely Positive Map

Compression, Matrix Range and Completely Positive Map Compression, Matrix Range and Completely Positive Map Iowa State University Iowa-Nebraska Functional Analysis Seminar November 5, 2016 Definitions and notations H, K : Hilbert space. If dim H = n

More information

3-by-3 matrices with elliptical numerical range revisited

3-by-3 matrices with elliptical numerical range revisited Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 12 2013 3-by-3 matrices with elliptical numerical range revisited Patrick X. Rault Tsvetanka Sendova Ilya M. Spitkovsky ilya@math.wm.edu

More information

Induced Ginibre Ensemble and random operations

Induced Ginibre Ensemble and random operations Induced Ginibre Ensemble and random operations Karol Życzkowski in collaboration with Wojciech Bruzda, Marek Smaczyński, Wojciech Roga Jonith Fischmann, Boris Khoruzhenko (London), Ion Nechita (Touluse),

More information

On the maximal numerical range of some matrices

On the maximal numerical range of some matrices Electronic Journal of Linear Algebra Volume 34 Volume 34 (218) Article 21 218 On the maximal numerical range of some matrices Ali N. Hamed New York University Abu Dhabi, alinosh@nyu.edu Ilya M. Spitkovsky

More information

CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS

CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS CANONICAL FORMS, HIGHER RANK NUMERICAL RANGES, TOTALLY ISOTROPIC SUBSPACES, AND MATRIX EQUATIONS CHI-KWONG LI AND NUNG-SING SZE Abstract. Results on matrix canonical forms are used to give a complete description

More information

Quantum chaos in composite systems

Quantum chaos in composite systems Quantum chaos in composite systems Karol Życzkowski in collaboration with Lukasz Pawela and Zbigniew Pucha la (Gliwice) Smoluchowski Institute of Physics, Jagiellonian University, Cracow and Center for

More information

Kähler configurations of points

Kähler configurations of points Kähler configurations of points Simon Salamon Oxford, 22 May 2017 The Hesse configuration 1/24 Let ω = e 2πi/3. Consider the nine points [0, 1, 1] [0, 1, ω] [0, 1, ω 2 ] [1, 0, 1] [1, 0, ω] [1, 0, ω 2

More information

A Brief Introduction to Functional Analysis

A Brief Introduction to Functional Analysis A Brief Introduction to Functional Analysis Sungwook Lee Department of Mathematics University of Southern Mississippi sunglee@usm.edu July 5, 2007 Definition 1. An algebra A is a vector space over C with

More information

Numerical Range in C*-Algebras

Numerical Range in C*-Algebras Journal of Mathematical Extension Vol. 6, No. 2, (2012), 91-98 Numerical Range in C*-Algebras M. T. Heydari Yasouj University Abstract. Let A be a C*-algebra with unit 1 and let S be the state space of

More information

PRODUCT OF OPERATORS AND NUMERICAL RANGE

PRODUCT OF OPERATORS AND NUMERICAL RANGE PRODUCT OF OPERATORS AND NUMERICAL RANGE MAO-TING CHIEN 1, HWA-LONG GAU 2, CHI-KWONG LI 3, MING-CHENG TSAI 4, KUO-ZHONG WANG 5 Abstract. We show that a bounded linear operator A B(H) is a multiple of a

More information

The C-Numerical Range in Infinite Dimensions

The C-Numerical Range in Infinite Dimensions The C-Numerical Range in Infinite Dimensions Frederik vom Ende Technical University of Munich June 17, 2018 WONRA 2018 Joint work with Gunther Dirr (University of Würzburg) Frederik vom Ende (TUM) C-Numerical

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

arxiv: v1 [math.oa] 20 Aug 2010

arxiv: v1 [math.oa] 20 Aug 2010 Product numerical range in a space with tensor product structure Zbigniew Pucha la, Piotr Gawron, and Jaros law Adam Miszczak Institute of Theoretical and Applied Informatics, Polish Academy of Sciences,

