b) (5 points) Give a simple quantum circuit that transforms the state

Size: px
Start display at page:

Download "b) (5 points) Give a simple quantum circuit that transforms the state"

Transcription

1 C/CS/Phy191 Midterm Quiz Solutions October 0, (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish to compute f (x) for some n bit string x, what would you feed as input to U( f ) and what would be the output? Answer The key idea in reversible quantum computation is that every operation needs to be reversible Given a classical circuit f, we can have a quantum circuit such that U f x 0 x f (x) or more generally, U f x y x y f (x) Technically speaking, you also need to supply some number of ancillary 0 qubits to convert all of the classical gates to quantum (reversible) gates b) (5 points) Give a simple quantum circuit that transforms the state 0 1 ( ) to 1 ( ) 0 (there may be more than one circuit which accomplishes the task for this specific state Any one of them will do as an answer) Answer Observe that H H 1, and further that H 0 + The input state can be written as 0+ So then H H

2 c) (5 points) Show that the circuit below performs a projective measurement in the basis of the Bell states Answer You have showed that H gate on qubit one followed by CNOT gate controlled on the first qubit maps a unique element of the two qubit computational basis to a unique element of the Bell basis You also know that the H gate is its own inverse, and so is CNOT Then this circuit is the inverse of the Bell-state creation circuit So this circuit maps an element of the Bell basis to a unique element in the computational basis So a particular combination of qubit measurement outcomes maps directly to a unique input Bell state Since each measurement result codes directly for a specific and unique Bell state input to the circuit, the entire circuit can be considered a measurement in the Bell basis d) (5 points) Alice starts with a Bell state φ + She teleports one of the qubits to Bob and the other to Charlie Are the two qubits received by Bob and Charlie still entangled? Answer Yes, the two qubits are still entangled A way to see this without working through the entire circuit is by noting that by the principle of deferred measurement, all of the conditional operations can be replaced by controlled unitary operations in the circuit, and the measurements deferred to the end Unitary operations don t break entanglement, and the two teleported qubits are never measured, so they remain entangled at the end

3 e) (5 points) Consider the superposition ψ x S 1/ k/ x, where S is the set of all n bit strings whose last n k bits are the fixed string y Note that S k What is the Hadamard transform H n ψ? H n ψ [ H n 1/ k/ k 1 x0 x ] y H k H n k 1/ k/ x0 k 1 x y [ H k 1/ k/ k 1 ] x H n k y x0 Now the first term can be evaluated by noting that 1/ k/ k 1 x Hk0k x0 so that the first term becomes H k H k 0k 0k The second term can be evaluated straightforwardly by application of the Hadamard transform, ie, H n k y 1 n k 1 (n k)/ z0 ( 1) z y z Putting these together gives H n ψ 1 n k 1 (n k)/ x0 ( 1) x y 0 k x

4 (5 points) The parity of a n-qubit register is defined as P n 1 for an odd number of qubits in state 1 and as P n +1 for an even number of qubits (including zero) in state 1 Consider the circuit of sequential CNOT gates between 3 qubits and an ancilla that is initialized to 0 : a) (5 points) Find the state of the ancilla after the second CNOT gate for the 4 possible inputs 00, 11, 01, 10 of the first qubits Write the state of the ancilla in terms of the parity function P of the first qubits Answer Note that if the CNOT gate is performed an even number of times, there is no effect on the ancilla Thus, the ancilla will be in the state 1 iff the register containing the control bits contains an odd number of qubits in the state 1 Letting φ represent the ancilla qubit, φ 0 if P 1 and φ 1 if P 1 Otherwise it is in state 0 Explicitly performing the CNOT gates, we obtain 00 0,11 0,01 1,10 1 b) (10 points) If we generalize this circuit to n qubits with sequential CNOT gates to the ancilla, what would be the state of the ancilla after n CNOT gates? Hint: it may help to first continue the analysis in a) to find the state of the ancilla after the third CNOT gate Answer The previous analysis also holds here, so that φ 0 if P n 1 and φ 1 if P n 1

