Introduction to quantum information processing

Size: px
Start display at page:

Download "Introduction to quantum information processing"

Transcription

1 Introduction to quantum information processing Fidelity and other distance metrics Brad Lackey 3 November 2016 FIDELITY AND OTHER DISTANCE METRICS 1 of 17

2 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance FIDELITY AND OTHER DISTANCE METRICS 2 of 17

3 LAST TIME... Mixed states on the Bloch sphere: ρ = 1 2 (1 + r xx + r y Y + r z Z) (r x, r y, r z ). We can purify a mixed state to have ρ = tr B ( ψ ψ ). Quantum channels are generally given in Kraus form: C(ρ) = j E j ρe j. FIDELITY AND OTHER DISTANCE METRICS 3 of 17

4 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance FIDELITY AND OTHER DISTANCE METRICS 4 of 17

5 BIT FLIP AND PHASE FLIP CHANNELS The bit flip channel: flips the qubit state, 0 1, with probability p, and leaves the qubit alone with probability (1 p). Therefore B p (ρ) = (1 p)ρ + pxρx. On the Bloch sphere: (r x, r y, r z ) (r x, (1 2p)r y, (1 2p)r z ). The phase flip channel: flips the phase, 0 0 and 1 1, with probability p, and leaves the qubit alone with probability (1 p). Therefore P p (ρ) = (1 p)ρ + pzρz. On the Bloch sphere: (r x, r y, r z ) ((1 2p)r x, (1 2p)r y, r z ). FIDELITY AND OTHER DISTANCE METRICS 5 of 17

6 THE DEPOLARIZING CHANNEL The depolarizing channel is a very population error channel to study: with probability p it applies one of the Pauli operators {X, Y, Z} (each equally likely), and with probability p it leaves the qubit alone. Therefore D p (ρ) = (1 p)ρ + p 3 (XρX + YρY + ZρZ). However we showed last time that ρ + XρX + YρY + ZρZ = 2 1. So: ( D p(ρ) = 1 4p ) ρ + p3 ( 3 (ρ + XρX + YρY + ZρZ) = 1 4p ) ρ + 2p On the Bloch sphere, this is easy to understand: ( ) (r x, r y, r z ) 1 4p 3 (r x, r y, r z ). So it simply shrinks the Bloch sphere vector, well at least when p < 3 4. FIDELITY AND OTHER DISTANCE METRICS 6 of 17

7 THE AMPLITUDE AND PHASE DAMPING CHANNELS The amplitude damping channel models loss of energy to the environment. It has two Kraus operators, which in basis ( 0, 1 ) are ( ) ( ) 1 0 E 0 = 0 γ and E 0 1 γ 1 =. 0 0 And: (r x, r y, r z ) (r x 1 γ, ry 1 γ, γ + rz (1 γ)). The phase damping channel models coherence loss (quantum information). It also has two Kraus operators, which in basis ( 0, 1 ) are ( ) ( ) 1 0 E 0 = 0 0 and E 0 1 λ 1 =. 0 λ And: (r x, r y, r z ) (r x 1 γ, ry 1 γ, rz ). FIDELITY AND OTHER DISTANCE METRICS 7 of 17

8 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance FIDELITY AND OTHER DISTANCE METRICS 8 of 17

9 FIDELITY BETWEEN STATES The classical fidelity, or Bhattacharyya coefficient, of p and q is F(p, q) = i pi q i. A high fidelity indicates the distributions are close. It is related to the so-called cosine metric for distributions. Then to make a notion of quantum fidelity F(ρ, σ) it makes sense to: note that for any POVM {E i }, we have p i = tr(e i ρ) and q i = (E i σ), choose the POVM that distinguishes these distributions best: F(ρ, σ) = min F({tr(E iρ)}, {tr(e i σ)}). {E i} POVM This has a simple formula F(ρ, σ) = tr ρ 1/2 σρ 1/2 (we won t prove this). This isn t too bad if one state is pure: F(ρ, ψ ψ ) = ψ ρ ψ. It s even better if both are pure: F( φ φ, ψ ψ ) = ψ φ. FIDELITY AND OTHER DISTANCE METRICS 9 of 17

10 UHLMANN S THEOREM Theorem (Uhlmann (1976)) Let ρ and σ be densities on H, with dim H = n. Then F(ρ, σ) = max ψ φ ψ, φ where the maximum is over all purifications ψ of ρ and φ of σ on H C n. This really can t be used to compute the fidelity, but we can derive nice facts: Since always 0 ψ φ 1, we must have 0 F(ρ, σ) 1. If F(ρ, σ) = 1 then ρ = σ (a purification has ψ φ ). If F(ρ, σ) = 0 then ρ and σ are distinguishable (from ψ φ = 0). FIDELITY AND OTHER DISTANCE METRICS 10 of 17

