Key Concepts and Fundamental Theorems of Atmospheric Science

Size: px
Start display at page:

Download "Key Concepts and Fundamental Theorems of Atmospheric Science"

Transcription

1 Key Concepts and Fundamental Theorems of Atmospheric Science Part II Global Motion Systems John A. Dutton Meteo 485 Spring 2004

2 From simple waves to predictability In two lectures a walk through two centuries of mathematical crisis and progress, to two fundamental theorems about atmospheric flow, and, then, a critical question or two.

3 Long waves in the westerlies the Rossby theory For horizontal, incompressible flow, density varying only in the vertical, the perturbation equations are u t v t +U u x fv + x +U v x + fu + y u x + v y = 0 p ρ = 0 p ρ = 0 ς = v x u y = ( 2 x 2 + = H 2 ψ ( t +U )ζ + βv = 0 x 2 y 2 )ψ ( t +U x ) H 2 ψ + βψ x = 0 ψ x = ψ x

4 The wave equation ( t +U x ) H 2 ψ + βψ x = 0 i(ωt +κ x) ψ (x, y,t) = ψ ˆ ( y)e (ω +κu )[ ˆ ψ yy κ 2 ˆ ψ ] + βκ ˆ ψ = 0 ψˆ yy + λψ ˆ = 0, λ = βκ ω +κu κ 2

5 The simplest solution ψ yy + λψ = 0 βκ 2 λ= κ ω + κu ψ yy = 0 λ = 0 ω β c = =U 2 κ κ 2 βl =U 2 4π J. Namias F. W. Reichelderfer C.G. Rossby 1955 Copyright John A. Dutton 2004

6 The modern era begins βl c =U 2 4π 2

7 Rossby-Haurwitz waves in a channel of width D The eigenvalue problem ψˆ yy + λψ ˆ = 0, λ = βκ ω +κu κ 2 ˆ ψ ( y) = Asin( λ y) + Bcos( λ y) At y= ± D/2: v = ψ x = 0 ˆ ψ (±D / 2) = 0 y = 0 : A = 0 v y = 0 ˆ ψ y =0 λ D / 2 = πn,n = 1,3,... 2 β ω k,n +U 2πk / L (2πk L )2 = (πn / D) 2

8 The solution orthogonality relations ψ (x, y,t) = (2n +1)π cos( y)[a D n,k sin(ω n,k t + 2πkx / L) k =1 n=1 +B n,k cos(ω n,k t + 2πkx / L)] D/2 cos( D/2 (2n +1)π D (2m +1)π y)cos( y) = D 0 m n π m = n 2 2π 0 2π sin( jξ)sin(kξ)dξ = 2π 2π 0 cos( jξ)cos(kξ)dξ = cos( jξ)sin(kξ)dξ = 0 k j 0 sin 2 (kξ)dξ = cos 2 (kξ)dξ = π 0 2π 0

9 The solution specifying the coefficients ψ (x, y,t) = (2n +1)π cos( y)[a D n,k sin(ω n,k t + 2πkx / L) k =1 n=1 +B n,k cos(ω n,k t + 2πkx / L)] A n,k D L = 2 ψ (x, y,0)cos( B 0 n,k D 2 (2n +1)π D ) sin(2πkx / L) cos(2πkx / L) dy dx We appear to have a solution valid for all time, perfect predictability, and infinite resolution of detail depending only on the initial and assumed boundary conditions. Is this too good to be true?

10 Crisis in mathematics The crisis struck four days before Christmas The edifice of calculus was shaken to its foundations. the difficulties had been building for decades it would take fifty years before the full impact of the event was understood. The crisis was precipitated by the deposition at the Institute de France in Paris of a manuscript, Theory of the Propagation of Heat in Solid Bodies, by the 39-year old prefect of the department of L Isère, J.B. Fourier A Radical Approach to Real Analysis David Bressoud, 1994

11 0 X ( f n (x))dx = n=1 n=1 0 X f n (x) dx lim n 0 X f n (x)dx = 0 X lim n f n (x) dx G. B. Riemann The 19th century would see ever expanding investigations into the assumptions of calculus, an inspection and refitting of the structure from the footings to the pinnacle, so thorough a reconstruction that calculus was given a new name: Analysis A. L Cauchy Karl Weierstrass

12 Resolution of the crisis We use the Lebesgue integral convergence of partial sums of the series mean square convergence Grace C. Young Henri Lebesgue And in some cases we talk about equality except on a set of measure zero