5 c) (10 points) Now consider the circuit below What is the single qubit gate that we need to insert in the empty box on the ancilla line in order to simulate the time evolution U exp( iht/ h) for the Hamiltonian H Z 1 Z Z 3? Answer First observe that the H is diagonal in the computational basis Now let ψ be a three qubit state We know that since Z sends 1 1, then Z 1 Z Z 3 will yield a (-1) phase on ψ whenever ψ contains an odd number of qubits in the 1 state In math: Z 1 Z Z 3 ψ P 3 ψ so that the time evolution operator U exp iht/ h will produce a phase of exp it/ h on ψ whenever ψ contains an even number of 1s, and a phase of exp+it/ h whenever ψ contains an odd number of 1s Now let ψ represent the control qubits, and φ the target After the first three CNOTs have been performed, the ancilla is in the state 0 if the parity of the controls is 1, and 1 otherwise Thus we can write the total state Ψ of the four qubit system as something like Ψ Controls with even parity 0 + Controls with odd parity 1 We want the Hamiltonian to apply a phase shift of exp( it/ h) to the even parity states of the control register, and exp(+it/ h) to the odd parity states Because the state of the controls becomes entangled with the ancilla in the way indicated above, then the unitary gate ( e it/ h 0 U 0 e +it/ h ) on the ancilla qubit, ie, exp( iz a t/ h), will produce this evolution

6 (5 points) Consider a qubit in the state Suppose that some external physical process can apply a single Z gate at some time t > 0, but does so in a probabilistic manner The probability distribution for having applied the Z gate by time t is given by p(t) 1 1 e t/τ a) (7 points) Write down the expectation values X, Y, and Z for the system at t 0 Answer The initial state is an eigenstate of X, so, X 1 Y 0 Z 0 b) (6 points) Write down the density matrix for the qubit at time t 0 Answer The density matrix is defined by ρ i p i ψ i ψi At time t, the system is in state ψ + with probability 1 p(t) and in the state Z ψ with probability p(t) So ρ(t) (1 p(t)) p(t) c) (7 points) Now write down the expectation values X and Z for all times t Answer First, observe that the system is either in the state + or the state In both of these cases, Z 0, so that in general Z 0 Now let s look at X X Tr(Xρ) X Tr(Xρ) Tr((1 p) + + p(t) ) (1 p) p (1 p(t)) e t/τ

7 You should note that the elements + + and correspond to the diagonal elements of the density matrix in this basis You showed in homework that the trace of a matrix is invariant under changes of basis, so that we are free to evaluate the trace in any basis we d like, namely { +, } d) (5 points) You ve just shown that X decays exponentially in time What happens to the offdiagonal elements of the density matrix as t? You learned in class that two systems with the same density matrix are indistinguishable How does the density matrix for this system in the t limit compare to the density matrix for a classically mixed state with 1/ probability of being in the state 0 and 1/ probability of being in the state 1? Answer Note that both p(t) and 1 p(t) approach 1/ in the t limit So in this limit ρ 1 ( ) 1 ( ) We see that the off-diagonal matrix elements in the computational basis have vanished, so in this limit the state is indistinguishable from the classical mixture

8 4 (5 points) Suppose you are given an efficient quantum circuit for computing a function f : {0,1} n {0,1} n a) (18 points) Use this to construct an efficient quantum circuit that sets up a uniform superposition of the form φ y > α y x x > The particular value of y need not be fixed in advance rather you are to construct a circuit which will produce a uniform superposition over the pre-image of y, for some y in the range of f You may assume the standard conversion from a classical circuit f to a quantum circuit U f, as given in class Answer First, create a uniform superposition over the inputs n/ x x By applying the n-qubit Hadamard to the state 0 n Now append ancillary qubits in the state 0 n to preserve unitarity and apply Uf, storing the result in the ancillary qubits, which will then give you n/ x f (x) x Now measure the second register, containing the function values This will cause the first register to collapse to the values consistent with the measurement The first register contains the states x that map to f (x), so the first register collapses to 1 {x: f (x)y} {x: f (x)y} x, which is a uniform superposition over the pre-image of y b) (7 points) What is the closed form expression for α y? Answer The leading factor, α y, should be chosen for proper normalization and hence is given by 1 {x: f (x)y}

9 5 (5 points) Suppose an electron is prepared in the state Ψ 0 Show how a magnetic field of strength B might be applied to transform this electron into the state Ψ i 1 with 100% efficiency, answering the following specific questions: a) (10 points) In what direction is the magnetic field pointed? Hint: where does the desired final state lie on the Bloch sphere? Answer The initial state lies along the +Z axis on the Bloch sphere, and the final state lies on the +Y axis So then the magnetic field should point along the X axis to produce a rotation about X b) (15 points) For how long is the magnetic field applied? Hint: recall that a magnetic field causes a rotation of a 1-qubit spin state according to R j ( θ) exp( is j θ/ h), θ (eb/m) t where ˆx j is the direction of the magnetic field You may express your answer in terms of B and the fundamental constants e,m Answer If the magnetic fields points along the +X axis, then the qubit needs to undergo a counterclockwise rotation of 3π about the X axis The Hamiltonian must therefore generate a rotation operator R x ( 3π ) ( exp i S x h ) ( 3π exp i X ) 3π The Hamiltonian is H e m BS X e h m BX which generates the time evolution operator ( U exp iht ) ( ) iebxt exp, h m ( Requiring that U generates R 3π x 3 obtain t 3π m eb ) allows us to equate the arguments of the exponential and hence

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding.