More information

Characterization of half-radial matrices

Characterization of half-radial matrices Characterization of half-radial matrices Iveta Hnětynková, Petr Tichý Faculty of Mathematics and Physics, Charles University, Sokolovská 83, Prague 8, Czech Republic Abstract Numerical radius r(a) is the

More information

NOTES ON THE NUMERICAL RANGE

NOTES ON THE NUMERICAL RANGE NOTES ON THE NUMERICAL RANGE JOEL H. SHAPIRO Abstract. This is an introduction to the notion of numerical range for bounded linear operators on Hilbert space. The main results are: determination of the

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW

COMPLEX HERMITE POLYNOMIALS: FROM THE SEMI-CIRCULAR LAW TO THE CIRCULAR LAW Serials Publications www.serialspublications.com OMPLEX HERMITE POLYOMIALS: FROM THE SEMI-IRULAR LAW TO THE IRULAR LAW MIHEL LEDOUX Abstract. We study asymptotics of orthogonal polynomial measures of the

More information

On positive maps in quantum information.

On positive maps in quantum information. On positive maps in quantum information. Wladyslaw Adam Majewski Instytut Fizyki Teoretycznej i Astrofizyki, UG ul. Wita Stwosza 57, 80-952 Gdańsk, Poland e-mail: fizwam@univ.gda.pl IFTiA Gdańsk University

More information

The following definition is fundamental.

The following definition is fundamental. 1. Some Basics from Linear Algebra With these notes, I will try and clarify certain topics that I only quickly mention in class. First and foremost, I will assume that you are familiar with many basic

More information

ON EIGENVALUES AND BOUNDARY CURVATURE OF THE NUMERICAL RANGE

ON EIGENVALUES AND BOUNDARY CURVATURE OF THE NUMERICAL RANGE ON EIGENVALUES AND BOUNDAY CUVATUE OF THE NUMEICAL ANGE LAUEN CASTON, MILENA SAVOVA, ILYA SPITKOVSKY AND NAHUM ZOBIN Abstract. For an n n matrix A, let M(A) be the smallest possible constant in the inequality

More information

ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS

ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS ELLIPTICAL RANGE THEOREMS FOR GENERALIZED NUMERICAL RANGES OF QUADRATIC OPERATORS CHI-KWONG LI, YIU-TUNG POON, AND NUNG-SING SZE Abstract. The classical numerical range of a quadratic operator is an elliptical

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Quantum Physics II (8.05) Fall 2002 Assignment 3

Quantum Physics II (8.05) Fall 2002 Assignment 3 Quantum Physics II (8.05) Fall 00 Assignment Readings The readings below will take you through the material for Problem Sets and 4. Cohen-Tannoudji Ch. II, III. Shankar Ch. 1 continues to be helpful. Sakurai

More information

Numerical Ranges and Dilations. Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement

Numerical Ranges and Dilations. Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement Numerical Ranges and Dilations Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement Man-Duen Choi Department of Mathematics, University of Toronto, Toronto, Ontario, Canada M5S 3G3.

More information

Lecture 4 Eigenvalue problems

Lecture 4 Eigenvalue problems Lecture 4 Eigenvalue problems Weinan E 1,2 and Tiejun Li 2 1 Department of Mathematics, Princeton University, weinan@princeton.edu 2 School of Mathematical Sciences, Peking University, tieli@pku.edu.cn

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

arxiv: v1 [quant-ph] 24 May 2011

arxiv: v1 [quant-ph] 24 May 2011 Geometry of entanglement witnesses for two qutrits Dariusz Chruściński and Filip A. Wudarski Institute of Physics, Nicolaus Copernicus University, Grudzi adzka 5/7, 87 100 Toruń, Poland May 25, 2011 arxiv:1105.4821v1

More information

Outline. Motivation: Numerical Ranges as Measuring Sticks for Optimising Quantum Dynamics. I Symmetry Approach to Quantum Systems Theory

Outline. Motivation: Numerical Ranges as Measuring Sticks for Optimising Quantum Dynamics. I Symmetry Approach to Quantum Systems Theory Some Remarks on Quantum Systems Theory as Pertaining to Numerical Ranges A Unified Lie-Geometric Viewpoint Thomas Schulte-Herbrüggen relating to (joint) work with G. Dirr, R. Zeier, C.K. Li, Y.T. Poon,