13 But enough of this diversion into the world of misbehaving functions, recalcitrant limits, and divergent sequences. Let us return to the physics where all still seems to be tidy and nice

14 Energy conservation u t v t +U u x fv + x +U v x + fu + y u x + v y = 0 p ρ = 0 p ρ = 0 k = 1 2 (u2 + v 2 ) ( t +U x )ρk = H pu t ρk(x, y,t)dxdy = 0 A

15 A surprise in the westerlies ( t +U x )ζ + βψ x = ( t +U x )ζ 2 + β( 2 H ψ )ψ x = 0 ( H 2 ψ )ψ x = H (ψ x H ψ ) H ψ H ψ x = H (ψ x H ψ ) 1 2 ( H ψ )2 / x t ρζ 2 (x, y,t) dx dy = 0 A

16 Summing up so far We have a linear wave theory with flow constrained to conserve kinetic energy and mean square vorticity--enstrophy. But the symmetric Rossby-Haurwitz waves cannot transfer heat or momentum poleward. So we must have a nonlinear theory that preserves the features of the long waves in the westerlies and yet is simple enough to reach rigorous conclusions. Through careful, laborious scale analysis we arrive at the quasi-geostrophic equations.

17 The quasi-geostrophic equations ( t + u g H )u g + Ro(1 + λ)w u g z = k u' π ' z θ ' = 0 ( t + u )θ '+ w'σ = Q' g H H u'+ 1 + λ ρ 0 z (ρ w') βv = 0 0 g u g = k H π ' Jule Charney Dimensionless equations for large-scale, moderately heated flow.

18 A nonlinear wave equation Quasi-geostrophic equation (some constants absorbed) ( t + k H ψ H )L(ψ ) + βψ x = 0 L(ψ ) = H 2 ψ + 1 ρ 0 z ( ρ 0 σ ψ z = θ ' z ψ ) Rossby-Haurwitz equation ( t +U x ) H 2 ψ + βψ x = 0 (k H ψ H )L(ψ ) = ψ x L(ψ ) y ψ y L(ψ ) x t L(ψ ) + J(ψ, L(ψ )) + βψ x = 0

19 Quasi-geostrophic eigensystem L(ψ ) = H 2 ψ + 1 ρ 0 z ( ρ 0 σ L(ψ ) = λψ z ψ ) leads to eigenvalues and orthonormal eigenfunctions 0 < λ 1 < λ 2 <...λ n <... ψ 1 (x, y,z), ψ 2,...ψ n... λ 0 = 0,ψ 0 = const and if we put a n = V ρ 0 ψ n ψ dv then 2 a n = ρ 0 ψ 2 dv n=1 V lim N V ρ 0 N n=0 ψ a n ψ n 2 dv = 0

20 Spectral equation for quasi-geostrophic motion t L(ψ ) + J(ψ, L(ψ )) + βψ = 1 x ρ 0 z ( ρ 0 σ N and ψ = a k ψ k k =1 leads to Q') + µl L(ψ ) (ad hoc) λ n da n dt + a j a k ρ 0 ψ n λ k J(ψ j, ψ k ) dv β a j ρ 0 ψ n (ψ j ) x dv j,k j V = ˆq n µλ n 2 a n n = 1,2,...N V A set of N ordinary differential equations describing the evolution of the nonlinear quasi-geostrophic flow.

21 to an N-dimensional trajectory in phase space 1 From a flow in physical space N 2

22 The spectral energy equation The ordinary differential equations λ n da n dt + a j a k ρ 0 ψ n λ k J(ψ j, ψ k ) dv β a j ρ 0 ψ n (ψ j ) x dv j,k j V = ˆq n µλ n 2 a n n = 1,2,...N V imply with the aid of the boundary conditions that d dt d dt n n n λ n a n 2 = a n ˆq n µ λ n 2 a n 2 n n n λ n 2 a n 2 = λ n a n ˆq n µ λ n 3 a n 2

23 A global theorem d dt n n n λ n a n 2 = &E N = a n ˆq n µ λ n 2 a n 2 a N = µ (λ n a n ˆq n ) n 2µλ n 4µ n ( ˆq n λ n ) 2 &E < 0 ` &E > 0 E a 1 &E < 0