11 MONOTONICITY OF FIDELITY A unitary transformation, U, does not change the fidelity. From the spectral theorem ρ 1/2 = j λj φ j φ j. So (UρU ) 1/2 = j λj U φ j φ j U = U(ρ 1/2 )U. Therefore, F(UρU, UσU ) = tr Uρ 1/2 U UσU Uρ 1/2 U = tr(u ρ 1/2 σρ 1/2 U ) = F(ρ, σ). A quantum channel, C, never shrinks the fidelity (but may enlarge it). We need some facts about what we can do: We can jointly purify ρ = tr B( ψ ψ ) and σ = tr B( φ φ ). We can add more ancilla to dilate C(ρ) = tr E(U(ρ 0 0 )U ). We can combine these C(ρ) = tr BE(U( ψ ψ 0 0 )U ) Then U ψ 0 is a purification of C(ρ). Same for U( φ 0 ) of C(σ). Therefore, using Uhlman s theorem F(ρ, σ) = ψ φ = ( ψ 0 )(UU )( φ 0 ) F(C(ρ), C(σ)). FIDELITY AND OTHER DISTANCE METRICS 11 of 17

12 HOW WELL DO CHANNELS PRESERVE INFORMATION? E.g. consider the fidelity of the depolarizing channel on a pure state: ( ) ) F( ψ ψ, D p ψ ψ ) = ψ 2p 3 ( p 3 ψ ψ ψ 2p = 3 + (1 4p 3 1 ) = 2p 3. Here the loss of fidelity is the same for any state. However for the phase damping channel: F( ψ ψ, P p ψ ψ ) = = where ψ = cos θ eiϕ sin θ 2 1. ( ) E 0 ψ ψ E 0 + E 1 ψ ψ E 1 ψ ψ ( 1 λ 1) sin 2 θ Loss of fidelity depends on the coherence 1 2 sin2 θ = cos θ 2 sin θ 2. FIDELITY AND OTHER DISTANCE METRICS 12 of 17

13 OUTLINE 1 Noise channels 2 Fidelity 3 Trace distance FIDELITY AND OTHER DISTANCE METRICS 13 of 17

14 TRACE DISTANCE Another popular metric is the statistical distance: D(p, q) = 1 2 i p i q i. The quantum analogue of this is the trace distance: D(ρ, σ) = 1 2tr( ρ σ ). Like fidelity, one can optimize statistical distance over POVMs: D(ρ, σ) = max D({tr(E i ρ)}, {tr(e i σ)}). {E i} POVM Here s a sketch of the proof: Using the spectral decomposition 1 ρ σ = A + A where A +, A 0 and A A + = A + A. 2 The A ± commute so ρ σ = A + A = A + + A. 3 Then D({tr(E i ρ)}, {tr(e i σ)}) = i tr(e i(ρ σ)) and this equals tr(e i (A + A )) i i = i tr(e i (A + + A )) (since x y x + y ) tr(e i ρ σ ) = D(ρ, σ). 4 To achieve the maximum take the projections onto supp(a ± ). FIDELITY AND OTHER DISTANCE METRICS 14 of 17

15 CONTRACTIVITY OF CHANNELS Also like the fidelity, the trace distance is preserved under unitaries: Easily U ρ σ U = U(ρ σ)u. Quantum channels contract trace distance: D(C(ρ), C(σ)) D(ρ, σ). We won t prove this, but it s not too difficult. Note ρ tr B (ρ) is a channel, so D(tr B (ρ), tr B (σ)) D(ρ, σ). A useful metric is the gate error E(U, C) = max ρ D(UρU 1, C(ρ)). This bounds errors from approximating to U with the channel C. It has the nice identity E(VU, D C) E(U, C) + E(V, D). This follows from the triangle inequality and contractivity. FIDELITY AND OTHER DISTANCE METRICS 15 of 17

16 TRACE DISTANCE VERSUS FIDELITY For pure states ψ and φ (with angle θ between them): D( ψ ψ, φ φ ) = sin θ, and F( ψ ψ, φ φ ) = cos θ. Therefore D( ψ ψ, φ φ ) = 1 F( ψ ψ, φ φ ) 2. Otherwise, by Uhlmann s theorem F(ρ, σ) = ψ φ = F( ψ ψ, φ φ ). Then D(ρ, σ) = D(tr B ( ψ ψ ), tr B ( φ φ )) D( ψ ψ, φ φ ) Therefore, D(ρ, σ) 1 F(ρ, σ) 2. On the other hand using a POVM with F(ρ, σ) = F({tr(E j ρ)}, {tr(e j σ)}). For distributions: i ( p i q i ) 2 = 2 2 i pi q 1. Also: i ( p i q i ) 2 i p i q i. Therefore, 1 F(ρ, σ) 1 2 i p i q i D(ρ, σ). FIDELITY AND OTHER DISTANCE METRICS 16 of 17

17 NEXT TIME... Classical and quantum codes. FIDELITY AND OTHER DISTANCE METRICS 17 of 17

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Measurements and quantum probability Brad Lackey 25 October 2016 MEASUREMENTS AND QUANTUM PROBABILITY 1 of 22 OUTLINE 1 Probability 2 Density Operators 3

More information

Ph 219/CS 219. Exercises Due: Friday 3 November 2006

Ph 219/CS 219. Exercises Due: Friday 3 November 2006 Ph 9/CS 9 Exercises Due: Friday 3 November 006. Fidelity We saw in Exercise. that the trace norm ρ ρ tr provides a useful measure of the distinguishability of the states ρ and ρ. Another useful measure