Hilbert Space, Entanglement, Quantum Gates, Bell States, Superdense Coding. CS 94- Bell States Bell Inequalities 9//04 Fall 004 Lecture Hilbert Space Entanglement Quantum Gates Bell States Superdense Coding 1 One qubit: Recall that the state of a single qubit can be written as

More information

Single qubit + CNOT gates

Single qubit + CNOT gates Lecture 6 Universal quantum gates Single qubit + CNOT gates Single qubit and CNOT gates together can be used to implement an arbitrary twolevel unitary operation on the state space of n qubits. Suppose

More information

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2

Quantum decoherence. Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, Quantum decoherence p. 1/2 Quantum decoherence p. 1/2 Quantum decoherence Éric Oliver Paquette (U. Montréal) -Traces Worshop [Ottawa]- April 29 th, 2007 Quantum decoherence p. 2/2 Outline Quantum decoherence: 1. Basics of quantum

More information

Lecture 20: Bell inequalities and nonlocality

Lecture 20: Bell inequalities and nonlocality CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 0: Bell inequalities and nonlocality April 4, 006 So far in the course we have considered uses for quantum information in the

More information

Instantaneous Nonlocal Measurements

Instantaneous Nonlocal Measurements Instantaneous Nonlocal Measurements Li Yu Department of Physics, Carnegie-Mellon University, Pittsburgh, PA July 22, 2010 References Entanglement consumption of instantaneous nonlocal quantum measurements.

More information

CS/Ph120 Homework 1 Solutions

CS/Ph120 Homework 1 Solutions CS/Ph0 Homework Solutions October, 06 Problem : State discrimination Suppose you are given two distinct states of a single qubit, ψ and ψ. a) Argue that if there is a ϕ such that ψ = e iϕ ψ then no measurement

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar

Quantum Computing Lecture 3. Principles of Quantum Mechanics. Anuj Dawar Quantum Computing Lecture 3 Principles of Quantum Mechanics Anuj Dawar What is Quantum Mechanics? Quantum Mechanics is a framework for the development of physical theories. It is not itself a physical

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

Quantum Teleportation Pt. 1

Quantum Teleportation Pt. 1 Quantum Teleportation Pt. 1 PHYS 500 - Southern Illinois University April 17, 2018 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 1 April 17, 2018 1 / 13 Types of Communication In the

More information

SUPERDENSE CODING AND QUANTUM TELEPORTATION

SUPERDENSE CODING AND QUANTUM TELEPORTATION SUPERDENSE CODING AND QUANTUM TELEPORTATION YAQIAO LI This note tries to rephrase mathematically superdense coding and quantum teleportation explained in [] Section.3 and.3.7, respectively (as if I understood

More information

C/CS/Phys 191 Quantum Gates and Universality 9/22/05 Fall 2005 Lecture 8. a b b d. w. Therefore, U preserves norms and angles (up to sign).

C/CS/Phys 191 Quantum Gates and Universality 9/22/05 Fall 2005 Lecture 8. a b b d. w. Therefore, U preserves norms and angles (up to sign). C/CS/Phys 191 Quantum Gates and Universality 9//05 Fall 005 Lecture 8 1 Readings Benenti, Casati, and Strini: Classical circuits and computation Ch.1.,.6 Quantum Gates Ch. 3.-3.4 Universality Ch. 3.5-3.6

More information

Quantum Information & Quantum Computation

Quantum Information & Quantum Computation CS90A, Spring 005: Quantum Information & Quantum Computation Wim van Dam Engineering, Room 509 vandam@cs http://www.cs.ucsb.edu/~vandam/teaching/cs90/ Administrative The Final Examination will be: Monday

More information

Principles of Quantum Mechanics Pt. 2

Principles of Quantum Mechanics Pt. 2 Principles of Quantum Mechanics Pt. 2 PHYS 500 - Southern Illinois University February 9, 2017 PHYS 500 - Southern Illinois University Principles of Quantum Mechanics Pt. 2 February 9, 2017 1 / 13 The