24 a N The trapping theorem (Lorenz,1963) &E > 0 &E < 0 &E < 0 E a 1 For finite heating and for N <, every trajectory φ t (y) starting with finite energy proceeds asymptotically to the closed ball A N with exterior boundary E*, and so A N is a global attractor for any bounded part of phase space. This is the second fundamental theorem of atmospheric science. Corollary 1. The trajectory φ t (y) has at least one fixed point, or equivalently, the quasi geostrophic system has at least one steady solution. Corollary 2. Every trajectory has at least one limit point, and hence there is at least one point for which the trajectory is recurrent. For proofs, and a version applicable to a more general set of equations, see Chapter 15, Ceaseless Wind,or Dynamics of Atmospheric Motion

25 The solutions to the nonlinear, quasi-geostrophic flow exist for every N < and can be computed to any degree of accuracy given a sufficiently powerful computer. But can we actually follow them? Are they periodic or apparently random? How could we find and describe the attractor? What happens if we change an initial condition by ε in quadratic norm? Another mathematical crisis loss of predictability and the topic of the next lecture.

26

Newton s Second Law of Motion. Isaac Newton (in 1689) The Universe is Regular and Predictable. The Foundation of Science

Newton s Second Law of Motion. Isaac Newton (in 1689) The Universe is Regular and Predictable. The Foundation of Science Key Concepts and Fundamental Theorems Isaac Newton (in 689) of Atmospheric Science This is the earliest portrait of Newton to survive. The artist was Godfrey Kneller, perhaps the greatest portrait painter

More information

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities

Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Barotropic geophysical flows and two-dimensional fluid flows: Conserved Quantities Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi,

More information

The Spectral Method (MAPH 40260)

The Spectral Method (MAPH 40260) The Spectral Method (MAPH 40260) Part 4: Barotropic Vorticity Equation Peter Lynch School of Mathematical Sciences Outline Background Rossby-Haurwitz Waves Interaction Coefficients Transform Method The

More information

Lecture No 1 Introduction to Diffusion equations The heat equat

Lecture No 1 Introduction to Diffusion equations The heat equat Lecture No 1 Introduction to Diffusion equations The heat equation Columbia University IAS summer program June, 2009 Outline of the lectures We will discuss some basic models of diffusion equations and

More information

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations

Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Statistical Mechanics for the Truncated Quasi-Geostrophic Equations Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 6 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda

More information

In two-dimensional barotropic flow, there is an exact relationship between mass

In two-dimensional barotropic flow, there is an exact relationship between mass 19. Baroclinic Instability In two-dimensional barotropic flow, there is an exact relationship between mass streamfunction ψ and the conserved quantity, vorticity (η) given by η = 2 ψ.the evolution of the

More information

2. Baroclinic Instability and Midlatitude Dynamics

2. Baroclinic Instability and Midlatitude Dynamics 2. Baroclinic Instability and Midlatitude Dynamics Midlatitude Jet Stream Climatology (Atlantic and Pacific) Copyright 26 Emily Shuckburgh, University of Cambridge. Not to be quoted or reproduced without

More information

Chapter 13 Instability on non-parallel flow Introduction and formulation

Chapter 13 Instability on non-parallel flow Introduction and formulation Chapter 13 Instability on non-parallel flow. 13.1 Introduction and formulation We have concentrated our discussion on the instabilities of parallel, zonal flows. There is the largest amount of literature

More information

Bernoulli Numbers and their Applications

Bernoulli Numbers and their Applications Bernoulli Numbers and their Applications James B Silva Abstract The Bernoulli numbers are a set of numbers that were discovered by Jacob Bernoulli (654-75). This set of numbers holds a deep relationship

More information

Outline. The Spectral Method (MAPH 40260) Part 4: Barotropic Vorticity Equation. Outline. Background. Rossby-Haurwitz Waves.

Outline. The Spectral Method (MAPH 40260) Part 4: Barotropic Vorticity Equation. Outline. Background. Rossby-Haurwitz Waves. Outline The Spectral Method (MAPH 40260) Part 4: Barotropic Vorticity Equation Peter Lynch School of Mathematical Sciences Outline The dynamics of non-divergent flow on a rotating sphere are described

More information

Symmetry methods in dynamic meteorology

Symmetry methods in dynamic meteorology Symmetry methods in dynamic meteorology p. 1/12 Symmetry methods in dynamic meteorology Applications of Computer Algebra 2008 Alexander Bihlo alexander.bihlo@univie.ac.at Department of Meteorology and

More information

An introduction to Mathematical Theory of Control

An introduction to Mathematical Theory of Control An introduction to Mathematical Theory of Control Vasile Staicu University of Aveiro UNICA, May 2018 Vasile Staicu (University of Aveiro) An introduction to Mathematical Theory of Control UNICA, May 2018

