REPRESENTATION THEORY WEEK 7

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "REPRESENTATION THEORY WEEK 7"

Transcription

1 REPRESENTATION THEORY WEEK 7 1. Characters of L k and S n A character of an irreducible representation of L k is a polynomial function constant on every conjugacy class. Since the set of diagonalizable matrices is dense in L k, a character is defined by its values on the subgroup of diagonal matrices in L k. Thus, one can consider a character as a polynomial function of x 1,..., x k. Moreover, a character is a symmetric polynomial of x 1,...,x k as the matrices diag (x 1,...,x k ) and diag ( ) x s(1),...,x s(k) are conjugate for any s Sk. For example, the character of the standard representation in E is equal to x x k and the character of E n is equal to (x x k ) n. Let λ = (λ 1,...,λ k ) be such that λ 1 λ λ k. Let D λ denote the determinant of the k k-matrix whose i, j entry equals x λ j i. It is clear that D λ is a skew-symmetric polynomial of x 1,...,x k. If ρ = (k 1,...,1, ) then D ρ = i j (x i x j ) is the well known Vandermonde determinant. Let S λ = D λ+ρ D ρ. It is easy to see that S λ is a symmetric polynomial of x 1,...,x k. It is called a Schur polynomial. The leading monomial of S λ is the x λ 1...x λ k k (if one orders monomials lexicographically) and therefore it is not hard to show that S λ form a basis in the ring of symmetric polynomials of x 1,..., x k. Theorem 1.1. The character of W λ equals to S λ. I do not include a proof of this Theorem since it uses beautiful but hard combinatoric. The proof is much easier in general framework of Lie groups and is included in 61A course. Exercise. Check that dim W λ = ( λi λ ) j (ρ i<j i ρ j ) = i<j ( λi λ ) j (k 1)! (k )!...1!, if λ = λ + ρ. Now we use Schur-Weyl duality to establish the relation between characters of S n and L k. Recall that the conjugacy classes in S n are given by partitions of n. Let C (µ) be the class associated with the partition µ in the natural way. Let ρ denote Date: March 15, 11. 1

2 REPRESENTATION THEORY WEEK 7 the representation of S n L k in E n. Let r be the number of rows in µ. Then one can see that (1.1) tr(ρ s g ) = (x µ x µ 1 k )...(xµr x µr k ), for any s C (µ) and a diagonal g L k. Denote by P µ the polynomial in the right hand side of the identity. Let χ λ be the character of V λ. Since tr (ρ s g ) = λ Γ n,k χ λ (s) S λ (g), one obtains the following remarkable relation (1.) P µ = λ Γ n,k χ λ (s) S λ.. Representations of compact groups Let be a group and a topological space. We say that is a topological group if the multiplication map and the inverse are continuous maps. Naturally, is compact if it is compact topological space. Examples. The circle S 1 = {z C z = 1}. A torus T n = S 1 S 1. Unitary group U n = { X L n X t X = 1 n }. Special unitary group Orthogonal group Special orthogonal group SU n = {X U n det X = 1}. O n = { x L n (R) X t X = 1 n }. SO n = {X O n det X = 1}. Theorem.1. Let be a compact group. There exists a unique measure on such that f (ts) dt = f (t) dt, for any integrable function f on and any s, and dt = 1. In the same way there exists a measure d t such that f (st) dt = f (t) d t, d t = 1. Moreover, for a connected compact group dt = d t.

3 REPRESENTATION THEORY WEEK 7 3 The measure dt (d t) is called right-invariant (left-invariant) measure, or Haar measure. We do not give the proof of this theorem in general. However, all examples we consider are smooth submanifolds in L k. Thus, to define the invariant measure we just need to define a volume in the tangent space at identity T 1 and then use right (left) multiplication to define it on the whole group. More precisely, let γ Λ top T 1. Then γ s = m s (γ), where m s : is the right (left) multiplication on s and m s is the induced map Λ top T 1 Λtop T s. After this normalize γ to satisfy γ = 1. Consider a vector space over C equipped with topology such that addition and multiplication by a scalar are continuous. We always assume that a topological vector space satisfies the following conditions (1) for any v V there exist a neighborhood of which does not contain v; () there is a base of convex neighborhoods of zero. Topological vector spaces satisfying above conditions are called locally convex. We do not go into the theory of such spaces. All we need is the fact that there is a non-zero continuous linear functional on a locally convex space. A representation ρ : L(V ) is continuous if the map V V given by (s, v) ρ s v is continuous. Regular representation. Let be a compact group and L () be the space of all complex valued functions on such that f (t) dt exists. Then L () is a Hilbert space with respect to Hermitian form f, g = f (t) g (t) dt. Moreover, a representation R of in L () given by R s f (t) = f (ts) is continuous and the Hermitian form is -invariant. A representation ρ : L(V ) is called topologically irreducible if any invariant closed subspace of V is either V or. Lemma.. Every irreducible representation of is isomorphic to a subrepresentation in L (). Proof. Let ρ : L(V ) be irreducible. Pick a non-zero linear functional ϕ on V and define the map Φ : V L () which sends v to the matrix coefficient f v,ϕ (s) = ϕ, ρ s v. It is clear that a matrix coefficient is a continuous function on, therefore f v,ϕ L (). Furthermore Φ is a continuous intertwiner and KerΦ =.