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

COMPOSITION OPERATORS ON HARDY-SOBOLEV SPACES

COMPOSITION OPERATORS ON HARDY-SOBOLEV SPACES Indian J. Pure Appl. Math., 46(3): 55-67, June 015 c Indian National Science Academy DOI: 10.1007/s136-015-0115-x COMPOSITION OPERATORS ON HARDY-SOBOLEV SPACES Li He, Guang Fu Cao 1 and Zhong Hua He Department

More information

Linear Algebra and Dirac Notation, Pt. 3

Linear Algebra and Dirac Notation, Pt. 3 Linear Algebra and Dirac Notation, Pt. 3 PHYS 500 - Southern Illinois University February 1, 2017 PHYS 500 - Southern Illinois University Linear Algebra and Dirac Notation, Pt. 3 February 1, 2017 1 / 16

More information

Compression on the digital unit sphere

Compression on the digital unit sphere 16th Conference on Applied Mathematics, Univ. of Central Oklahoma, Electronic Journal of Differential Equations, Conf. 07, 001, pp. 1 4. ISSN: 107-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu

More information

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices

Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Linear Operators Preserving the Numerical Range (Radius) on Triangular Matrices Chi-Kwong Li Department of Mathematics, College of William & Mary, P.O. Box 8795, Williamsburg, VA 23187-8795, USA. E-mail:

More information

Introduction to Quantum Spin Systems

Introduction to Quantum Spin Systems 1 Introduction to Quantum Spin Systems Lecture 2 Sven Bachmann (standing in for Bruno Nachtergaele) Mathematics, UC Davis MAT290-25, CRN 30216, Winter 2011, 01/10/11 2 Basic Setup For concreteness, consider

More information

Hilbert Space Problems

Hilbert Space Problems Hilbert Space Problems Prescribed books for problems. ) Hilbert Spaces, Wavelets, Generalized Functions and Modern Quantum Mechanics by Willi-Hans Steeb Kluwer Academic Publishers, 998 ISBN -7923-523-9

More information

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination

Math 102, Winter Final Exam Review. Chapter 1. Matrices and Gaussian Elimination Math 0, Winter 07 Final Exam Review Chapter. Matrices and Gaussian Elimination { x + x =,. Different forms of a system of linear equations. Example: The x + 4x = 4. [ ] [ ] [ ] vector form (or the column

More information

Approximating scalable frames

Approximating scalable frames Kasso Okoudjou joint with X. Chen, G. Kutyniok, F. Philipp, R. Wang Department of Mathematics & Norbert Wiener Center University of Maryland, College Park 5 th International Conference on Computational

More information

A functional model for commuting pairs of contractions and the symmetrized bidisc

A functional model for commuting pairs of contractions and the symmetrized bidisc A functional model for commuting pairs of contractions and the symmetrized bidisc Nicholas Young Leeds and Newcastle Universities Lecture 2 The symmetrized bidisc Γ and Γ-contractions St Petersburg, June

More information

AN EXTENSION OF YAMAMOTO S THEOREM ON THE EIGENVALUES AND SINGULAR VALUES OF A MATRIX

AN EXTENSION OF YAMAMOTO S THEOREM ON THE EIGENVALUES AND SINGULAR VALUES OF A MATRIX Unspecified Journal Volume 00, Number 0, Pages 000 000 S????-????(XX)0000-0 AN EXTENSION OF YAMAMOTO S THEOREM ON THE EIGENVALUES AND SINGULAR VALUES OF A MATRIX TIN-YAU TAM AND HUAJUN HUANG Abstract.