More information

Quantum Stochastic Maps and Frobenius Perron Theorem

Quantum Stochastic Maps and Frobenius Perron Theorem Quantum Stochastic Maps and Frobenius Perron Theorem Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Institute of Physics, Jagiellonian University, Cracow,

More information

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871

Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Introduction to Quantum Information Processing QIC 710 / CS 768 / PH 767 / CO 681 / AM 871 Lecture 9 (2017) Jon Yard QNC 3126 jyard@uwaterloo.ca http://math.uwaterloo.ca/~jyard/qic710 1 More state distinguishing

More information

Private quantum subsystems and error correction

Private quantum subsystems and error correction Private quantum subsystems and error correction Sarah Plosker Department of Mathematics and Computer Science Brandon University September 26, 2014 Outline 1 Classical Versus Quantum Setting Classical Setting

More information

Introduction to Quantum Error Correction

Introduction to Quantum Error Correction Introduction to Quantum Error Correction Nielsen & Chuang Quantum Information and Quantum Computation, CUP 2000, Ch. 10 Gottesman quant-ph/0004072 Steane quant-ph/0304016 Gottesman quant-ph/9903099 Errors

More information

Introduction to Quantum Information Hermann Kampermann

Introduction to Quantum Information Hermann Kampermann Introduction to Quantum Information Hermann Kampermann Heinrich-Heine-Universität Düsseldorf Theoretische Physik III Summer school Bleubeuren July 014 Contents 1 Quantum Mechanics...........................

More information

Quantum Hadamard channels (I)

Quantum Hadamard channels (I) .... Quantum Hadamard channels (I) Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. July 8, 2010 Vlad Gheorghiu (CMU) Quantum Hadamard channels (I) July 8, 2010

More information

Lecture 4: Purifications and fidelity

Lecture 4: Purifications and fidelity CS 766/QIC 820 Theory of Quantum Information (Fall 2011) Lecture 4: Purifications and fidelity Throughout this lecture we will be discussing pairs of registers of the form (X, Y), and the relationships

More information

Lecture 6: Quantum error correction and quantum capacity

Lecture 6: Quantum error correction and quantum capacity Lecture 6: Quantum error correction and quantum capacity Mark M. Wilde The quantum capacity theorem is one of the most important theorems in quantum hannon theory. It is a fundamentally quantum theorem

More information

Information quantique, calcul quantique :

Information quantique, calcul quantique : Séminaire LARIS, 8 juillet 2014. Information quantique, calcul quantique : des rudiments à la recherche (en 45min!). François Chapeau-Blondeau LARIS, Université d Angers, France. 1/25 Motivations pour

More information

Quantum Chaos and Nonunitary Dynamics

Quantum Chaos and Nonunitary Dynamics Quantum Chaos and Nonunitary Dynamics Karol Życzkowski in collaboration with W. Bruzda, V. Cappellini, H.-J. Sommers, M. Smaczyński Phys. Lett. A 373, 320 (2009) Institute of Physics, Jagiellonian University,

More information

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev

Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture. Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev Structure of Unital Maps and the Asymptotic Quantum Birkhoff Conjecture Peter Shor MIT Cambridge, MA Joint work with Anand Oza and Dimiter Ostrev The Superposition Principle (Physicists): If a quantum

More information

Quantum Information Theory Tutorial

Quantum Information Theory Tutorial Quantum Information Theory Tutorial Mark M. Wilde Hearne Institute for Theoretical Physics, Department of Physics and Astronomy, Center for Computation and Technology, Louisiana State University, Baton

More information

Introduction to quantum information processing

Introduction to quantum information processing Introduction to quantum information processing Stabilizer codes Brad Lackey 15 November 2016 STABILIZER CODES 1 of 17 OUTLINE 1 Stabilizer groups and stabilizer codes 2 Syndromes 3 The Normalizer STABILIZER

More information

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria

Experimental state and process reconstruction. Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria Experimental state and process reconstruction Philipp Schindler + Thomas Monz Institute of Experimental Physics University of Innsbruck, Austria What do we want to do? Debug and characterize a quantum

More information

Quantum Entanglement and Error Correction

Quantum Entanglement and Error Correction Quantum Entanglement and Error Correction Fall 2016 Bei Zeng University of Guelph Course Information Instructor: Bei Zeng, email: beizeng@icloud.com TA: Dr. Cheng Guo, email: cheng323232@163.com Wechat

More information

Fidelity and Metrics of quantum states

Fidelity and Metrics of quantum states Fidelity and Metrics of quantum states Zhi-Hao Ma, Fu-Lin Zhang, Jing-Ling Chen arxiv:08.3453v [quant-ph] ov 008 Abstract Fidelity plays an important role in quantum information theory. In this paper,

More information

Entanglement Measures and Monotones

Entanglement Measures and Monotones Entanglement Measures and Monotones PHYS 500 - Southern Illinois University March 30, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones March 30, 2017 1 / 11 Quantifying

More information

CSE 599d - Quantum Computing When Quantum Computers Fall Apart

CSE 599d - Quantum Computing When Quantum Computers Fall Apart CSE 599d - Quantum Comuting When Quantum Comuters Fall Aart Dave Bacon Deartment of Comuter Science & Engineering, University of Washington In this lecture we are going to begin discussing what haens to

More information

Ph 219/CS 219. Exercises Due: Friday 20 October 2006

Ph 219/CS 219. Exercises Due: Friday 20 October 2006 1 Ph 219/CS 219 Exercises Due: Friday 20 October 2006 1.1 How far apart are two quantum states? Consider two quantum states described by density operators ρ and ρ in an N-dimensional Hilbert space, and

More information

What is possible to do with noisy quantum computers?