4 4 REPRESENTATION THEORY WEEK 7 Recall that a Hilbert space is a space over C equipped with positive definite Hermitian form, complete in topology defined by the norm v = v, v 1/. We need the fact that a Hilbert space has an orthonormal topological basis. A continuous representation ρ : L (V ) is called unitary if V is a Hilbert space and v, v = ρ g v, ρ g v for any v V and g. The regular representation of in L () is unitary. In fact, Lemma. implies Corollary.3. Every topologically irreducible representation of a compact group is a subrepresentation in L (). Lemma.4. Every irreducible unitary representation of a compact group is finitedimensional. Proof. Let ρ : L(V ) be an irreducible unitary representation. Choose v V, v = 1. Define an operator T : V V by the formula Let Tx = v, x v. One can check easily that T is self-adjoint, i.e. x, Ty = Tx, y. Tx = ρ g T ( ρ 1 g x) dg. Then T : V V is an intertwiner and a self-adjoint operator. Furthermore, T is compact, i.e. if S = {x V x = 1}, then T (S) is a compact set in V. Every self-adjoint compact operator has an eigenvector. To construct an eigen vector find x S such that ( Tx, x ) is maximal. Then Tx = λx. Since Ker ( T λ Id ) is an invariant subspace in V, Ker ( T λ Id ) =. Hence T = λid. Note that for any orthonormal system of vectors e 1,..., e n V ei, Te i = ei, Te i 1, that implies λn 1. Hence dim V 1 λ. Corollary.5. Every irreducible continuous representation of a compact group is finite-dimensional.

5 REPRESENTATION THEORY WEEK Orthogonality relations and Peter-Weyl Theorem If ρ : L (V ) is a unitary representation. Define a matrix coefficient by the formula f v,w (g) = w, ρ g v. It is easy to check that (3.1) f v,w ( g 1 ) = f w,v (g) Theorem 3.1. For an irreducible unitary representation ρ : L(V ) f v,w, f v,w = f v,w (g)f v,w (g)dg = 1 dim ρ v, v w, w. The matrix coefficient of two non-isomorphic representation are orthogonal in L (). Proof. Define T End C (V ) and Tx = v, x v T = ρ g Tρ 1 g dg. As follows from Shur s lemma, T = λid. Since we obtain Hence On the other hand, w, Tw = tr T = tr T = v, v, T = v, v dim ρ. w, Tw = 1 dim ρ v, v w, w. w, v, ρ 1 g w ρ g v ( dg = f ) w,v g 1 f v,w (g)dg = = f v,w (g)f v,w (g)dg = 1 dim ρ f v,w, f v,w. In f v,w and f v,w are matrix coefficients of two non-isomorphic representation, the T =, and the calculation is even simpler. Corollary 3.. Let ρ and σ be two irreducible representations, then χ ρ, χ σ = 1 if ρ is isomorphic to σ and χ ρ, χ σ = otherwise. Theorem 3.3. (Peter-Weyl) Matrix coefficient form a dense set in L () for a compact group.

6 6 REPRESENTATION THEORY WEEK 7 Proof. We will prove the Theorem under assumption that L(E), in other words we assume that has a faithful finite-dimensional representation. Let M = End C (E). The polynomial functions C [M] on M form a dense set in the space of continuous functions on (Weierstrass theorem), and continuous functions are dense in L (). On the other hand, C [M] is spanned by matrix coefficients of all representations in T (E) = n= E n. Hence matrix coefficients are dense in L (). Corollary 3.4. The characters of irreducible representations form an orthonormal basis in the subspace of class function in L (). Corollary 3.5. Let be a compact group and R denote the representation of in L () given by the formula Then R s,t f (x) = f ( s 1 xt ). L () = ρ b V ρ V ρ, where Ĝ denotes the set of isomorphism classes of irreducible unitary representations of and the direct sum is in the sense of Hilbert spaces. Remark 3.6. Note that it follows from the proof of Theorem 3.3, that if E is a faithful representation of a compact group, then all other irreducible representations appear in T (E) as subrepresentations. 4. Examples Example 1. Let S 1 = {z C z = 1}, z = e iθ. The invariant measure on S 1 is dθ The irreducible representations are one dimensional. They are given by the π characters χ n : S 1 C, where χ n (θ) = e inθ. Hence Ŝ1 = Z and L ( S 1) = n Z Ce inθ, this is well-known fact that every periodic function can be extended in Fourier series. Example. Let = SU. Then consists of all matrices a b b ā, satisfying the relations a + b = 1. One also can realize SU as the subgroup of quaternions with norm 1. Thus, topologically SU is isomorphic to the threedimensional sphere S 3. To find all irreducible representation of SU consider the polynomial ring C [x, y] with the action of SU given by the formula ( ) a b ρ g (x) = ax + by, ρ g (y) = bx + āy, if g =. b a

7 REPRESENTATION THEORY WEEK 7 7 Let ρ n be the representation of in the space C n [x, y] of homogeneous polynomials of degree n. The monomials x n, x n 1 y,..., y n form a basis of C n [x, y]. Therefore dim ρ n = n + 1. We claim that all ρ n are irreducible and that every irreducible representation of SU is isomorphic to ρ n. Hence Ĝ = Z +. We will show this by checking that the characters χ n of ρ n form an orthonormal basis in the Hilbert space of class functions on. Note that every unitary matrix is diagonal in some orthonormal basis, therefore every conjugacy class of SU intersects the diagonal subgroup. Moreover, ( z z) and ( z z ) are conjugate. Hence the set of conjugacy classes can be identified with S1 quotient by the equivalence relation z z. Let z = e iθ, then (4.1) χ n (z) = z n + z n + + z n = zn+1 z n 1 sin (n + 1)θ =. z z 1 sin θ Now let us calculate the scalar product in the space of class function. It is clear that the invariant measure dg on is proportional to the standard volume form on the three-dimensional sphere induced by the volume form on R 4. Let C (θ) denote the conjugacy class of all matrices with eigenvalues e iθ, e iθ. The characteristic polynomial of a matrix from C (θ) equals t cosθt + 1. Thus, we obtain a + ā = cosθ, or a = cos θ + yi for real y. Hence C (θ) satisfy the equation a + b = cos θ + y + b = 1, or y + b = sin θ. In other words, C (θ) is a two-dimensional sphere of radius sin θ. Hence for a class function φ on φ (g)dg = 1 π φ (θ)sin θdθ. π All class function are even functions on S 1, i.e. they satisfy the condition φ ( θ) = φ (θ). One can see easily from (4.1) that χ n (θ) form an orthonormal basis in the space of even function on the circle with respect to the Hermitian product ϕ, η = 1 π π ϕ(θ) η (θ) sin θdθ. Example 3. Let = SO 3. Recall that SU can be realized as the set of quaternions with norm 1. Consider the representation γ of SU in H defined by the formula γ g (α) = gαg 1. One can see that the 3-dimensional space H im of pure imaginary quaternions is invariant and (α, β) = Re ( α β ) is invariant positive definite scalar product on H im. Therefore ρ defines a homomorphism γ : SU SO 3. Check that Kerγ = {1, 1} and that γ is surjetive. Hence SO 3 = SU / {1, 1}. Thus, every representation of SO 3 can be lifted to the representations of SU, and a representation of SU factors to the representation of SO 3 iff it is trivial on 1. One can check easily that ρ n ( 1) = 1 iff n is even. Thus, an irreducible representations of SO 3 is