More information

Quantum Teleportation Pt. 3

Quantum Teleportation Pt. 3 Quantum Teleportation Pt. 3 PHYS 500 - Southern Illinois University March 7, 2017 PHYS 500 - Southern Illinois University Quantum Teleportation Pt. 3 March 7, 2017 1 / 9 A Bit of History on Teleportation

More information

Seminar 1. Introduction to Quantum Computing

Seminar 1. Introduction to Quantum Computing Seminar 1 Introduction to Quantum Computing Before going in I am also a beginner in this field If you are interested, you can search more using: Quantum Computing since Democritus (Scott Aaronson) Quantum

More information

Compute the Fourier transform on the first register to get x {0,1} n x 0.

Compute the Fourier transform on the first register to get x {0,1} n x 0. CS 94 Recursive Fourier Sampling, Simon s Algorithm /5/009 Spring 009 Lecture 3 1 Review Recall that we can write any classical circuit x f(x) as a reversible circuit R f. We can view R f as a unitary

More information

CS120, Quantum Cryptography, Fall 2016

CS120, Quantum Cryptography, Fall 2016 CS10, Quantum Cryptography, Fall 016 Homework # due: 10:9AM, October 18th, 016 Ground rules: Your homework should be submitted to the marked bins that will be by Annenberg 41. Please format your solutions

More information

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i.

. Here we are using the standard inner-product over C k to define orthogonality. Recall that the inner-product of two vectors φ = i α i. CS 94- Hilbert Spaces, Tensor Products, Quantum Gates, Bell States 1//07 Spring 007 Lecture 01 Hilbert Spaces Consider a discrete quantum system that has k distinguishable states (eg k distinct energy

More information

Fourier Sampling & Simon s Algorithm

Fourier Sampling & Simon s Algorithm Chapter 4 Fourier Sampling & Simon s Algorithm 4.1 Reversible Computation A quantum circuit acting on n qubits is described by an n n unitary operator U. Since U is unitary, UU = U U = I. This implies

More information

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction

Tutorial on Quantum Computing. Vwani P. Roychowdhury. Lecture 1: Introduction Tutorial on Quantum Computing Vwani P. Roychowdhury Lecture 1: Introduction 1 & ) &! # Fundamentals Qubits A single qubit is a two state system, such as a two level atom we denote two orthogonal states

More information

Quantum Optics and Quantum Informatics FKA173

Quantum Optics and Quantum Informatics FKA173 Quantum Optics and Quantum Informatics FKA173 Date and time: Tuesday, 7 October 015, 08:30-1:30. Examiners: Jonas Bylander (070-53 44 39) and Thilo Bauch (0733-66 13 79). Visits around 09:30 and 11:30.

More information

1 Readings. 2 Unitary Operators. C/CS/Phys C191 Unitaries and Quantum Gates 9/22/09 Fall 2009 Lecture 8

1 Readings. 2 Unitary Operators. C/CS/Phys C191 Unitaries and Quantum Gates 9/22/09 Fall 2009 Lecture 8 C/CS/Phys C191 Unitaries and Quantum Gates 9//09 Fall 009 Lecture 8 1 Readings Benenti, Casati, and Strini: Classical circuits and computation Ch.1.,.6 Quantum Gates Ch. 3.-3.4 Kaye et al: Ch. 1.1-1.5,

More information

1 Measurement and expectation values

1 Measurement and expectation values C/CS/Phys 191 Measurement and expectation values, Intro to Spin 2/15/05 Spring 2005 Lecture 9 1 Measurement and expectation values Last time we discussed how useful it is to work in the basis of energy

More information

Quantum information and quantum computing

Quantum information and quantum computing Middle East Technical University, Department of Physics January 7, 009 Outline Measurement 1 Measurement 3 Single qubit gates Multiple qubit gates 4 Distinguishability 5 What s measurement? Quantum measurement

More information

Short introduction to Quantum Computing

Short introduction to Quantum Computing November 7, 2017 Short introduction to Quantum Computing Joris Kattemölle QuSoft, CWI, Science Park 123, Amsterdam, The Netherlands Institute for Theoretical Physics, University of Amsterdam, Science Park

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

CS257 Discrete Quantum Computation

CS257 Discrete Quantum Computation CS57 Discrete Quantum Computation John E Savage April 30, 007 Lect 11 Quantum Computing c John E Savage Classical Computation State is a vector of reals; e.g. Booleans, positions, velocities, or momenta.