More information

Trace conditions for symmetry of the numerical range

Trace conditions for symmetry of the numerical range Electronic Journal of Linear Algebra Volume 26 Volume 26 (2013) Article 40 2013 Trace conditions for symmetry of the numerical range Louis Deaett Louis.Deaett@quinnipiac.edu Ramiro H. Lafuente-Rodriguez

More information

arxiv: v1 [quant-ph] 4 Jul 2013

arxiv: v1 [quant-ph] 4 Jul 2013 GEOMETRY FOR SEPARABLE STATES AND CONSTRUCTION OF ENTANGLED STATES WITH POSITIVE PARTIAL TRANSPOSES KIL-CHAN HA AND SEUNG-HYEOK KYE arxiv:1307.1362v1 [quant-ph] 4 Jul 2013 Abstract. We construct faces

More information

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012

Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 Instructions Preliminary/Qualifying Exam in Numerical Analysis (Math 502a) Spring 2012 The exam consists of four problems, each having multiple parts. You should attempt to solve all four problems. 1.

More information

Products of Rectangular Gaussian Matrices

Products of Rectangular Gaussian Matrices Products of Rectangular Gaussian Matrices Jesper R. Ipsen Department of Physics Bielefeld University in collaboration with Gernot Akemann Mario Kieburg Summer School on Randomness in Physics & Mathematics

More information

COMBINATORIALLY CONVEX MODULI AND AN EXAMPLE OF GÖDEL

COMBINATORIALLY CONVEX MODULI AND AN EXAMPLE OF GÖDEL Pioneer Journal of Algebra, Number Theory and its Applications Volume, Number, 2017, Pages This paper is available online at http://www.pspchv.com/content_pjanta.html COMBINATORIALLY CONVEX MODULI AND

More information

Part 1a: Inner product, Orthogonality, Vector/Matrix norm

Part 1a: Inner product, Orthogonality, Vector/Matrix norm Part 1a: Inner product, Orthogonality, Vector/Matrix norm September 19, 2018 Numerical Linear Algebra Part 1a September 19, 2018 1 / 16 1. Inner product on a linear space V over the number field F A map,

More information

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms

08a. Operators on Hilbert spaces. 1. Boundedness, continuity, operator norms (February 24, 2017) 08a. Operators on Hilbert spaces Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ [This document is http://www.math.umn.edu/ garrett/m/real/notes 2016-17/08a-ops

More information

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course

Matrix Lie groups. and their Lie algebras. Mahmood Alaghmandan. A project in fulfillment of the requirement for the Lie algebra course Matrix Lie groups and their Lie algebras Mahmood Alaghmandan A project in fulfillment of the requirement for the Lie algebra course Department of Mathematics and Statistics University of Saskatchewan March

More information

On the convergence of a feedback control strategy for multilevel quantum systems

On the convergence of a feedback control strategy for multilevel quantum systems On the convergence of a feedback control strategy for multilevel quantum systems Paolo Vettori Departamento de Matemática Universidade de Aveiro Campus de Santiago, 3810-193 Aveiro, Portugal email: pvettori@mat.ua.pt.

More information

Uniqueness of the Solutions of Some Completion Problems

Uniqueness of the Solutions of Some Completion Problems Uniqueness of the Solutions of Some Completion Problems Chi-Kwong Li and Tom Milligan Abstract We determine the conditions for uniqueness of the solutions of several completion problems including the positive

More information

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK)

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK) Mathematical Methods for Quantum Information Theory Part I: Matrix Analysis Koenraad Audenaert (RHUL, UK) September 14, 2008 Preface Books on Matrix Analysis: R. Bhatia, Matrix Analysis, Springer, 1997.

More information

Problem Set 6: Solutions Math 201A: Fall a n x n,

Problem Set 6: Solutions Math 201A: Fall a n x n, Problem Set 6: Solutions Math 201A: Fall 2016 Problem 1. Is (x n ) n=0 a Schauder basis of C([0, 1])? No. If f(x) = a n x n, n=0 where the series converges uniformly on [0, 1], then f has a power series

More information

Convexity of Generalized Numerical Ranges Associated with SU(n) and SO(n) Dawit Gezahegn Tadesse

Convexity of Generalized Numerical Ranges Associated with SU(n) and SO(n) Dawit Gezahegn Tadesse Convexity of Generalized Numerical Ranges Associated with SU(n) and SO(n) by Dawit Gezahegn Tadesse A thesis submitted to the Graduate Faculty of Auburn University in partial fulfillment of the requirements