8 8 REPRESENTATION THEORY WEEK 7 isomorphic to ρ m and dim ρ m = m + 1. Below we give an independent realization of irreducible representation of SO 3. Harmonic analysis on a sphere. Consider the sphere S in R 3 defined by the equation x + y + z = 1. It is clear that SO 3 acts in the space of complex-valued functions on S. Introduce differential operators in R 3 : e = 1 ( x + y + z ), h = x x + y y + z z + 3, f = 1 ( ) x + y + z, note that e, f, and h commute with the action of SO 3 and satisfy the relations [e, f] = h, [h, e] = e, [h, f] = f. Let P n be the space of homogeneous polynomial of degree n and H n = Ker f P n. The polynomials of H n are harmonic polynomials since they are annihilated by Laplace operator. For any ϕ P n ( h (ϕ) = n + 3 ) ϕ. If ϕ H n, then ( fe (ϕ) = ef (ϕ) h (ϕ) = n + 3 ) ϕ, and by induction fe k (ϕ) = efe k 1 (ϕ) he k 1 (ϕ) = In particular, this implies that (4.) fe k (H n ) = e k 1 (H n ). We prove that (4.3) P n = H n e (H n ) e (H n 4 ) +... by induction on n. Indeed, by induction assumption P n = H n e (H n 4 ) +..., ( nk + k (k 1) + 3k ) e k 1 ϕ. then (4.) implies fe (P n ) = P n. Hence H n ep n =. On the other hand, f : P n P n is surjective, and therefore dim H n + dim P n = dim P n. Therefore (4.4) P n = H n P n, which implies (4.3). Note that after restriction on S, the operator e acts as the multiplication on 1. Hence (4.3) implies that C [ S ] = n H n. To calculate the dimension of H n use (4.4) dim H n = dim P n dim P n = (n + 1)(n + ) n (n 1) = n + 1.

9 REPRESENTATION THEORY WEEK 7 9 Finally, we claim that the representation of SO 3 in H n is irreducible and isomorphic to ρ n. Check that ϕ = (x + iy) n H n and the rotation on the angle θ about z axis maps ϕ to e inθ ϕ. Since this rotation is the image of e iθ/ e iθ/, under the homomorphism γ : SU SO 3, the statement follows from (4.1). Recall now the following theorem (Lecture Notes 1). A convex centrally symmetric solid in R 3 is uniquely determined by the areas of the plane cross-sections through the origin. A convex solid B can be defined by an even continuous function on S. Indeed, for each unit vector v let ϕ (v) = sup { t / tv B }. Define a linear operator T in the space of all even continuous functions on S by the formula Tϕ (v) = π ϕ (w)dθ, where w runs the set of unit vectors orthogonal to v, and θ is the angular parameter on the circle S v. Check that Tϕ (v) is the area of the cross section by the plane v. We have to prove that T is invertible. Obviously T commutes with the SO 3 -action. Therefore T can be diagonalized. Moreover, T acts on H n as the scalar operator λ n Id. We have to check that λ n for all n. Let ϕ = (x + iy) n H n. Then ϕ (1,, ) = 1 and Tϕ (1,, ) = π π (iy) n dθ = ( 1) n sin n θdθ, here we take the integral over the circle y + z = 1, and assume y = sin θ, z = cosθ. Since Tϕ = λ n ϕ, we obtain π λ n = ( 1) n sin n θdθ.

Math 210C. The representation ring

Math 210C. The representation ring Math 210C. The representation ring 1. Introduction Let G be a nontrivial connected compact Lie group that is semisimple and simply connected (e.g., SU(n) for n 2, Sp(n) for n 1, or Spin(n) for n 3). Let

More information

Algebra I Fall 2007

Algebra I Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.701 Algebra I Fall 007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.701 007 Geometry of the Special Unitary

More information

CHAPTER 6. Representations of compact groups

CHAPTER 6. Representations of compact groups CHAPTER 6 Representations of compact groups Throughout this chapter, denotes a compact group. 6.1. Examples of compact groups A standard theorem in elementary analysis says that a subset of C m (m a positive

More information

THE EULER CHARACTERISTIC OF A LIE GROUP

THE EULER CHARACTERISTIC OF A LIE GROUP THE EULER CHARACTERISTIC OF A LIE GROUP JAY TAYLOR 1 Examples of Lie Groups The following is adapted from [2] We begin with the basic definition and some core examples Definition A Lie group is a smooth

More information

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom

Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Representation theory and quantum mechanics tutorial Spin and the hydrogen atom Justin Campbell August 3, 2017 1 Representations of SU 2 and SO 3 (R) 1.1 The following observation is long overdue. Proposition

More information

REPRESENTATION THEORY WEEK 5. B : V V k

REPRESENTATION THEORY WEEK 5. B : V V k REPRESENTATION THEORY WEEK 5 1. Invariant forms Recall that a bilinear form on a vector space V is a map satisfying B : V V k B (cv, dw) = cdb (v, w), B (v 1 + v, w) = B (v 1, w)+b (v, w), B (v, w 1 +

More information

Notes 10: Consequences of Eli Cartan s theorem.