More information

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction

Chapter 2. Quasi-Geostrophic Theory: Formulation (review) ε =U f o L <<1, β = 2Ω cosθ o R. 2.1 Introduction Chapter 2. Quasi-Geostrophic Theory: Formulation (review) 2.1 Introduction For most of the course we will be concerned with instabilities that an be analyzed by the quasi-geostrophic equations. These are

More information

Chapter 3. Stability theory for zonal flows :formulation

Chapter 3. Stability theory for zonal flows :formulation Chapter 3. Stability theory for zonal flows :formulation 3.1 Introduction Although flows in the atmosphere and ocean are never strictly zonal major currents are nearly so and the simplifications springing

More information

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville

Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Fourier series: Fourier, Dirichlet, Poisson, Sturm, Liouville Joseph Fourier (1768-1830) upon returning from Egypt in 1801 was appointed by Napoleon Prefect of the Department of Isères (where Grenoble

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow

AA210A Fundamentals of Compressible Flow. Chapter 1 - Introduction to fluid flow AA210A Fundamentals of Compressible Flow Chapter 1 - Introduction to fluid flow 1 1.2 Conservation of mass Mass flux in the x-direction [ ρu ] = M L 3 L T = M L 2 T Momentum per unit volume Mass per unit

More information

Functional Analysis Review

Functional Analysis Review Outline 9.520: Statistical Learning Theory and Applications February 8, 2010 Outline 1 2 3 4 Vector Space Outline A vector space is a set V with binary operations +: V V V and : R V V such that for all

More information

Lecture II: Vector and Multivariate Calculus

Lecture II: Vector and Multivariate Calculus Lecture II: Vector and Multivariate Calculus Dot Product a, b R ' ', a ( b = +,- a + ( b + R. a ( b = a b cos θ. θ convex angle between the vectors. Squared norm of vector: a 3 = a ( a. Alternative notation:

More information

Non-linear Stability of Steady Geophysical Flows

Non-linear Stability of Steady Geophysical Flows Non-linear Stability of Steady Geophysical Flows Di Qi, and Andrew J. Majda Courant Institute of Mathematical Sciences Fall 2016 Advanced Topics in Applied Math Di Qi, and Andrew J. Majda (CIMS) Non-linear

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

Recall that any inner product space V has an associated norm defined by

Recall that any inner product space V has an associated norm defined by Hilbert Spaces Recall that any inner product space V has an associated norm defined by v = v v. Thus an inner product space can be viewed as a special kind of normed vector space. In particular every inner

More information

Asymptotic distribution of eigenvalues of Laplace operator

Asymptotic distribution of eigenvalues of Laplace operator Asymptotic distribution of eigenvalues of Laplace operator 23.8.2013 Topics We will talk about: the number of eigenvalues of Laplace operator smaller than some λ as a function of λ asymptotic behaviour

More information

Understanding inertial instability on the f-plane with complete Coriolis force

Understanding inertial instability on the f-plane with complete Coriolis force Understanding inertial instability on the f-plane with complete Coriolis force Abstract Vladimir Zeitlin Laboratory of Dynamical Meteorology, University P. and M. Curie and Ecole Normale Supérieure, Paris,

More information

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany

SAMPLE CHAPTERS UNESCO EOLSS WAVES IN THE OCEANS. Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany WAVES IN THE OCEANS Wolfgang Fennel Institut für Ostseeforschung Warnemünde (IOW) an der Universität Rostock,Germany Keywords: Wind waves, dispersion, internal waves, inertial oscillations, inertial waves,

More information

Coordinate systems and vectors in three spatial dimensions

Coordinate systems and vectors in three spatial dimensions PHYS2796 Introduction to Modern Physics (Spring 2015) Notes on Mathematics Prerequisites Jim Napolitano, Department of Physics, Temple University January 7, 2015 This is a brief summary of material on

More information

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves

A few examples Shallow water equation derivation and solutions. Goal: Develop the mathematical foundation of tropical waves A few examples Shallow water equation derivation and solutions Goal: Develop the mathematical foundation of tropical waves Previously: MCS Hovmoller Propagating w/ wave velocity From Chen et al (1996)

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves

2.5 Shallow water equations, quasigeostrophic filtering, and filtering of inertia-gravity waves Chapter. The continuous equations φ=gh Φ=gH φ s =gh s Fig..5: Schematic of the shallow water model, a hydrostatic, incompressible fluid with a rigid bottom h s (x,y), a free surface h(x,y,t), and horizontal