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

Lecture 3: Superdense coding, quantum circuits, and partial measurements

Lecture 3: Superdense coding, quantum circuits, and partial measurements CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 3: Superdense coding, quantum circuits, and partial measurements Superdense Coding January 4, 006 Imagine a situation where two

More information

Classical Verification of Quantum Computations

Classical Verification of Quantum Computations Classical Verification of Quantum Computations Urmila Mahadev UC Berkeley September 12, 2018 Classical versus Quantum Computers Can a classical computer verify a quantum computation? Classical output (decision

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

CS/Ph120 Homework 8 Solutions

CS/Ph120 Homework 8 Solutions CS/Ph0 Homework 8 Solutions December, 06 Problem : Thinking adversarially. Solution: (Due to De Huang) Attack to portocol : Assume that Eve has a quantum machine that can store arbitrary amount of quantum

More information

Errata list, Nielsen & Chuang. rrata/errata.html

Errata list, Nielsen & Chuang.  rrata/errata.html Errata list, Nielsen & Chuang http://www.michaelnielsen.org/qcqi/errata/e rrata/errata.html Part II, Nielsen & Chuang Quantum circuits (Ch 4) SK Quantum algorithms (Ch 5 & 6) Göran Johansson Physical realisation

More information

Quantum Information & Quantum Computation

Quantum Information & Quantum Computation CS9A, Spring 5: Quantum Information & Quantum Computation Wim van Dam Engineering, Room 59 vandam@cs http://www.cs.ucsb.edu/~vandam/teaching/cs9/ Administrivia Who has the book already? Office hours: Wednesday

More information

Quantum Information & Quantum Computing

Quantum Information & Quantum Computing Math 478, Phys 478, CS4803, September 18, 007 1 Georgia Tech Math, Physics & Computing Math 478, Phys 478, CS4803 Quantum Information & Quantum Computing Homework # Due September 18, 007 1. Read carefully

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 9 (2017) Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/qic710 1 More state distinguishing

More information

Quantum Computing: Foundations to Frontier Fall Lecture 3

Quantum Computing: Foundations to Frontier Fall Lecture 3 Quantum Computing: Foundations to Frontier Fall 018 Lecturer: Henry Yuen Lecture 3 Scribes: Seyed Sajjad Nezhadi, Angad Kalra Nora Hahn, David Wandler 1 Overview In Lecture 3, we started off talking about

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Fidelity of Quantum Teleportation through Noisy Channels

Fidelity of Quantum Teleportation through Noisy Channels Fidelity of Quantum Teleportation through Noisy Channels Sangchul Oh, Soonchil Lee, and Hai-woong Lee Department of Physics, Korea Advanced Institute of Science and Technology, Daejon, 305-701, Korea (Dated:

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 4 December 2013 1 Ph 219b/CS 219b Exercises Due: Wednesday 4 December 2013 4.1 The peak in the Fourier transform In the period finding algorithm we prepared the periodic state A 1 1 x 0 + jr, (1) A j=0 where A is the

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013

Ph 219b/CS 219b. Exercises Due: Wednesday 20 November 2013 1 h 219b/CS 219b Exercises Due: Wednesday 20 November 2013 3.1 Universal quantum gates I In this exercise and the two that follow, we will establish that several simple sets of gates are universal for

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2

QUANTUM COMPUTATION. Exercise sheet 1. Ashley Montanaro, University of Bristol H Z U = 1 2 School of Mathematics Spring 017 QUANTUM COMPUTATION Exercise sheet 1 Ashley Montanaro, University of Bristol ashley.montanaro@bristol.ac.uk 1. The quantum circuit model. (a) Consider the following quantum

More information

C/CS/Phys C191 Quantum Gates, Universality and Solovay-Kitaev 9/25/07 Fall 2007 Lecture 9

C/CS/Phys C191 Quantum Gates, Universality and Solovay-Kitaev 9/25/07 Fall 2007 Lecture 9 C/CS/Phys C191 Quantum Gates, Universality and Solovay-Kitaev 9/25/07 Fall 2007 Lecture 9 1 Readings Benenti, Casati, and Strini: Quantum Gates Ch. 3.2-3.4 Universality Ch. 3.5-3.6 2 Quantum Gates Continuing

More information

Quantum Mechanics II: Examples

Quantum Mechanics II: Examples Quantum Mechanics II: Examples Michael A. Nielsen University of Queensland Goals: 1. To apply the principles introduced in the last lecture to some illustrative examples: superdense coding, and quantum