Notes 10: Consequences of Eli Cartan s theorem. Notes 10: Consequences of Eli Cartan s theorem. Version 0.00 with misprints, The are a few obvious, but important consequences of the theorem of Eli Cartan on the maximal tori. The first one is the observation

More information

ALGEBRA 8: Linear algebra: characteristic polynomial

ALGEBRA 8: Linear algebra: characteristic polynomial ALGEBRA 8: Linear algebra: characteristic polynomial Characteristic polynomial Definition 8.1. Consider a linear operator A End V over a vector space V. Consider a vector v V such that A(v) = λv. This

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

Exercises Lie groups

Exercises Lie groups Exercises Lie groups E.P. van den Ban Spring 2009 Exercise 1. Let G be a group, equipped with the structure of a C -manifold. Let µ : G G G, (x, y) xy be the multiplication map. We assume that µ is smooth,

More information

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C :

TOEPLITZ OPERATORS. Toeplitz studied infinite matrices with NW-SE diagonals constant. f e C : TOEPLITZ OPERATORS EFTON PARK 1. Introduction to Toeplitz Operators Otto Toeplitz lived from 1881-1940 in Goettingen, and it was pretty rough there, so he eventually went to Palestine and eventually contracted

More information

11. Representations of compact Lie groups

11. Representations of compact Lie groups 11. Representations of compact Lie groups 11.1. Integration on compact groups. In the simplest examples like R n and the torus T n we have the classical Lebesgue measure which defines a translation invariant

More information

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA

ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA ALGEBRA QUALIFYING EXAM PROBLEMS LINEAR ALGEBRA Kent State University Department of Mathematical Sciences Compiled and Maintained by Donald L. White Version: August 29, 2017 CONTENTS LINEAR ALGEBRA AND

More information

Highest-weight Theory: Verma Modules

Highest-weight Theory: Verma Modules Highest-weight Theory: Verma Modules Math G4344, Spring 2012 We will now turn to the problem of classifying and constructing all finitedimensional representations of a complex semi-simple Lie algebra (or,

More information

Linear algebra and applications to graphs Part 1

Linear algebra and applications to graphs Part 1 Linear algebra and applications to graphs Part 1 Written up by Mikhail Belkin and Moon Duchin Instructor: Laszlo Babai June 17, 2001 1 Basic Linear Algebra Exercise 1.1 Let V and W be linear subspaces

More information

Some notes on Coxeter groups

Some notes on Coxeter groups Some notes on Coxeter groups Brooks Roberts November 28, 2017 CONTENTS 1 Contents 1 Sources 2 2 Reflections 3 3 The orthogonal group 7 4 Finite subgroups in two dimensions 9 5 Finite subgroups in three

More information

Introduction to Lie Groups

Introduction to Lie Groups Introduction to Lie Groups MAT 4144/5158 Winter 2015 Alistair Savage Department of Mathematics and Statistics University of Ottawa This work is licensed under a Creative Commons Attribution-ShareAlike

More information

Linear algebra 2. Yoav Zemel. March 1, 2012

Linear algebra 2. Yoav Zemel. March 1, 2012 Linear algebra 2 Yoav Zemel March 1, 2012 These notes were written by Yoav Zemel. The lecturer, Shmuel Berger, should not be held responsible for any mistake. Any comments are welcome at zamsh7@gmail.com.

More information

Exercises Lie groups

Exercises Lie groups Exercises Lie groups E.P. van den Ban Spring 2012 Exercise 1. Let G be a group, equipped with the structure of a C -manifold. Let µ : G G G, (x, y) xy be the multiplication map. We assume that µ is smooth,

More information

REPRESENTATION THEORY. WEEK 4

REPRESENTATION THEORY. WEEK 4 REPRESENTATION THEORY. WEEK 4 VERA SERANOVA 1. uced modules Let B A be rings and M be a B-module. Then one can construct induced module A B M = A B M as the quotient of a free abelian group with generators

More information

1. General Vector Spaces

1. General Vector Spaces 1.1. Vector space axioms. 1. General Vector Spaces Definition 1.1. Let V be a nonempty set of objects on which the operations of addition and scalar multiplication are defined. By addition we mean a rule

More information

The Spectral Theorem for normal linear maps

The Spectral Theorem for normal linear maps MAT067 University of California, Davis Winter 2007 The Spectral Theorem for normal linear maps Isaiah Lankham, Bruno Nachtergaele, Anne Schilling (March 14, 2007) In this section we come back to the question

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

Problems in Linear Algebra and Representation Theory

Problems in Linear Algebra and Representation Theory Problems in Linear Algebra and Representation Theory (Most of these were provided by Victor Ginzburg) The problems appearing below have varying level of difficulty. They are not listed in any specific

More information

REPRESENTATION THEORY FOR FINITE GROUPS

REPRESENTATION THEORY FOR FINITE GROUPS REPRESENTATION THEORY FOR FINITE GROUPS SHAUN TAN Abstract. We cover some of the foundational results of representation theory including Maschke s Theorem, Schur s Lemma, and the Schur Orthogonality Relations.