More information

Atmospheric Dynamics: lecture 11

Atmospheric Dynamics: lecture 11 Atmospheric Dynamics: lecture 11 (http://www.staff.science.uu.nl/~delde102/) Chapter 9 Baroclinic waves and cyclogenesis What is a baroclinic wave? Quasi-geostrophic equations Omega equation Original articles:

More information

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy

Notions such as convergent sequence and Cauchy sequence make sense for any metric space. Convergent Sequences are Cauchy Banach Spaces These notes provide an introduction to Banach spaces, which are complete normed vector spaces. For the purposes of these notes, all vector spaces are assumed to be over the real numbers.

More information

196 7 atmospheric oscillations:

196 7 atmospheric oscillations: 196 7 atmospheric oscillations: 7.4 INTERNAL GRAVITY (BUOYANCY) WAVES We now consider the nature of gravity wave propagation in the atmosphere. Atmospheric gravity waves can only exist when the atmosphere

More information

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods

Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Large-scale atmospheric circulation, semi-geostrophic motion and Lagrangian particle methods Colin Cotter (Imperial College London) & Sebastian Reich (Universität Potsdam) Outline 1. Hydrostatic and semi-geostrophic

More information

6 Two-layer shallow water theory.

6 Two-layer shallow water theory. 6 Two-layer shallow water theory. Wewillnowgoontolookatashallowwatersystemthathastwolayersofdifferent density. This is the next level of complexity and a simple starting point for understanding the behaviour

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

Last Update: March 1 2, 201 0

Last Update: March 1 2, 201 0 M ath 2 0 1 E S 1 W inter 2 0 1 0 Last Update: March 1 2, 201 0 S eries S olutions of Differential Equations Disclaimer: This lecture note tries to provide an alternative approach to the material in Sections

More information

PV Thinking. What is PV thinking?

PV Thinking. What is PV thinking? PV Thinking CH 06 What is PV thinking? Two main approaches to solving fluid flow problems:. We can integrate the momentum, continuity and thermodynamic equations (the primitive equations) directly.. In

More information

M.Sc. in Meteorology. Numerical Weather Prediction Prof Peter Lynch

M.Sc. in Meteorology. Numerical Weather Prediction Prof Peter Lynch M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

On Schrödinger equations with inverse-square singular potentials

On Schrödinger equations with inverse-square singular potentials On Schrödinger equations with inverse-square singular potentials Veronica Felli Dipartimento di Statistica University of Milano Bicocca veronica.felli@unimib.it joint work with Elsa M. Marchini and Susanna

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015)

SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) SIO 210: Dynamics VI (Potential vorticity) L. Talley Fall, 2014 (Section 2: including some derivations) (this lecture was not given in 2015) Variation of Coriolis with latitude: β Vorticity Potential vorticity

More information

Quantum Physics Lecture 8

Quantum Physics Lecture 8 Quantum Physics ecture 8 Steady state Schroedinger Equation (SSSE): eigenvalue & eigenfunction particle in a box re-visited Wavefunctions and energy states normalisation probability density Expectation

More information

MA 102 (Multivariable Calculus)

MA 102 (Multivariable Calculus) MA 102 (Multivariable Calculus) Rupam Barman and Shreemayee Bora Department of Mathematics IIT Guwahati Outline of the Course Two Topics: Multivariable Calculus Will be taught as the first part of the

More information

Asymmetric inertial instability

Asymmetric inertial instability Asymmetric inertial instability V. Zeitlin Institut Universitaire de France 2 Laboratory of Dynamical Meteorology, University P. and M. Curie, Paris, France UCL, December 2 Instabilities of jets Motivations,

More information

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49

REAL ANALYSIS II HOMEWORK 3. Conway, Page 49 REAL ANALYSIS II HOMEWORK 3 CİHAN BAHRAN Conway, Page 49 3. Let K and k be as in Proposition 4.7 and suppose that k(x, y) k(y, x). Show that K is self-adjoint and if {µ n } are the eigenvalues of K, each

More information

t tendency advection convergence twisting baroclinicity

t tendency advection convergence twisting baroclinicity RELATIVE VORTICITY EQUATION Newton s law in a rotating frame in z-coordinate (frictionless): U + U U = 2Ω U Φ α p U + U U 2 + ( U) U = 2Ω U Φ α p Applying to both sides, and noting ω U and using identities