More information

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013

CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1. Prof. N. Harnew University of Oxford TT 2013 CP3 REVISION LECTURES VECTORS AND MATRICES Lecture 1 Prof. N. Harnew University of Oxford TT 2013 1 OUTLINE 1. Vector Algebra 2. Vector Geometry 3. Types of Matrices and Matrix Operations 4. Determinants

More information

arxiv: v4 [math.mg] 1 Dec 2015

arxiv: v4 [math.mg] 1 Dec 2015 arxiv:1404.0525v4 [math.mg] 1 Dec 2015 The Euler and Grace-Danielsson inequalities for nested triangles and tetrahedra: a derivation and generalisation using quantum information theory Antony Milne Controlled

More information

ON THE QR ITERATIONS OF REAL MATRICES

ON THE QR ITERATIONS OF REAL MATRICES Unspecified Journal Volume, Number, Pages S????-????(XX- ON THE QR ITERATIONS OF REAL MATRICES HUAJUN HUANG AND TIN-YAU TAM Abstract. We answer a question of D. Serre on the QR iterations of a real matrix

More information

Analysis Preliminary Exam Workshop: Hilbert Spaces

Analysis Preliminary Exam Workshop: Hilbert Spaces Analysis Preliminary Exam Workshop: Hilbert Spaces 1. Hilbert spaces A Hilbert space H is a complete real or complex inner product space. Consider complex Hilbert spaces for definiteness. If (, ) : H H

More information

Math 108b: Notes on the Spectral Theorem

Math 108b: Notes on the Spectral Theorem Math 108b: Notes on the Spectral Theorem From section 6.3, we know that every linear operator T on a finite dimensional inner product space V has an adjoint. (T is defined as the unique linear operator

More information

On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement

On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement On a Block Matrix Inequality quantifying the Monogamy of the Negativity of Entanglement Koenraad M.R. Audenaert Department of Mathematics, Royal Holloway University of London, Egham TW0 0EX, United Kingdom

More information

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS

SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS SPECTRAL THEOREM FOR COMPACT SELF-ADJOINT OPERATORS G. RAMESH Contents Introduction 1 1. Bounded Operators 1 1.3. Examples 3 2. Compact Operators 5 2.1. Properties 6 3. The Spectral Theorem 9 3.3. Self-adjoint

More information

Linear Algebra Review. Vectors

Linear Algebra Review. Vectors Linear Algebra Review 9/4/7 Linear Algebra Review By Tim K. Marks UCSD Borrows heavily from: Jana Kosecka http://cs.gmu.edu/~kosecka/cs682.html Virginia de Sa (UCSD) Cogsci 8F Linear Algebra review Vectors

More information

Banach Journal of Mathematical Analysis ISSN: (electronic)

Banach Journal of Mathematical Analysis ISSN: (electronic) Banach J. Math. Anal. 6 (2012), no. 1, 139 146 Banach Journal of Mathematical Analysis ISSN: 1735-8787 (electronic) www.emis.de/journals/bjma/ AN EXTENSION OF KY FAN S DOMINANCE THEOREM RAHIM ALIZADEH

More information

Random matrix pencils and level crossings

Random matrix pencils and level crossings Albeverio Fest October 1, 2018 Topics to discuss Basic level crossing problem 1 Basic level crossing problem 2 3 Main references Basic level crossing problem (i) B. Shapiro, M. Tater, On spectral asymptotics

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Geometric measure on quasi-fuchsian groups via singular traces. Part I.