More information

Supplementary Notes on Linear Algebra

Supplementary Notes on Linear Algebra Supplementary Notes on Linear Algebra Mariusz Wodzicki May 3, 2015 1 Vector spaces 1.1 Coordinatization of a vector space 1.1.1 Given a basis B = {b 1,..., b n } in a vector space V, any vector v V can

More information

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III

Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Representations of algebraic groups and their Lie algebras Jens Carsten Jantzen Lecture III Lie algebras. Let K be again an algebraically closed field. For the moment let G be an arbitrary algebraic group

More information

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem

Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Review of Linear Algebra Definitions, Change of Basis, Trace, Spectral Theorem Steven J. Miller June 19, 2004 Abstract Matrices can be thought of as rectangular (often square) arrays of numbers, or as

More information

Homework set 4 - Solutions

Homework set 4 - Solutions Homework set 4 - Solutions Math 407 Renato Feres 1. Exercise 4.1, page 49 of notes. Let W := T0 m V and denote by GLW the general linear group of W, defined as the group of all linear isomorphisms of W

More information

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants

EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. 1. Determinants EXERCISES ON DETERMINANTS, EIGENVALUES AND EIGENVECTORS. Determinants Ex... Let A = 0 4 4 2 0 and B = 0 3 0. (a) Compute 0 0 0 0 A. (b) Compute det(2a 2 B), det(4a + B), det(2(a 3 B 2 )). 0 t Ex..2. For

More information

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP)

MATH 20F: LINEAR ALGEBRA LECTURE B00 (T. KEMP) MATH 20F: LINEAR ALGEBRA LECTURE B00 (T KEMP) Definition 01 If T (x) = Ax is a linear transformation from R n to R m then Nul (T ) = {x R n : T (x) = 0} = Nul (A) Ran (T ) = {Ax R m : x R n } = {b R m

More information

Clifford Algebras and Spin Groups

Clifford Algebras and Spin Groups Clifford Algebras and Spin Groups Math G4344, Spring 2012 We ll now turn from the general theory to examine a specific class class of groups: the orthogonal groups. Recall that O(n, R) is the group of

More information

Weyl Group Representations and Unitarity of Spherical Representations.

Weyl Group Representations and Unitarity of Spherical Representations. Weyl Group Representations and Unitarity of Spherical Representations. Alessandra Pantano, University of California, Irvine Windsor, October 23, 2008 β ν 1 = ν 2 S α S β ν S β ν S α ν S α S β S α S β ν

More information

Math 121 Homework 5: Notes on Selected Problems

Math 121 Homework 5: Notes on Selected Problems Math 121 Homework 5: Notes on Selected Problems 12.1.2. Let M be a module over the integral domain R. (a) Assume that M has rank n and that x 1,..., x n is any maximal set of linearly independent elements

More information

Algebra Exam Syllabus

Algebra Exam Syllabus Algebra Exam Syllabus The Algebra comprehensive exam covers four broad areas of algebra: (1) Groups; (2) Rings; (3) Modules; and (4) Linear Algebra. These topics are all covered in the first semester graduate

More information

Math Linear Algebra II. 1. Inner Products and Norms

Math Linear Algebra II. 1. Inner Products and Norms Math 342 - Linear Algebra II Notes 1. Inner Products and Norms One knows from a basic introduction to vectors in R n Math 254 at OSU) that the length of a vector x = x 1 x 2... x n ) T R n, denoted x,

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Chapter 1 Eigenvalues and Eigenvectors Among problems in numerical linear algebra, the determination of the eigenvalues and eigenvectors of matrices is second in importance only to the solution of linear

More information

Peter Hochs. Strings JC, 11 June, C -algebras and K-theory. Peter Hochs. Introduction. C -algebras. Group. C -algebras.

Peter Hochs. Strings JC, 11 June, C -algebras and K-theory. Peter Hochs. Introduction. C -algebras. Group. C -algebras. and of and Strings JC, 11 June, 2013 and of 1 2 3 4 5 of and of and Idea of 1 Study locally compact Hausdorff topological spaces through their algebras of continuous functions. The product on this algebra

More information

The Weyl Character Formula

The Weyl Character Formula he Weyl Character Formula Math 4344, Spring 202 Characters We have seen that irreducible representations of a compact Lie group can be constructed starting from a highest weight space and applying negative

More information

Optimization Theory. A Concise Introduction. Jiongmin Yong

Optimization Theory. A Concise Introduction. Jiongmin Yong October 11, 017 16:5 ws-book9x6 Book Title Optimization Theory 017-08-Lecture Notes page 1 1 Optimization Theory A Concise Introduction Jiongmin Yong Optimization Theory 017-08-Lecture Notes page Optimization

More information

NOTES ON THE NUMERICAL RANGE

NOTES ON THE NUMERICAL RANGE NOTES ON THE NUMERICAL RANGE JOEL H. SHAPIRO Abstract. This is an introduction to the notion of numerical range for bounded linear operators on Hilbert space. The main results are: determination of the

More information

REPRESENTATIONS OF S n AND GL(n, C)

REPRESENTATIONS OF S n AND GL(n, C) REPRESENTATIONS OF S n AND GL(n, C) SEAN MCAFEE 1 outline For a given finite group G, we have that the number of irreducible representations of G is equal to the number of conjugacy classes of G Although

More information

OPERATOR THEORY ON HILBERT SPACE. Class notes. John Petrovic

OPERATOR THEORY ON HILBERT SPACE. Class notes. John Petrovic OPERATOR THEORY ON HILBERT SPACE Class notes John Petrovic Contents Chapter 1. Hilbert space 1 1.1. Definition and Properties 1 1.2. Orthogonality 3 1.3. Subspaces 7 1.4. Weak topology 9 Chapter 2. Operators

More information

REPRESENTATION THEORY. WEEKS 10 11

REPRESENTATION THEORY. WEEKS 10 11 REPRESENTATION THEORY. WEEKS 10 11 1. Representations of quivers I follow here Crawley-Boevey lectures trying to give more details concerning extensions and exact sequences. A quiver is an oriented graph.