More information

ROSSBY WAVE PROPAGATION

ROSSBY WAVE PROPAGATION ROSSBY WAVE PROPAGATION (PHH lecture 4) The presence of a gradient of PV (or q.-g. p.v.) allows slow wave motions generally called Rossby waves These waves arise through the Rossby restoration mechanism,

More information

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems

Sufficient conditions for functions to form Riesz bases in L 2 and applications to nonlinear boundary-value problems Electronic Journal of Differential Equations, Vol. 200(200), No. 74, pp. 0. ISSN: 072-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Sufficient conditions

More information

Notes on Special Functions

Notes on Special Functions Spring 25 1 Notes on Special Functions Francis J. Narcowich Department of Mathematics Texas A&M University College Station, TX 77843-3368 Introduction These notes are for our classes on special functions.

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation

df(x) = h(x) dx Chemistry 4531 Mathematical Preliminaries Spring 2009 I. A Primer on Differential Equations Order of differential equation Chemistry 4531 Mathematical Preliminaries Spring 009 I. A Primer on Differential Equations Order of differential equation Linearity of differential equation Partial vs. Ordinary Differential Equations

More information

GENERALIZED STABILITY OF THE TWO-LAYER MODEL

GENERALIZED STABILITY OF THE TWO-LAYER MODEL GENERALIZED STABILITY OF THE TWO-LAYER MODEL The simplest mid-latitude jet model supporting the baroclinic growth mechanism is the two-layer model The equations for the barotropic and baroclinic geostrophic

More information

The Simple Harmonic Oscillator

The Simple Harmonic Oscillator The Simple Harmonic Oscillator Asaf Pe er 1 November 4, 215 This part of the course is based on Refs [1] [3] 1 Introduction We return now to the study of a 1-d stationary problem: that of the simple harmonic

More information

Nonlinear error dynamics for cycled data assimilation methods

Nonlinear error dynamics for cycled data assimilation methods Nonlinear error dynamics for cycled data assimilation methods A J F Moodey 1, A S Lawless 1,2, P J van Leeuwen 2, R W E Potthast 1,3 1 Department of Mathematics and Statistics, University of Reading, UK.

More information

Math 2930 Worksheet Final Exam Review

Math 2930 Worksheet Final Exam Review Math 293 Worksheet Final Exam Review Week 14 November 3th, 217 Question 1. (* Solve the initial value problem y y = 2xe x, y( = 1 Question 2. (* Consider the differential equation: y = y y 3. (a Find the

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows:

Harmonic Oscillator with raising and lowering operators. We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: We write the Schrödinger equation for the harmonic oscillator in one dimension as follows: H ˆ! = "!2 d 2! + 1 2µ dx 2 2 kx 2! = E! T ˆ = "! 2 2µ d 2 dx 2 V ˆ = 1 2 kx 2 H ˆ = ˆ T + ˆ V (1) where µ is

More information

Chapter 7: Circulation and Vorticity

Chapter 7: Circulation and Vorticity Chapter 7: Circulation and Vorticity Circulation C = u ds Integration is performed in a counterclockwise direction C is positive for counterclockwise flow!!! Kelvin s Circulation Theorem The rate of change

More information

Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane

Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane Integration of Constraint Equations in Problems of a Disc and a Ball Rolling on a Horizontal Plane Eugeny A. Mityushov Ural Federal University Department of Theoretical Mechanics Prospect Mira 19 62 2

More information

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling.

( ) (9.1.1) Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation. 9.1 Geostrophy and scaling. Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

The Schrödinger Wave Equation Formulation of Quantum Mechanics

The Schrödinger Wave Equation Formulation of Quantum Mechanics Chapter 5. The Schrödinger Wave Equation Formulation of Quantum Mechanics Notes: Most of the material in this chapter is taken from Thornton and Rex, Chapter 6. 5.1 The Schrödinger Wave Equation There

More information

Kirchhoff s Elliptical Vortex

Kirchhoff s Elliptical Vortex 1 Figure 1. An elliptical vortex oriented at an angle φ with respect to the positive x axis. Kirchhoff s Elliptical Vortex In the atmospheric and oceanic context, two-dimensional (height-independent) vortices

More information

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows

New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows New ideas in the non-equilibrium statistical physics and the micro approach to transportation flows Plenary talk on the conference Stochastic and Analytic Methods in Mathematical Physics, Yerevan, Armenia,

More information

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find: Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly..