Geometric measure on quasi-fuchsian groups via singular traces. Part I. Geometric measure on quasi-fuchsian groups via singular traces. Part I. Dmitriy Zanin (in collaboration with A. Connes and F. Sukochev) University of New South Wales September 19, 2018 Dmitriy Zanin Geometric

More information

Part IA. Vectors and Matrices. Year

Part IA. Vectors and Matrices. Year Part IA Vectors and Matrices Year 2018 2017 2016 2015 2014 2013 2012 2011 2010 2009 2008 2018 Paper 1, Section I 1C Vectors and Matrices For z, w C define the principal value of z w. State de Moivre s

More information

Uncertainty relations and joint numerical ranges

Uncertainty relations and joint numerical ranges Konrad Szymański Uncertainty relations and joint numerical ranges MSc thesis under the supervision of Prof. Karol Życzkowski M A R I A N S M O L U C H O W S K I I N S T I T U T E O F P H Y S I C S, U N

More information

GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION

GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION J. OPERATOR THEORY 00:0(0000, 101 110 Copyright by THETA, 0000 GENERALIZED NUMERICAL RANGES AND QUANTUM ERROR CORRECTION CHI-KWONG LI and YIU-TUNG POON Communicated by Editor ABSTRACT. For a noisy quantum

More information

Operator norm convergence for sequence of matrices and application to QIT

Operator norm convergence for sequence of matrices and application to QIT Operator norm convergence for sequence of matrices and application to QIT Benoît Collins University of Ottawa & AIMR, Tohoku University Cambridge, INI, October 15, 2013 Overview Overview Plan: 1. Norm

More information

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES

ON THE HÖLDER CONTINUITY OF MATRIX FUNCTIONS FOR NORMAL MATRICES Volume 10 (2009), Issue 4, Article 91, 5 pp. ON THE HÖLDER CONTINUITY O MATRIX UNCTIONS OR NORMAL MATRICES THOMAS P. WIHLER MATHEMATICS INSTITUTE UNIVERSITY O BERN SIDLERSTRASSE 5, CH-3012 BERN SWITZERLAND.

More information

2. Review of Linear Algebra

2. Review of Linear Algebra 2. Review of Linear Algebra ECE 83, Spring 217 In this course we will represent signals as vectors and operators (e.g., filters, transforms, etc) as matrices. This lecture reviews basic concepts from linear

More information

Convexity of the Joint Numerical Range

Convexity of the Joint Numerical Range Convexity of the Joint Numerical Range Chi-Kwong Li and Yiu-Tung Poon October 26, 2004 Dedicated to Professor Yik-Hoi Au-Yeung on the occasion of his retirement. Abstract Let A = (A 1,..., A m ) be an

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger s transformation

The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger s transformation Linear Algebra and its Applications 360 (003) 43 57 www.elsevier.com/locate/laa The Perron eigenspace of nonnegative almost skew-symmetric matrices and Levinger s transformation Panayiotis J. Psarrakos

More information

Free probability and quantum information

Free probability and quantum information Free probability and quantum information Benoît Collins WPI-AIMR, Tohoku University & University of Ottawa Tokyo, Nov 8, 2013 Overview Overview Plan: 1. Quantum Information theory: the additivity problem

More information

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C :

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C : TOEPLITZ OPERATORS EFTON PARK 1. Introduction to Toeplitz Operators Otto Toeplitz lived from 1881-1940 in Goettingen, and it was pretty rough there, so he eventually went to Palestine and eventually contracted

More information

b jσ(j), Keywords: Decomposable numerical range, principal character AMS Subject Classification: 15A60

b jσ(j), Keywords: Decomposable numerical range, principal character AMS Subject Classification: 15A60 On the Hu-Hurley-Tam Conjecture Concerning The Generalized Numerical Range Che-Man Cheng Faculty of Science and Technology, University of Macau, Macau. E-mail: fstcmc@umac.mo and Chi-Kwong Li Department

More information

Line segments on the boundary of the numerical ranges of some tridiagonal matrices

Line segments on the boundary of the numerical ranges of some tridiagonal matrices Electronic Journal of Linear Algebra Volume 30 Volume 30 (2015) Article 46 2015 Line segments on the boundary of the numerical ranges of some tridiagonal matrices Ilya M. Spitkovsky NYUAD and College of

More information

A Journey Through Numerical Ranges

A Journey Through Numerical Ranges Dept. of Applied Mathematics National Chiao Tung Univ. Hsinchu, Taiwan March 17, 2011 Gainsville, Florida In collaboration with Hwa-Long Gau ( 高華隆 ) Pei Yuan Wu (吳培元) May, 1980 Bloomington, Indiana May,