More information

is an isomorphism, and V = U W. Proof. Let u 1,..., u m be a basis of U, and add linearly independent

is an isomorphism, and V = U W. Proof. Let u 1,..., u m be a basis of U, and add linearly independent Lecture 4. G-Modules PCMI Summer 2015 Undergraduate Lectures on Flag Varieties Lecture 4. The categories of G-modules, mostly for finite groups, and a recipe for finding every irreducible G-module of a

More information

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v )

Ir O D = D = ( ) Section 2.6 Example 1. (Bottom of page 119) dim(v ) = dim(l(v, W )) = dim(v ) dim(f ) = dim(v ) Section 3.2 Theorem 3.6. Let A be an m n matrix of rank r. Then r m, r n, and, by means of a finite number of elementary row and column operations, A can be transformed into the matrix ( ) Ir O D = 1 O

More information

Linear Algebra. Workbook

Linear Algebra. Workbook Linear Algebra Workbook Paul Yiu Department of Mathematics Florida Atlantic University Last Update: November 21 Student: Fall 2011 Checklist Name: A B C D E F F G H I J 1 2 3 4 5 6 7 8 9 10 xxx xxx xxx

More information

Math 25a Practice Final #1 Solutions

Math 25a Practice Final #1 Solutions Math 25a Practice Final #1 Solutions Problem 1. Suppose U and W are subspaces of V such that V = U W. Suppose also that u 1,..., u m is a basis of U and w 1,..., w n is a basis of W. Prove that is a basis

More information

M.6. Rational canonical form

M.6. Rational canonical form book 2005/3/26 16:06 page 383 #397 M.6. RATIONAL CANONICAL FORM 383 M.6. Rational canonical form In this section we apply the theory of finitely generated modules of a principal ideal domain to study the

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Jordan normal form notes (version date: 11/21/07)

Jordan normal form notes (version date: 11/21/07) Jordan normal form notes (version date: /2/7) If A has an eigenbasis {u,, u n }, ie a basis made up of eigenvectors, so that Au j = λ j u j, then A is diagonal with respect to that basis To see this, let

More information

MATH 304 Linear Algebra Lecture 34: Review for Test 2.

MATH 304 Linear Algebra Lecture 34: Review for Test 2. MATH 304 Linear Algebra Lecture 34: Review for Test 2. Topics for Test 2 Linear transformations (Leon 4.1 4.3) Matrix transformations Matrix of a linear mapping Similar matrices Orthogonality (Leon 5.1

More information

DUALITY, CENTRAL CHARACTERS, AND REAL-VALUED CHARACTERS OF FINITE GROUPS OF LIE TYPE

DUALITY, CENTRAL CHARACTERS, AND REAL-VALUED CHARACTERS OF FINITE GROUPS OF LIE TYPE DUALITY, CENTRAL CHARACTERS, AND REAL-VALUED CHARACTERS OF FINITE GROUPS OF LIE TYPE C. RYAN VINROOT Abstract. We prove that the duality operator preserves the Frobenius- Schur indicators of characters

More information

7.3 Singular Homology Groups

7.3 Singular Homology Groups 184 CHAPTER 7. HOMOLOGY THEORY 7.3 Singular Homology Groups 7.3.1 Cycles, Boundaries and Homology Groups We can define the singular p-chains with coefficients in a field K. Furthermore, we can define the

More information

Real symmetric matrices/1. 1 Eigenvalues and eigenvectors

Real symmetric matrices/1. 1 Eigenvalues and eigenvectors Real symmetric matrices 1 Eigenvalues and eigenvectors We use the convention that vectors are row vectors and matrices act on the right. Let A be a square matrix with entries in a field F; suppose that

More information

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY

LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT FALL 2006 PRINCETON UNIVERSITY LECTURE VI: SELF-ADJOINT AND UNITARY OPERATORS MAT 204 - FALL 2006 PRINCETON UNIVERSITY ALFONSO SORRENTINO 1 Adjoint of a linear operator Note: In these notes, V will denote a n-dimensional euclidean vector

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

(VII.E) The Singular Value Decomposition (SVD)

(VII.E) The Singular Value Decomposition (SVD) (VII.E) The Singular Value Decomposition (SVD) In this section we describe a generalization of the Spectral Theorem to non-normal operators, and even to transformations between different vector spaces.

More information

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30

NATIONAL BOARD FOR HIGHER MATHEMATICS. M. A. and M.Sc. Scholarship Test. September 25, Time Allowed: 150 Minutes Maximum Marks: 30 NATIONAL BOARD FOR HIGHER MATHEMATICS M. A. and M.Sc. Scholarship Test September 25, 2010 Time Allowed: 150 Minutes Maximum Marks: 30 Please read, carefully, the instructions on the following page 1 INSTRUCTIONS

More information

Homework 2. Solutions T =

Homework 2. Solutions T = Homework. s Let {e x, e y, e z } be an orthonormal basis in E. Consider the following ordered triples: a) {e x, e x + e y, 5e z }, b) {e y, e x, 5e z }, c) {e y, e x, e z }, d) {e y, e x, 5e z }, e) {

More information

arxiv: v1 [math.sg] 6 Nov 2015

arxiv: v1 [math.sg] 6 Nov 2015 A CHIANG-TYPE LAGRANGIAN IN CP ANA CANNAS DA SILVA Abstract. We analyse a simple Chiang-type lagrangian in CP which is topologically an RP but exhibits a distinguishing behaviour under reduction by one

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

Differential equations

Differential equations Differential equations Math 7 Spring Practice problems for April Exam Problem Use the method of elimination to find the x-component of the general solution of x y = 6x 9x + y = x 6y 9y Soln: The system

More information

Lecture 12: Diagonalization

Lecture 12: Diagonalization Lecture : Diagonalization A square matrix D is called diagonal if all but diagonal entries are zero: a a D a n 5 n n. () Diagonal matrices are the simplest matrices that are basically equivalent to vectors

More information

Introduction to Lie Groups and Lie Algebras. Alexander Kirillov, Jr.