What is possible to do with noisy quantum computers? What is possible to do with noisy quantum computers? Decoherence, inaccuracy and errors in Quantum Information Processing Sara Felloni and Giuliano Strini sara.felloni@disco.unimib.it Dipartimento di Informatica

More information

On the Relation between Quantum Discord and Purified Entanglement

On the Relation between Quantum Discord and Purified Entanglement On the Relation between Quantum Discord and Purified Entanglement by Eric Webster A thesis presented to the University of Waterloo in fulfillment of the thesis requirement for the degree of Master of Mathematics

More information

Lecture: Quantum Information

Lecture: Quantum Information Lecture: Quantum Information Transcribed by: Crystal Noel and Da An (Chi Chi) November 10, 016 1 Final Proect Information Find an issue related to class you are interested in and either: read some papers

More information

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139

Quantum Error Correcting Codes and Quantum Cryptography. Peter Shor M.I.T. Cambridge, MA 02139 Quantum Error Correcting Codes and Quantum Cryptography Peter Shor M.I.T. Cambridge, MA 02139 1 We start out with two processes which are fundamentally quantum: superdense coding and teleportation. Superdense

More information

A Holevo-type bound for a Hilbert Schmidt distance measure

A Holevo-type bound for a Hilbert Schmidt distance measure Journal of Quantum Information Science, 205, *,** Published Online **** 204 in SciRes. http://www.scirp.org/journal/**** http://dx.doi.org/0.4236/****.204.***** A Holevo-type bound for a Hilbert Schmidt

More information

Robust Characterization of Quantum Processes

Robust Characterization of Quantum Processes Robust Characterization of Quantum Processes Shelby Kimmel Center for Theoretical Physics, MIT Marcus da Silva, Colm Ryan, Blake Johnson, Tom Ohki Raytheon BBN Technologies JQI Monday Dec. 16 Why don t

More information

Lecture Notes for Ph219/CS219: Quantum Information Chapter 3. John Preskill California Institute of Technology

Lecture Notes for Ph219/CS219: Quantum Information Chapter 3. John Preskill California Institute of Technology Lecture Notes for Ph219/CS219: Quantum Information Chapter 3 John Preskill California Institute of Technology Updated July 2015 Contents 3 Foundations II: Measurement and Evolution 4 3.1 Orthogonal measurement

More information

Lecture 19 October 28, 2015

Lecture 19 October 28, 2015 PHYS 7895: Quantum Information Theory Fall 2015 Prof. Mark M. Wilde Lecture 19 October 28, 2015 Scribe: Mark M. Wilde This document is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike

More information

An Interpolation Problem by Completely Positive Maps and its. Quantum Cloning

An Interpolation Problem by Completely Positive Maps and its. Quantum Cloning An Interpolation Problem by Completely Positive Maps and its Application in Quantum Cloning College of Mathematics and Information Science, Shaanxi Normal University, Xi an, China, 710062 gzhihua@tom.com

More information

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36

QUANTUM INFORMATION -THE NO-HIDING THEOREM p.1/36 QUANTUM INFORMATION - THE NO-HIDING THEOREM Arun K Pati akpati@iopb.res.in Instititute of Physics, Bhubaneswar-751005, Orissa, INDIA and Th. P. D, BARC, Mumbai-400085, India QUANTUM INFORMATION -THE NO-HIDING

More information

A no-go theorem for theories that decohere to quantum mechanics

A no-go theorem for theories that decohere to quantum mechanics A no-go theorem for theories that decohere to quantum mechanics Ciarán M. Lee University College London Joint work with John H. Selby arxiv:1701.07449 Motivation The more important fundamental laws and

More information

MP 472 Quantum Information and Computation

MP 472 Quantum Information and Computation MP 472 Quantum Information and Computation http://www.thphys.may.ie/staff/jvala/mp472.htm Outline Open quantum systems The density operator ensemble of quantum states general properties the reduced density

More information

1. Basic rules of quantum mechanics

1. Basic rules of quantum mechanics 1. Basic rules of quantum mechanics How to describe the states of an ideally controlled system? How to describe changes in an ideally controlled system? How to describe measurements on an ideally controlled

More information

arxiv: v4 [quant-ph] 27 Dec 2015

arxiv: v4 [quant-ph] 27 Dec 2015 Quantifying channels output similarity with applications to quantum control Lukasz Pawela 1 and Zbigniew Pucha la 1,2 arxiv:1412.8694v4 [quant-ph] 27 Dec 2015 1 Institute of Theoretical and Applied Informatics,

More information

Logical error rate in the Pauli twirling approximation

Logical error rate in the Pauli twirling approximation Logical error rate in the Pauli twirling approximation Amara Katabarwa and Michael R. Geller Department of Physics and Astronomy, University of Georgia, Athens, Georgia 30602, USA (Dated: April 10, 2015)