More information

The Eady problem of baroclinic instability described in section 19a was shown to

The Eady problem of baroclinic instability described in section 19a was shown to 0. The Charney-Stern Theorem The Eady problem of baroclinic instability described in section 19a was shown to be remarkably similar to the Rayleigh instability of barotropic flow described in Chapter 18.

More information

Dynamics Rotating Tank

Dynamics Rotating Tank Institute for Atmospheric and Climate Science - IACETH Atmospheric Physics Lab Work Dynamics Rotating Tank Large scale flows on different latitudes of the rotating Earth Abstract The large scale atmospheric

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

Physics 443, Solutions to PS 2

Physics 443, Solutions to PS 2 . Griffiths.. Physics 443, Solutions to PS The raising and lowering operators are a ± mω ( iˆp + mωˆx) where ˆp and ˆx are momentum and position operators. Then ˆx mω (a + + a ) mω ˆp i (a + a ) The expectation

More information

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews.

New variables in spherical geometry. David G. Dritschel. Mathematical Institute University of St Andrews. New variables in spherical geometry David G Dritschel Mathematical Institute University of St Andrews http://www-vortexmcsst-andacuk Collaborators: Ali Mohebalhojeh (Tehran St Andrews) Jemma Shipton &

More information

Exact Solutions of the Einstein Equations

Exact Solutions of the Einstein Equations Notes from phz 6607, Special and General Relativity University of Florida, Fall 2004, Detweiler Exact Solutions of the Einstein Equations These notes are not a substitute in any manner for class lectures.

More information

The Klein-Gordon Equation Meets the Cauchy Horizon

The Klein-Gordon Equation Meets the Cauchy Horizon Enrico Fermi Institute and Department of Physics University of Chicago University of Mississippi May 10, 2005 Relativistic Wave Equations At the present time, our best theory for describing nature is Quantum

More information

Point Vortex Dynamics in Two Dimensions

Point Vortex Dynamics in Two Dimensions Spring School on Fluid Mechanics and Geophysics of Environmental Hazards 9 April to May, 9 Point Vortex Dynamics in Two Dimensions Ruth Musgrave, Mostafa Moghaddami, Victor Avsarkisov, Ruoqian Wang, Wei

More information

Bounds on Surface Stress Driven Flows

Bounds on Surface Stress Driven Flows Bounds on Surface Stress Driven Flows George Hagstrom Charlie Doering January 1, 9 1 Introduction In the past fifteen years the background method of Constantin, Doering, and Hopf has been used to derive

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2)

Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) Lecture 3. Turbulent fluxes and TKE budgets (Garratt, Ch 2) The ABL, though turbulent, is not homogeneous, and a critical role of turbulence is transport and mixing of air properties, especially in the

More information

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables.

z x = f x (x, y, a, b), z y = f y (x, y, a, b). F(x, y, z, z x, z y ) = 0. This is a PDE for the unknown function of two independent variables. Chapter 2 First order PDE 2.1 How and Why First order PDE appear? 2.1.1 Physical origins Conservation laws form one of the two fundamental parts of any mathematical model of Continuum Mechanics. These

More information

Baroclinic wave. Atmospheric Dynamics: lecture 14 18/12/15. Topics. Chapter 9: Baroclinic waves and cyclogenesis. What is a baroclinic wave?

Baroclinic wave. Atmospheric Dynamics: lecture 14 18/12/15. Topics. Chapter 9: Baroclinic waves and cyclogenesis. What is a baroclinic wave? Atmospheric Dynamics: lecture 14 (http://www.staff.science.uu.nl/~delde102/) Topics Chapter 9: Baroclinic waves and cyclogenesis What is a baroclinic wave? Quasi-geostrophic equations Omega equation Original

More information

Stokes and the Surveyor s Shoelaces

Stokes and the Surveyor s Shoelaces Stokes and the Surveyor s Shoelaces Dr. LaLonde UT Tyler Math Club February 15, 2017 Finding Areas of Polygons Problem: Is there a way to quickly find the area of a polygon just by knowing where its vertices

More information

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle.

If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. CHEM 2060 Lecture 18: Particle in a Box L18-1 Atomic Orbitals If electrons moved in simple orbits, p and x could be determined, but this violates the Heisenberg Uncertainty Principle. We can only talk

More information

Path integrals in quantum mechanics

Path integrals in quantum mechanics Path integrals in quantum mechanics Phys V3500/G8099 handout #1 References: there s a nice discussion of this material in the first chapter of L.S. Schulman, Techniques and applications of path integration.