Introduction to Lie Groups and Lie Algebras. Alexander Kirillov, Jr. Introduction to Lie Groups and Lie Algebras Alexander Kirillov, Jr. Department of Mathematics, SUNY at Stony Brook, Stony Brook, NY 11794, USA E-mail address: kirillov@math.sunysb.edu URL: http://www.math.sunysb.edu/~kirillov/liegroups/

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

Representations of Matrix Lie Algebras

Representations of Matrix Lie Algebras Representations of Matrix Lie Algebras Alex Turzillo REU Apprentice Program, University of Chicago aturzillo@uchicago.edu August 00 Abstract Building upon the concepts of the matrix Lie group and the matrix

More information

1 Classifying Unitary Representations: A 1

1 Classifying Unitary Representations: A 1 Lie Theory Through Examples John Baez Lecture 4 1 Classifying Unitary Representations: A 1 Last time we saw how to classify unitary representations of a torus T using its weight lattice L : the dual of

More information

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

October 4, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS October 4, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

Linear Algebra: Graduate Level Problems and Solutions. Igor Yanovsky

Linear Algebra: Graduate Level Problems and Solutions. Igor Yanovsky Linear Algebra: Graduate Level Problems and Solutions Igor Yanovsky Linear Algebra Igor Yanovsky, 5 Disclaimer: This handbook is intended to assist graduate students with qualifying examination preparation.

More information

MATH JORDAN FORM

MATH JORDAN FORM MATH 53 JORDAN FORM Let A,, A k be square matrices of size n,, n k, respectively with entries in a field F We define the matrix A A k of size n = n + + n k as the block matrix A 0 0 0 0 A 0 0 0 0 A k It

More information

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x

BASIC ALGORITHMS IN LINEAR ALGEBRA. Matrices and Applications of Gaussian Elimination. A 2 x. A T m x. A 1 x A T 1. A m x BASIC ALGORITHMS IN LINEAR ALGEBRA STEVEN DALE CUTKOSKY Matrices and Applications of Gaussian Elimination Systems of Equations Suppose that A is an n n matrix with coefficents in a field F, and x = (x,,

More information

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified.

Ph.D. Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2) EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified. PhD Katarína Bellová Page 1 Mathematics 2 (10-PHY-BIPMA2 EXAM - Solutions, 20 July 2017, 10:00 12:00 All answers to be justified Problem 1 [ points]: For which parameters λ R does the following system

More information

Group Theory - QMII 2017

Group Theory - QMII 2017 Group Theory - QMII 017 Reminder Last time we said that a group element of a matrix lie group can be written as an exponent: U = e iαaxa, a = 1,..., N. We called X a the generators, we have N of them,

More information

Notes 2 for MAT4270 Connected components and universal covers π 0 and π 1.

Notes 2 for MAT4270 Connected components and universal covers π 0 and π 1. Notes 2 for MAT4270 Connected components and universal covers π 0 and π 1. Version 0.00 with misprints, Connected components Recall thaty if X is a topological space X is said to be connected if is not

More information

An introduction to Birkhoff normal form

An introduction to Birkhoff normal form An introduction to Birkhoff normal form Dario Bambusi Dipartimento di Matematica, Universitá di Milano via Saldini 50, 0133 Milano (Italy) 19.11.14 1 Introduction The aim of this note is to present an

More information

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that

Problem 1A. Suppose that f is a continuous real function on [0, 1]. Prove that Problem 1A. Suppose that f is a continuous real function on [, 1]. Prove that lim α α + x α 1 f(x)dx = f(). Solution: This is obvious for f a constant, so by subtracting f() from both sides we can assume

More information

Kirillov Theory. TCU GAGA Seminar. Ruth Gornet. January University of Texas at Arlington

Kirillov Theory. TCU GAGA Seminar. Ruth Gornet. January University of Texas at Arlington TCU GAGA Seminar University of Texas at Arlington January 2009 A representation of a Lie group G on a Hilbert space H is a homomorphism such that v H the map is continuous. π : G Aut(H) = GL(H) x π(x)v

More information

TRANSLATION-INVARIANT FUNCTION ALGEBRAS ON COMPACT GROUPS

TRANSLATION-INVARIANT FUNCTION ALGEBRAS ON COMPACT GROUPS PACIFIC JOURNAL OF MATHEMATICS Vol. 15, No. 3, 1965 TRANSLATION-INVARIANT FUNCTION ALGEBRAS ON COMPACT GROUPS JOSEPH A. WOLF Let X be a compact group. $(X) denotes the Banach algebra (point multiplication,

More information

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS

September 26, 2017 EIGENVALUES AND EIGENVECTORS. APPLICATIONS September 26, 207 EIGENVALUES AND EIGENVECTORS. APPLICATIONS RODICA D. COSTIN Contents 4. Eigenvalues and Eigenvectors 3 4.. Motivation 3 4.2. Diagonal matrices 3 4.3. Example: solving linear differential

More information

Math 396. An application of Gram-Schmidt to prove connectedness

Math 396. An application of Gram-Schmidt to prove connectedness Math 396. An application of Gram-Schmidt to prove connectedness 1. Motivation and background Let V be an n-dimensional vector space over R, and define GL(V ) to be the set of invertible linear maps V V

More information

L 2 Geometry of the Symplectomorphism Group

L 2 Geometry of the Symplectomorphism Group University of Notre Dame Workshop on Innite Dimensional Geometry, Vienna 2015 Outline 1 The Exponential Map on D s ω(m) 2 Existence of Multiplicity of Outline 1 The Exponential Map on D s ω(m) 2 Existence