More information

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner

INSTITUT FOURIER. Quantum correlations and Geometry. Dominique Spehner i f INSTITUT FOURIER Quantum correlations and Geometry Dominique Spehner Institut Fourier et Laboratoire de Physique et Modélisation des Milieux Condensés, Grenoble Outlines Entangled and non-classical

More information

Lecture 4: Postulates of quantum mechanics

Lecture 4: Postulates of quantum mechanics Lecture 4: Postulates of quantum mechanics Rajat Mittal IIT Kanpur The postulates of quantum mechanics provide us the mathematical formalism over which the physical theory is developed. For people studying

More information

Physics 239/139 Spring 2018 Assignment 6

Physics 239/139 Spring 2018 Assignment 6 University of California at San Diego Department of Physics Prof. John McGreevy Physics 239/139 Spring 2018 Assignment 6 Due 12:30pm Monday, May 14, 2018 1. Brainwarmers on Kraus operators. (a) Check that

More information

QUANTUM COMPUTING 10.

QUANTUM COMPUTING 10. QUANTUM COMPUTING 10. Jozef Gruska Faculty of Informatics Brno Czech Republic December 20, 2011 10. QUANTUM ERROR CORRECTION CODES Quantum computing based on pure states and unitary evolutions is an idealization

More information

arxiv: v2 [quant-ph] 14 Feb 2019

arxiv: v2 [quant-ph] 14 Feb 2019 Experimental Implementation of a Quantum Autoencoder via Quantum Adders ariv:1807.10643v2 [quant-ph] 14 Feb 2019 Yongcheng Ding, 1, 2 Lucas Lamata, 2 Mikel Sanz, 2 i Chen, 1 2, 3, 1 and Enrique Solano

More information

Introduction to Quantum Mechanics

Introduction to Quantum Mechanics Introduction to Quantum Mechanics R. J. Renka Department of Computer Science & Engineering University of North Texas 03/19/2018 Postulates of Quantum Mechanics The postulates (axioms) of quantum mechanics

More information

A fidelity measure for quantum channels

A fidelity measure for quantum channels 5 November 2001 Physics Letters A 290 (2001) 11 18 www.elsevier.com/locate/pla A fidelity measure for quantum channels Maxim Raginsky Center for Photonic Communication and Computing, Department of Electrical

More information

Magic States. Presented by Nathan Babcock

Magic States. Presented by Nathan Babcock Magic States Presented by Nathan Babcock Overview I will discuss the following points:. Quantum Error Correction. The Stabilizer Formalism. Clifford Group Quantum Computation 4. Magic States 5. Derivation

More information

The Minimax Fidelity for Quantum Channels: Theory and Some Applications

The Minimax Fidelity for Quantum Channels: Theory and Some Applications The Minimax Fidelity for Quantum Channels: Theory and Some Applications Maxim Raginsky University of I!inois V.P. Belavkin, G.M. D Ariano and M. Raginsky Operational distance and fidelity for quantum channels

More information

Entanglement: concept, measures and open problems

Entanglement: concept, measures and open problems Entanglement: concept, measures and open problems Division of Mathematical Physics Lund University June 2013 Project in Quantum information. Supervisor: Peter Samuelsson Outline 1 Motivation for study

More information

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction

Quantum Error Correction and Fault Tolerance. Classical Repetition Code. Quantum Errors. Barriers to Quantum Error Correction Quantum Error Correction and Fault Tolerance Daniel Gottesman Perimeter Institute The Classical and Quantum Worlds Quantum Errors A general quantum error is a superoperator: ρ ΣA k ρ A k (Σ A k A k = I)

More information

b) (5 points) Give a simple quantum circuit that transforms the state

b) (5 points) Give a simple quantum circuit that transforms the state C/CS/Phy191 Midterm Quiz Solutions October 0, 009 1 (5 points) Short answer questions: a) (5 points) Let f be a function from n bits to 1 bit You have a quantum circuit U f for computing f If you wish

More information

Dynamics and Quantum Channels

Dynamics and Quantum Channels Dynamics and Quantum Channels Konstantin Riedl Simon Mack 1 Dynamics and evolutions Discussing dynamics, one has to talk about time. In contrast to most other quantities, time is being treated classically.

More information

1 More on the Bloch Sphere (10 points)

1 More on the Bloch Sphere (10 points) Ph15c Spring 017 Prof. Sean Carroll seancarroll@gmail.com Homework - 1 Solutions Assigned TA: Ashmeet Singh ashmeet@caltech.edu 1 More on the Bloch Sphere 10 points a. The state Ψ is parametrized on the

More information

arxiv: v1 [quant-ph] 22 Aug 2016

arxiv: v1 [quant-ph] 22 Aug 2016 Quantum channel-estimation with particle loss: GHZ versus W states Julien Mathieu Elias Fraïsse 1 and Daniel Braun 1 1 Eberhard-Karls-Universität Tübingen, Institut für Theoretische Physik, 72076 Tübingen,

More information

In a D-dimensional Hilbert space, a symmetric informationally complete POVM is a

In a D-dimensional Hilbert space, a symmetric informationally complete POVM is a To: C. A. Fuchs and P. Rungta From: C. M. Caves Subject: Symmetric informationally complete POVMs 1999 September 9; modified 00 June 18 to include material on G In a -dimensional Hilbert space, a symmetric

More information

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005

The Bloch Sphere. Ian Glendinning. February 16, QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 The Bloch Sphere Ian Glendinning February 16, 2005 QIA Meeting, TechGate 1 Ian Glendinning / February 16, 2005 Outline Introduction Definition of the Bloch sphere Derivation of the Bloch sphere Properties

More information

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK)

Mathematical Methods for Quantum Information Theory. Part I: Matrix Analysis. Koenraad Audenaert (RHUL, UK) Mathematical Methods for Quantum Information Theory Part I: Matrix Analysis Koenraad Audenaert (RHUL, UK) September 14, 2008 Preface Books on Matrix Analysis: R. Bhatia, Matrix Analysis, Springer, 1997.