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

More advanced codes 0 1 ( , 1 1 (

More advanced codes 0 1 ( , 1 1 ( p. 1/24 More advanced codes The Shor code was the first general-purpose quantum error-correcting code, but since then many others have been discovered. An important example, discovered independently of

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

Introduction to Quantum Computing

Introduction to Quantum Computing Introduction to Quantum Computing Part I Emma Strubell http://cs.umaine.edu/~ema/quantum_tutorial.pdf April 12, 2011 Overview Outline What is quantum computing? Background Caveats Fundamental differences

More information

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1

6.080/6.089 GITCS May 6-8, Lecture 22/23. α 0 + β 1. α 2 + β 2 = 1 6.080/6.089 GITCS May 6-8, 2008 Lecturer: Scott Aaronson Lecture 22/23 Scribe: Chris Granade 1 Quantum Mechanics 1.1 Quantum states of n qubits If you have an object that can be in two perfectly distinguishable

More information

Baby's First Diagrammatic Calculus for Quantum Information Processing

Baby's First Diagrammatic Calculus for Quantum Information Processing Baby's First Diagrammatic Calculus for Quantum Information Processing Vladimir Zamdzhiev Department of Computer Science Tulane University 30 May 2018 1 / 38 Quantum computing ˆ Quantum computing is usually

More information

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits

Quantum Computing. Quantum Computing. Sushain Cherivirala. Bits and Qubits Quantum Computing Bits and Qubits Quantum Computing Sushain Cherivirala Quantum Gates Measurement of Qubits More Quantum Gates Universal Computation Entangled States Superdense Coding Measurement Revisited

More information

The information content of a quantum

The information content of a quantum The information content of a quantum A few words about quantum computing Bell-state measurement Quantum dense coding Teleportation (polarisation states) Quantum error correction Teleportation (continuous

More information

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters)

Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Teleportation of Quantum States (1993; Bennett, Brassard, Crepeau, Jozsa, Peres, Wootters) Rahul Jain U. Waterloo and Institute for Quantum Computing, rjain@cs.uwaterloo.ca entry editor: Andris Ambainis

More information

Quantum Pseudo-Telepathy

Quantum Pseudo-Telepathy Quantum Pseudo-Telepathy Michail Lampis mlambis@softlab.ntua.gr NTUA Quantum Pseudo-Telepathy p.1/24 Introduction In Multi-Party computations we are interested in measuring communication complexity. Communication

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

IBM quantum experience: Experimental implementations, scope, and limitations

IBM quantum experience: Experimental implementations, scope, and limitations IBM quantum experience: Experimental implementations, scope, and limitations Plan of the talk IBM Quantum Experience Introduction IBM GUI Building blocks for IBM quantum computing Implementations of various

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Some Introductory Notes on Quantum Computing

Some Introductory Notes on Quantum Computing Some Introductory Notes on Quantum Computing Markus G. Kuhn http://www.cl.cam.ac.uk/~mgk25/ Computer Laboratory University of Cambridge 2000-04-07 1 Quantum Computing Notation Quantum Computing is best

More information

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo

Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum Computing University of Waterloo CS 497 Frontiers of Computer Science Introduction to Quantum Computing Lecture of http://www.cs.uwaterloo.ca/~cleve/cs497-f7 Richard Cleve David R. Cheriton School of Computer Science Institute for Quantum

More information

Lecture 1: Introduction to Quantum Computing

Lecture 1: Introduction to Quantum Computing Lecture : Introduction to Quantum Computing Rajat Mittal IIT Kanpur What is quantum computing? This course is about the theory of quantum computation, i.e., to do computation using quantum systems. These

More information

92 CHAPTER III. QUANTUM COMPUTATION. Figure III.11: Diagram for swap (from NC).

92 CHAPTER III. QUANTUM COMPUTATION. Figure III.11: Diagram for swap (from NC). 92 CHAPTER III. QUANTUM COMPUTATION Figure III.11: Diagram for swap (from NC). C.3 Quantum circuits 1. Quantum circuit: A quantum circuit isa sequential seriesofquantum transformations on a quantum register.

More information

The Future. Currently state of the art chips have gates of length 35 nanometers.