More information

The Jordan Canonical Form

The Jordan Canonical Form The Jordan Canonical Form The Jordan canonical form describes the structure of an arbitrary linear transformation on a finite-dimensional vector space over an algebraically closed field. Here we develop

More information

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET

IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET IMPORTANT DEFINITIONS AND THEOREMS REFERENCE SHEET This is a (not quite comprehensive) list of definitions and theorems given in Math 1553. Pay particular attention to the ones in red. Study Tip For each

More information

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS KEITH CONRAD. Introduction The easiest matrices to compute with are the diagonal ones. The sum and product of diagonal matrices can be computed componentwise

More information

M3/4/5P12 GROUP REPRESENTATION THEORY

M3/4/5P12 GROUP REPRESENTATION THEORY M3/4/5P12 GROUP REPRESENTATION THEORY JAMES NEWTON Course Arrangements Send comments, questions, requests etc. to j.newton@imperial.ac.uk. The course homepage is http://wwwf.imperial.ac.uk/ jjmn07/m3p12.html.

More information

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 0. (a) Prove that the nilradical of R is equal to the intersection of the prime

More information

Linear Algebra Massoud Malek

Linear Algebra Massoud Malek CSUEB Linear Algebra Massoud Malek Inner Product and Normed Space In all that follows, the n n identity matrix is denoted by I n, the n n zero matrix by Z n, and the zero vector by θ n An inner product

More information

I. Multiple Choice Questions (Answer any eight)

I. Multiple Choice Questions (Answer any eight) Name of the student : Roll No : CS65: Linear Algebra and Random Processes Exam - Course Instructor : Prashanth L.A. Date : Sep-24, 27 Duration : 5 minutes INSTRUCTIONS: The test will be evaluated ONLY

More information

Solutions of exercise sheet 8

Solutions of exercise sheet 8 D-MATH Algebra I HS 14 Prof. Emmanuel Kowalski Solutions of exercise sheet 8 1. In this exercise, we will give a characterization for solvable groups using commutator subgroups. See last semester s (Algebra

More information

Honors Linear Algebra, Spring Homework 8 solutions by Yifei Chen

Honors Linear Algebra, Spring Homework 8 solutions by Yifei Chen .. Honors Linear Algebra, Spring 7. Homework 8 solutions by Yifei Chen 8... { { W {v R 4 v α v β } v x, x, x, x 4 x x + x 4 x + x x + x 4 } Solve the linear system above, we get a basis of W is {v,,,,

More information

Lecture 9. Econ August 20

Lecture 9. Econ August 20 Lecture 9 Econ 2001 2015 August 20 Lecture 9 Outline 1 Linear Functions 2 Linear Representation of Matrices 3 Analytic Geometry in R n : Lines and Hyperplanes 4 Separating Hyperplane Theorems Back to vector

More information

LIE GROUPS, LIE ALGEBRAS, AND APPLICATIONS IN PHYSICS

LIE GROUPS, LIE ALGEBRAS, AND APPLICATIONS IN PHYSICS LIE GROUPS, LIE ALGEBRAS, AND APPLICATIONS IN PHYSICS JOO HEON YOO Abstract. This paper introduces basic concepts from representation theory, Lie group, Lie algebra, and topology and their applications

More information

CHAPTER X THE SPECTRAL THEOREM OF GELFAND

CHAPTER X THE SPECTRAL THEOREM OF GELFAND CHAPTER X THE SPECTRAL THEOREM OF GELFAND DEFINITION A Banach algebra is a complex Banach space A on which there is defined an associative multiplication for which: (1) x (y + z) = x y + x z and (y + z)

More information

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2.

MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. MATH 304 Linear Algebra Lecture 23: Diagonalization. Review for Test 2. Diagonalization Let L be a linear operator on a finite-dimensional vector space V. Then the following conditions are equivalent:

More information

A linear algebra proof of the fundamental theorem of algebra

A linear algebra proof of the fundamental theorem of algebra A linear algebra proof of the fundamental theorem of algebra Andrés E. Caicedo May 18, 2010 Abstract We present a recent proof due to Harm Derksen, that any linear operator in a complex finite dimensional

More information

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product

Finite-dimensional spaces. C n is the space of n-tuples x = (x 1,..., x n ) of complex numbers. It is a Hilbert space with the inner product Chapter 4 Hilbert Spaces 4.1 Inner Product Spaces Inner Product Space. A complex vector space E is called an inner product space (or a pre-hilbert space, or a unitary space) if there is a mapping (, )

More information

Complex manifolds, Kahler metrics, differential and harmonic forms

Complex manifolds, Kahler metrics, differential and harmonic forms Complex manifolds, Kahler metrics, differential and harmonic forms Cattani June 16, 2010 1 Lecture 1 Definition 1.1 (Complex Manifold). A complex manifold is a manifold with coordinates holomorphic on

More information

Bott Periodicity. Anthony Bosman Senior Honors Thesis Department of Mathematics, Stanford University Adviser: Eleny Ionel

Bott Periodicity. Anthony Bosman Senior Honors Thesis Department of Mathematics, Stanford University Adviser: Eleny Ionel Bott Periodicity Anthony Bosman Senior Honors Thesis Department of Mathematics, Stanford University Adviser: Eleny Ionel Acknowledgements This paper is being written as a Senior honors thesis. I m indebted

More information

Singular Value Decomposition (SVD) and Polar Form

Singular Value Decomposition (SVD) and Polar Form Chapter 2 Singular Value Decomposition (SVD) and Polar Form 2.1 Polar Form In this chapter, we assume that we are dealing with a real Euclidean space E. Let f: E E be any linear map. In general, it may

More information