More information

2. Introduction to quantum mechanics

2. Introduction to quantum mechanics 2. Introduction to quantum mechanics 2.1 Linear algebra Dirac notation Complex conjugate Vector/ket Dual vector/bra Inner product/bracket Tensor product Complex conj. matrix Transpose of matrix Hermitian

More information

Quantum Information Types

Quantum Information Types qitd181 Quantum Information Types Robert B. Griffiths Version of 6 February 2012 References: R. B. Griffiths, Types of Quantum Information, Phys. Rev. A 76 (2007) 062320; arxiv:0707.3752 Contents 1 Introduction

More information

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable,

Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, Qubits vs. bits: a naive account A bit: admits two values 0 and 1, admits arbitrary transformations. is freely readable, A qubit: a sphere of values, which is spanned in projective sense by two quantum

More information

Quantum Noise. Michael A. Nielsen. University of Queensland

Quantum Noise. Michael A. Nielsen. University of Queensland Quantum Noise Michael A. Nielsen University of Queensland Goals: 1. To introduce a tool the density matrix that is used to describe noise in quantum systems, and to give some examples. Density matrices

More information

Quantum error correction for continuously detected errors

Quantum error correction for continuously detected errors Quantum error correction for continuously detected errors Charlene Ahn, Toyon Research Corporation Howard Wiseman, Griffith University Gerard Milburn, University of Queensland Quantum Information and Quantum

More information

Majorization-preserving quantum channels

Majorization-preserving quantum channels Majorization-preserving quantum channels arxiv:1209.5233v2 [quant-ph] 15 Dec 2012 Lin Zhang Institute of Mathematics, Hangzhou Dianzi University, Hangzhou 310018, PR China Abstract In this report, we give

More information

Entanglement Measures and Monotones Pt. 2

Entanglement Measures and Monotones Pt. 2 Entanglement Measures and Monotones Pt. 2 PHYS 500 - Southern Illinois University April 8, 2017 PHYS 500 - Southern Illinois University Entanglement Measures and Monotones Pt. 2 April 8, 2017 1 / 13 Entanglement

More information

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance.

9. Distance measures. 9.1 Classical information measures. Head Tail. How similar/close are two probability distributions? Trace distance. 9. Distance measures 9.1 Classical information measures How similar/close are two probability distributions? Trace distance Fidelity Example: Flipping two coins, one fair one biased Head Tail Trace distance

More information

The Convex Hull of Spin Coherent States

The Convex Hull of Spin Coherent States The Convex Hull of Spin Coherent States Author: Muhammad Sadiq Supervisor: Prof. Ingemar Bengtsson Stockholm University Fysikum, May 28, 2009. Abstract Pure coherent states are known as the most classical

More information

Some Bipartite States Do Not Arise from Channels

Some Bipartite States Do Not Arise from Channels Some Bipartite States Do Not Arise from Channels arxiv:quant-ph/0303141v3 16 Apr 003 Mary Beth Ruskai Department of Mathematics, Tufts University Medford, Massachusetts 0155 USA marybeth.ruskai@tufts.edu

More information

Decodiy for surface. Quantum Error Correction. path integral. theory versus. Decoding for GKP code. experiment. Correcting

Decodiy for surface. Quantum Error Correction. path integral. theory versus. Decoding for GKP code. experiment. Correcting Quantum Error Correction 1 3X 1100 ( 230 ntro : theory versus experiment Quantum Error i Bosonic Codes # } \ Correcting Conditions stalilizer Codes ( including conthuoqsoyueagjask \ # Decoding Decoding

More information

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks

A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks A Hierarchy of Information Quantities for Finite Block Length Analysis of Quantum Tasks Marco Tomamichel, Masahito Hayashi arxiv: 1208.1478 Also discussing results of: Second Order Asymptotics for Quantum

More information

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006

Quantum Fisher Information. Shunlong Luo Beijing, Aug , 2006 Quantum Fisher Information Shunlong Luo luosl@amt.ac.cn Beijing, Aug. 10-12, 2006 Outline 1. Classical Fisher Information 2. Quantum Fisher Information, Logarithm 3. Quantum Fisher Information, Square

More information

CS286.2 Lecture 15: Tsirelson s characterization of XOR games

CS286.2 Lecture 15: Tsirelson s characterization of XOR games CS86. Lecture 5: Tsirelson s characterization of XOR games Scribe: Zeyu Guo We first recall the notion of quantum multi-player games: a quantum k-player game involves a verifier V and k players P,...,