The Future. Currently state of the art chips have gates of length 35 nanometers. Quantum Computing Moore s Law The Future Currently state of the art chips have gates of length 35 nanometers. The Future Currently state of the art chips have gates of length 35 nanometers. When gate lengths

More information

UNM Physics 452/581: Introduction to Quantum Information, Problem Set 3, Fall 2007

UNM Physics 452/581: Introduction to Quantum Information, Problem Set 3, Fall 2007 UNM Physics 45/581: Introduction to Quantum Information, Problem Set 3, Fall 007 Instructor: Dr. Landahl Issued: September 1, 007 Due: September 18, 007 Do all of the problems listed below. Hand in your

More information

Quantum Communication Complexity

Quantum Communication Complexity Quantum Communication Complexity Ronald de Wolf Communication complexity has been studied extensively in the area of theoretical computer science and has deep connections with seemingly unrelated areas,

More information

Lecture 4: Elementary Quantum Algorithms

Lecture 4: Elementary Quantum Algorithms CS 880: Quantum Information Processing 9/13/010 Lecture 4: Elementary Quantum Algorithms Instructor: Dieter van Melkebeek Scribe: Kenneth Rudinger This lecture introduces several simple quantum algorithms.

More information

Homework 3 - Solutions

Homework 3 - Solutions Homework 3 - Solutions The Transpose an Partial Transpose. 1 Let { 1, 2,, } be an orthonormal basis for C. The transpose map efine with respect to this basis is a superoperator Γ that acts on an operator

More information

1 Quantum Circuits. CS Quantum Complexity theory 1/31/07 Spring 2007 Lecture Class P - Polynomial Time

1 Quantum Circuits. CS Quantum Complexity theory 1/31/07 Spring 2007 Lecture Class P - Polynomial Time CS 94- Quantum Complexity theory 1/31/07 Spring 007 Lecture 5 1 Quantum Circuits A quantum circuit implements a unitary operator in a ilbert space, given as primitive a (usually finite) collection of gates

More information

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation

Logic gates. Quantum logic gates. α β 0 1 X = 1 0. Quantum NOT gate (X gate) Classical NOT gate NOT A. Matrix form representation Quantum logic gates Logic gates Classical NOT gate Quantum NOT gate (X gate) A NOT A α 0 + β 1 X α 1 + β 0 A N O T A 0 1 1 0 Matrix form representation 0 1 X = 1 0 The only non-trivial single bit gate

More information

Entanglement and Quantum Teleportation

Entanglement and Quantum Teleportation Entanglement and Quantum Teleportation Stephen Bartlett Centre for Advanced Computing Algorithms and Cryptography Australian Centre of Excellence in Quantum Computer Technology Macquarie University, Sydney,

More information

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11

C/CS/Phys C191 Particle-in-a-box, Spin 10/02/08 Fall 2008 Lecture 11 C/CS/Phys C191 Particle-in-a-box, Spin 10/0/08 Fall 008 Lecture 11 Last time we saw that the time dependent Schr. eqn. can be decomposed into two equations, one in time (t) and one in space (x): space

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information

Introduction to Quantum Error Correction

Introduction to Quantum Error Correction Introduction to Quantum Error Correction Nielsen & Chuang Quantum Information and Quantum Computation, CUP 2000, Ch. 10 Gottesman quant-ph/0004072 Steane quant-ph/0304016 Gottesman quant-ph/9903099 Errors

More information

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels

A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels JOURNAL OF CHEMISTRY 57 VOLUME NUMBER DECEMBER 8 005 A review on quantum teleportation based on: Teleporting an unknown quantum state via dual classical and Einstein- Podolsky-Rosen channels Miri Shlomi

More information

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω

example: e.g. electron spin in a field: on the Bloch sphere: this is a rotation around the equator with Larmor precession frequency ω Dynamics of a Quantum System: QM postulate: The time evolution of a state ψ> of a closed quantum system is described by the Schrödinger equation where H is the hermitian operator known as the Hamiltonian

More information

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm

Introduction to Quantum Algorithms Part I: Quantum Gates and Simon s Algorithm Part I: Quantum Gates and Simon s Algorithm Martin Rötteler NEC Laboratories America, Inc. 4 Independence Way, Suite 00 Princeton, NJ 08540, U.S.A. International Summer School on Quantum Information, Max-Planck-Institut

More information

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction Quantum Error Correction and Fault Tolerance Daniel Gottesman Perimeter Institute The Classical and Quantum Worlds Quantum Errors A general quantum error is a superoperator: ρ ΣA k ρ A k (Σ A k A k = I)

More information

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006

Ph 219b/CS 219b. Exercises Due: Wednesday 22 February 2006 1 Ph 219b/CS 219b Exercises Due: Wednesday 22 February 2006 6.1 Estimating the trace of a unitary matrix Recall that using an oracle that applies the conditional unitary Λ(U), Λ(U): 0 ψ 0 ψ, 1 ψ 1 U ψ