More information

Mathematics Qualifying Exam Study Material

Mathematics Qualifying Exam Study Material Mathematics Qualifying Exam Study Material The candidate is expected to have a thorough understanding of engineering mathematics topics. These topics are listed below for clarification. Not all instructors

More information

What is a Low Order Model?

What is a Low Order Model? What is a Low Order Model? t Ψ = NL(Ψ ), where NL is a nonlinear operator (quadratic nonlinearity) N Ψ (x,y,z,...,t)= Ai (t)φ i (x,y,z,...) i=-n da i = N N cijk A j A k + bij A j + f i v i j;k=-n j=-n

More information

The KPP minimal speed within large drift in two dimensions

The KPP minimal speed within large drift in two dimensions The KPP minimal speed within large drift in two dimensions Mohammad El Smaily Joint work with Stéphane Kirsch University of British Columbia & Pacific Institute for the Mathematical Sciences Banff, March-2010

More information

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity

BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere. Potential temperature θ. Rossby Ertel potential vorticity BALANCED FLOW: EXAMPLES (PHH lecture 3) Potential Vorticity in the real atmosphere Need to introduce a new measure of the buoyancy Potential temperature θ In a compressible fluid, the relevant measure

More information

Fundamentals of Atmospheric Modelling

Fundamentals of Atmospheric Modelling M.Sc. in Computational Science Fundamentals of Atmospheric Modelling Peter Lynch, Met Éireann Mathematical Computation Laboratory (Opp. Room 30) Dept. of Maths. Physics, UCD, Belfield. January April, 2004.

More information

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation

Chapter 9. Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation Chapter 9 Geostrophy, Quasi-Geostrophy and the Potential Vorticity Equation 9.1 Geostrophy and scaling. We examined in the last chapter some consequences of the dynamical balances for low frequency, nearly

More information

6.2 Brief review of fundamental concepts about chaotic systems

6.2 Brief review of fundamental concepts about chaotic systems 6.2 Brief review of fundamental concepts about chaotic systems Lorenz (1963) introduced a 3-variable model that is a prototypical example of chaos theory. These equations were derived as a simplification

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

Q ( q(m, t 0 ) n) S t.

Q ( q(m, t 0 ) n) S t. THE HEAT EQUATION The main equations that we will be dealing with are the heat equation, the wave equation, and the potential equation. We use simple physical principles to show how these equations are

More information

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics

Mixed Mimetic Spectral Elements for Geophysical Fluid Dynamics for Geophysical Fluid Dynamics Dave Lee Los Alamos National Laboratory Outline Connection of finite volumes to differential forms Key ideas of differential forms Differential forms for discrete data Construction

More information

Separation of Variables in Linear PDE: One-Dimensional Problems

Separation of Variables in Linear PDE: One-Dimensional Problems Separation of Variables in Linear PDE: One-Dimensional Problems Now we apply the theory of Hilbert spaces to linear differential equations with partial derivatives (PDE). We start with a particular example,

More information

Study Guide for Exam #2

Study Guide for Exam #2 Physical Mechanics METR103 November, 000 Study Guide for Exam # The information even below is meant to serve as a guide to help you to prepare for the second hour exam. The absence of a topic or point

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

1 Phase Spaces and the Liouville Equation

1 Phase Spaces and the Liouville Equation Phase Spaces and the Liouville Equation emphasize the change of language from deterministic to probablistic description. Under the dynamics: ½ m vi = F i ẋ i = v i with initial data given. What is the

More information

Notes for Expansions/Series and Differential Equations

Notes for Expansions/Series and Differential Equations Notes for Expansions/Series and Differential Equations In the last discussion, we considered perturbation methods for constructing solutions/roots of algebraic equations. Three types of problems were illustrated

More information

Scenarios for the transition to chaos

Scenarios for the transition to chaos Scenarios for the transition to chaos Alessandro Torcini alessandro.torcini@cnr.it Istituto dei Sistemi Complessi - CNR - Firenze Istituto Nazionale di Fisica Nucleare - Sezione di Firenze Centro interdipartimentale

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

Partial Differential Equations

Partial Differential Equations Part II Partial Differential Equations Year 2015 2014 2013 2012 2011 2010 2009 2008 2007 2006 2005 2015 Paper 4, Section II 29E Partial Differential Equations 72 (a) Show that the Cauchy problem for u(x,

More information