More information

Structure of Incoherent Operations

Structure of Incoherent Operations Structure of Incoherent Operations Swapan Rana ICFO Institut de Ciencies Fotoniques The Barcelona Institute of Science and Technology 08860 Castelldefels (Barcelona) Spain January 30 2018 Collaborators:

More information

Optimal Estimation of Single Qubit Quantum Evolution Parameters

Optimal Estimation of Single Qubit Quantum Evolution Parameters Optimal Estimation of Single Qubit Quantum Evolution Parameters David Collins Department of Physical and Environmental Sciences, Mesa State College, Grand Junction, CO Michael Frey Department of Mathematics,

More information

Topics in Quantum Information Theory

Topics in Quantum Information Theory Topics in Quantum Information Theory Lent Term 006 Sebastian Ahnert Lecture notes on: http://www.tcm.phy.cam.ac.uk/ sea31/ Corrections and comments welcome under: sea31@cam.ac.uk Warning: These notes are

More information

The tilde map can be rephased as we please; i.e.,

The tilde map can be rephased as we please; i.e., To: C. Fuchs, K. Manne, J. Renes, and R. Schack From: C. M. Caves Subject: Linear dynamics that preserves maximal information is Hamiltonian 200 January 7; modified 200 June 23 to include the relation

More information

Open quantum systems

Open quantum systems Chapter 4 Open quantum systems 4.1 Quantum operations Let s go bac for a second to the basic postulates of quantum mechanics. Recall that when we first establish the theory, we begin by postulating that

More information

Operator Quantum Error Correcting Codes

Operator Quantum Error Correcting Codes Operator Quantum Error Correcting Codes Vlad Gheorghiu Department of Physics Carnegie Mellon University Pittsburgh, PA 15213, U.S.A. June 18, 2008 Vlad Gheorghiu (CMU) Operator Quantum Error Correcting

More information

arxiv: v2 [quant-ph] 7 Apr 2014

arxiv: v2 [quant-ph] 7 Apr 2014 Quantum Chernoff bound as a measure of efficiency of quantum cloning for mixed states arxiv:1404.0915v [quant-ph] 7 Apr 014 Iulia Ghiu Centre for Advanced Quantum Physics, Department of Physics, University

More information

Open quantum random walks: bi-stability and ballistic diffusion. Open quantum brownian motion

Open quantum random walks: bi-stability and ballistic diffusion. Open quantum brownian motion Open quantum random walks: bi-stability and ballistic diffusion Open quantum brownian motion with Michel Bauer and Antoine Tilloy Autrans, July 2013 Different regimes in «open quantum random walks»: Open

More information

Squashed entanglement

Squashed entanglement Squashed Entanglement based on Squashed Entanglement - An Additive Entanglement Measure (M. Christandl, A. Winter, quant-ph/0308088), and A paradigm for entanglement theory based on quantum communication

More information

6. Quantum error correcting codes

6. Quantum error correcting codes 6. Quantum error correcting codes Error correcting codes (A classical repetition code) Preserving the superposition Parity check Phase errors CSS 7-qubit code (Steane code) Too many error patterns? Syndrome

More information

An Introduction to Quantum Computation and Quantum Information

An Introduction to Quantum Computation and Quantum Information An to and Graduate Group in Applied Math University of California, Davis March 13, 009 A bit of history Benioff 198 : First paper published mentioning quantum computing Feynman 198 : Use a quantum computer

More information

1 Readings. 2 Unitary Operators. C/CS/Phys C191 Unitaries and Quantum Gates 9/22/09 Fall 2009 Lecture 8

1 Readings. 2 Unitary Operators. C/CS/Phys C191 Unitaries and Quantum Gates 9/22/09 Fall 2009 Lecture 8 C/CS/Phys C191 Unitaries and Quantum Gates 9//09 Fall 009 Lecture 8 1 Readings Benenti, Casati, and Strini: Classical circuits and computation Ch.1.,.6 Quantum Gates Ch. 3.-3.4 Kaye et al: Ch. 1.1-1.5,

More information

Quantum Entanglement and Measurement

Quantum Entanglement and Measurement Quantum Entanglement and Measurement Haye Hinrichsen in collaboration with Theresa Christ University of Würzburg, Germany 2nd Workhop on Quantum Information and Thermodynamics Korea Institute for Advanced

More information

NANOSCALE SCIENCE & TECHNOLOGY

NANOSCALE SCIENCE & TECHNOLOGY . NANOSCALE SCIENCE & TECHNOLOGY V Two-Level Quantum Systems (Qubits) Lecture notes 5 5. Qubit description Quantum bit (qubit) is an elementary unit of a quantum computer. Similar to classical computers,

More information

C/CS/Phy191 Problem Set 6 Solutions 3/23/05

C/CS/Phy191 Problem Set 6 Solutions 3/23/05 C/CS/Phy191 Problem Set 6 Solutions 3/3/05 1. Using the standard basis (i.e. 0 and 1, eigenstates of Ŝ z, calculate the eigenvalues and eigenvectors associated with measuring the component of spin along

More information

arxiv: v1 [quant-ph] 3 Jan 2008

arxiv: v1 [quant-ph] 3 Jan 2008 A paradigm for entanglement theory based on quantum communication Jonathan Oppenheim 1 1 Department of Applied Mathematics and Theoretical Physics, University of Cambridge U.K. arxiv:0801.0458v1 [quant-ph]