More information

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution

Chapter 13: Photons for quantum information. Quantum only tasks. Teleportation. Superdense coding. Quantum key distribution Chapter 13: Photons for quantum information Quantum only tasks Teleportation Superdense coding Quantum key distribution Quantum teleportation (Theory: Bennett et al. 1993; Experiments: many, by now) Teleportation

More information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information

2.0 Basic Elements of a Quantum Information Processor. 2.1 Classical information processing The carrier of information QSIT09.L03 Page 1 2.0 Basic Elements of a Quantum Information Processor 2.1 Classical information processing 2.1.1 The carrier of information - binary representation of information as bits (Binary digits).

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

Quantum Information & Quantum Computing

Quantum Information & Quantum Computing Math 478, Phys 478, CS4803, February 9, 006 1 Georgia Tech Math, Physics & Computing Math 478, Phys 478, CS4803 Quantum Information & Quantum Computing Problems Set 1 Due February 9, 006 Part I : 1. Read

More information

Lecture 21: Quantum communication complexity

Lecture 21: Quantum communication complexity CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 21: Quantum communication complexity April 6, 2006 In this lecture we will discuss how quantum information can allow for a

More information

5. Communication resources

5. Communication resources 5. Communication resources Classical channel Quantum channel Entanglement How does the state evolve under LOCC? Properties of maximally entangled states Bell basis Quantum dense coding Quantum teleportation

More information

Transmitting and Hiding Quantum Information

Transmitting and Hiding Quantum Information 2018/12/20 @ 4th KIAS WORKSHOP on Quantum Information and Thermodynamics Transmitting and Hiding Quantum Information Seung-Woo Lee Quantum Universe Center Korea Institute for Advanced Study (KIAS) Contents

More information

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

C/CS/Phy191 Problem Set 6 Solutions 3/23/05 C/CS/Phy191 Problem Set 6 Solutions 3/3/05 1. Using the standard basis (i.e. 0 and 1, eigenstates of Ŝ z, calculate the eigenvalues and eigenvectors associated with measuring the component of spin along

More information

Introduction to Quantum Computation

Introduction to Quantum Computation Chapter 1 Introduction to Quantum Computation 1.1 Motivations The main task in this course is to discuss application of quantum mechanics to information processing (or computation). Why? Education:Asingleq-bitisthesmallestpossiblequantummechanical

More information

Lecture 22: Quantum computational complexity

Lecture 22: Quantum computational complexity CPSC 519/619: Quantum Computation John Watrous, University of Calgary Lecture 22: Quantum computational complexity April 11, 2006 This will be the last lecture of the course I hope you have enjoyed the

More information

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games

CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games CS286.2 Lecture 8: A variant of QPCP for multiplayer entangled games Scribe: Zeyu Guo In the first lecture, we saw three equivalent variants of the classical PCP theorems in terms of CSP, proof checking,

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

Introduction to Quantum Information Processing

Introduction to Quantum Information Processing Introdction to Qantm Information Processing Lectre 5 Richard Cleve Overview of Lectre 5 Review of some introdctory material: qantm states, operations, and simple qantm circits Commnication tasks: one qbit

More information

The query register and working memory together form the accessible memory, denoted H A. Thus the state of the algorithm is described by a vector

The query register and working memory together form the accessible memory, denoted H A. Thus the state of the algorithm is described by a vector 1 Query model In the quantum query model we wish to compute some function f and we access the input through queries. The complexity of f is the number of queries needed to compute f on a worst-case input

More information

LECTURE NOTES ON QUANTUM COMPUTATION. Cornell University, Physics , CS 483; Spring, 2005 c 2006, N. David Mermin

LECTURE NOTES ON QUANTUM COMPUTATION. Cornell University, Physics , CS 483; Spring, 2005 c 2006, N. David Mermin LECTURE NOTES ON QUANTUM COMPUTATION Cornell University, Physics 481-681, CS 483; Spring, 2005 c 2006, N. David Mermin IV. Searching with a Quantum Computer Last revised 3/30/06 Suppose you know that eactly

More information

Universal Blind Quantum Computing

Universal Blind Quantum Computing Universal Blind Quantum Computing Elham Kashefi Laboratoire d Informatique de Grenoble Joint work with Anne Broadbent Montreal Joe Fitzsimons Oxford Classical Blind Computing Fundamentally asymmetric unlike

More information