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

Compound matrices and some classical inequalities

Compound matrices and some classical inequalities Compound matrices and some classical inequalities Tin-Yau Tam Mathematics & Statistics Auburn University Dec. 3, 04 We discuss some elegant proofs of several classical inequalities of matrices by using

More information

Ponownie o zasadach nieoznaczoności:

Ponownie o zasadach nieoznaczoności: .. Ponownie o zasadach nieoznaczoności: Specjalne seminarium okolicznościowe CFT, 19 czerwca 2013 KŻ (CFT/UJ) Entropic uncertainty relations June 19, 2013 1 / 20 Majorization Entropic Uncertainty Relations

More information

MINIMAL NORMAL AND COMMUTING COMPLETIONS

MINIMAL NORMAL AND COMMUTING COMPLETIONS INTERNATIONAL JOURNAL OF INFORMATION AND SYSTEMS SCIENCES Volume 4, Number 1, Pages 5 59 c 8 Institute for Scientific Computing and Information MINIMAL NORMAL AND COMMUTING COMPLETIONS DAVID P KIMSEY AND

More information

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas

INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES. Aikaterini Aretaki, John Maroulas Opuscula Mathematica Vol. 31 No. 3 2011 http://dx.doi.org/10.7494/opmath.2011.31.3.303 INVESTIGATING THE NUMERICAL RANGE AND Q-NUMERICAL RANGE OF NON SQUARE MATRICES Aikaterini Aretaki, John Maroulas Abstract.

More information

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 The Bloch Sphere Ian Glendinning February 16, 2005 QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 Outline Introduction Definition of the Bloch sphere Derivation of the Bloch sphere Properties

More information

Unitary Dynamics and Quantum Circuits

Unitary Dynamics and Quantum Circuits qitd323 Unitary Dynamics and Quantum Circuits Robert B. Griffiths Version of 20 January 2014 Contents 1 Unitary Dynamics 1 1.1 Time development operator T.................................... 1 1.2 Particular

More information

Review of similarity transformation and Singular Value Decomposition

Review of similarity transformation and Singular Value Decomposition Review of similarity transformation and Singular Value Decomposition Nasser M Abbasi Applied Mathematics Department, California State University, Fullerton July 8 7 page compiled on June 9, 5 at 9:5pm

More information

GLOBAL, GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY

GLOBAL, GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY GLOBAL GEOMETRICAL COORDINATES ON FALBEL S CROSS-RATIO VARIETY JOHN R. PARKER & IOANNIS D. PLATIS Abstract. Falbel has shown that four pairwise distinct points on the boundary of complex hyperbolic -space

More information

Diagonalizing Matrices

Diagonalizing Matrices Diagonalizing Matrices Massoud Malek A A Let A = A k be an n n non-singular matrix and let B = A = [B, B,, B k,, B n ] Then A n A B = A A 0 0 A k [B, B,, B k,, B n ] = 0 0 = I n 0 A n Notice that A i B

More information

Non white sample covariance matrices.

Non white sample covariance matrices. Non white sample covariance matrices. S. Péché, Université Grenoble 1, joint work with O. Ledoit, Uni. Zurich 17-21/05/2010, Université Marne la Vallée Workshop Probability and Geometry in High Dimensions

More information

Spectral inequalities and equalities involving products of matrices

Spectral inequalities and equalities involving products of matrices Spectral inequalities and equalities involving products of matrices Chi-Kwong Li 1 Department of Mathematics, College of William & Mary, Williamsburg, Virginia 23187 (ckli@math.wm.edu) Yiu-Tung Poon Department

More information

arxiv: v2 [nlin.si] 15 Oct 2008

arxiv: v2 [nlin.si] 15 Oct 2008 Random Quantum Operations Wojciech Bruzda 1, Valerio Cappellini 1, Hans-Jürgen Sommers 2, and Karol Życzkowski1,3 1 Mark Kac Complex Systems Research Centre, Institute of Physics, Jagiellonian University,

More information