More information

CS/Ph120 Homework 1 Solutions

CS/Ph120 Homework 1 Solutions CS/Ph0 Homework Solutions October, 06 Problem : State discrimination Suppose you are given two distinct states of a single qubit, ψ and ψ. a) Argue that if there is a ϕ such that ψ = e iϕ ψ then no measurement

More information

Non-Completely Positive Maps: Properties and Applications

Non-Completely Positive Maps: Properties and Applications Non-Completely Positive Maps: Properties and Applications By Christopher Wood A thesis submitted to Macquarie University in partial fulfilment of the degree of Bachelor of Science with Honours Department

More information

Quantum Algorithms for Atomic Clocks

Quantum Algorithms for Atomic Clocks University of Colorado, Boulder CU Scholar Physics Graduate Theses & Dissertations Physics Spring 1-1-2013 Quantum Algorithms for Atomic Clocks Michael Mullan University of Colorado at Boulder, mjmullan@gmail.com

More information

From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism

From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism From the Kochen-Specker theorem to noncontextuality inequalities without assuming determinism Ravi Kunjwal, IMSc, Chennai July 15, 2015 Quantum Physics and Logic 2015, Oxford (based on arxiv:1506.04150

More information

Channel-Adapted Quantum Error Correction. Andrew Stephen Fletcher

Channel-Adapted Quantum Error Correction. Andrew Stephen Fletcher Channel-Adapted Quantum Error Correction by Andrew Stephen Fletcher Submitted to the Department of Electrical Engineering and Computer Science in partial fulfillment of the requirements for the degree

More information

Valerio Cappellini. References

Valerio Cappellini. References CETER FOR THEORETICAL PHYSICS OF THE POLISH ACADEMY OF SCIECES WARSAW, POLAD RADOM DESITY MATRICES AD THEIR DETERMIATS 4 30 SEPTEMBER 5 TH SFB TR 1 MEETIG OF 006 I PRZEGORZAłY KRAKÓW Valerio Cappellini

More information

Lecture 14: Quantum information revisited

Lecture 14: Quantum information revisited CPSC 59/69: Quantum Computation John Watrous, University of Calgary Lecture 4: Quantum information revisited March 4, 006 So far, this course has focused almost entirely on quantum algorithms The next

More information

The quantum capacity with symmetric side channels

The quantum capacity with symmetric side channels The quantum capacity with symmetric side channels Graeme Smith, John A. Smolin and Andreas Winter arxiv:quant-ph/0607039v3 8 Aug 008 Abstract We present an upper bound for the quantum channel capacity

More information

Quantum Communication & Computation Using Spin Chains

Quantum Communication & Computation Using Spin Chains Quantum Communication & Computation Using Spin Chains Sougato Bose Institute for Quantum Information, Caltech & UCL, London Quantum Computation Part: S. C. Benjamin & S. Bose, quant-ph/02057 (to appear

More information

The Solovay-Kitaev theorem

The Solovay-Kitaev theorem The Solovay-Kitaev theorem Maris Ozols December 10, 009 1 Introduction There are several accounts of the Solovay-Kitaev theorem available [K97, NC00, KSV0, DN05]. I chose to base my report on [NC00], since

More information

CS/Ph120 Homework 4 Solutions

CS/Ph120 Homework 4 Solutions CS/Ph10 Homework 4 Solutions November 3, 016 Problem 1: Robustness of GHZ and W states, part Solution: Due to Bolton Bailey a For the GHZ state, we have T r N GHZ N GHZ N = 1 0 N 1 0 N 1 + 1 N 1 1 N 1

More information

Capacity Estimates of TRO Channels

Capacity Estimates of TRO Channels Capacity Estimates of TRO Channels arxiv: 1509.07294 and arxiv: 1609.08594 Li Gao University of Illinois at Urbana-Champaign QIP 2017, Microsoft Research, Seattle Joint work with Marius Junge and Nicholas

More information

Quantum Information Processing and Diagrams of States

Quantum Information Processing and Diagrams of States Quantum Information and Diagrams of States September 17th 2009, AFSecurity Sara Felloni sara@unik.no / sara.felloni@iet.ntnu.no Quantum Hacking Group: http://www.iet.ntnu.no/groups/optics/qcr/ UNIK University

More information

Quantum Gates, Circuits & Teleportation

Quantum Gates, Circuits & Teleportation Chapter 3 Quantum Gates, Circuits & Teleportation Unitary Operators The third postulate of quantum physics states that the evolution of a quantum system is necessarily unitary. Geometrically, a unitary

More information

arxiv: v1 [quant-ph] 1 Mar 2016

arxiv: v1 [quant-ph] 1 Mar 2016 A comparative study of protocols for secure quantum communication under noisy environment: single-qubit-based protocols versus entangled-state-based protocols arxiv:1603.00178v1 [quant-ph] 1 Mar 016 Vishal

More information

Quantum Data Compression

Quantum Data Compression PHYS 476Q: An Introduction to Entanglement Theory (Spring 2018) Eric Chitambar Quantum Data Compression With the basic foundation of quantum mechanics in hand, we can now explore different applications.

More information