Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:

Size: px
Start display at page:

Download "Math 1B Final Exam, Solution. Prof. Mina Aganagic Lecture 2, Spring (6 points) Use substitution and integration by parts to find:"

Transcription

1 Math B Final Eam, Solution Prof. Mina Aganagic Lecture 2, Spring 20 The eam is closed book, apart from a sheet of notes 8. Calculators are not allowed. It is your responsibility to write your answers clearly.. (6 points) Use substitution and integration by parts to find: tan (sec ) 2 e tan d Solution: Substituting s = tan, ds = (sec ) 2 d we have tan (sec ) 2 e tan d = se s ds. Now we use integration by parts: u = s, du = ds, dv = e s ds, v = e s se s ds = se s e s ds = se s e s + C. Going back to the original variable: tan (sec ) 2 e tan d = tan e tan e tan + C. 2. (6 points) Use trigonometric substitution to evaluate t 2 t 2 dt for t (0, ). Solution: Substitute t = sin θ, 0 < θ < π 2, so dt = cos θ dθ and t 2 = sin 2 θ = cos2 θ = cos θ = cos θ since 0 < θ < π 2. Then t 2 t dt = 2 cos θdθ sin 2 θ cos θ = sin 2 θ dθ = csc 2 θ dθ = cot θ + C. We now go back to the original variable cot θ = cos θ = t 2 sin θ t t t 2 t dt = 2 + C. 2 t, then

2 3. (7 points) First find the indefinite integral: d, then, compute Is this a proper integral? d. Solution: Using partial fractions, = ( 4)( + ), then = ( 4)( + ) = A 4 + B +. This gives the equality = (A + B) + (A 4B), then A = 4 and B =. Therefore d = 4 d d 5 + = 4 5 ln 4 + ln + + C. 5 The integral d is improper because of the lower limit of integration = where the function has a vertical asymptote. Using the integral we just computed since d = lim ln t + =. t + lim t + = 4 5 ln = + t d 4. (5 points) Determine if the integral e d converges or diverges using the comparison test. ln 2 lim t + ( 4 5 ln t ln t + ) Solution: The integrand is a nonnegative function so comparison test applies. Since for all and because e > 0 we have that for all e e. Now e t = lim t e d = lim ( e t + e ) = e <. Since the function in the t upper bound has a finite integral we conclude, by comparison test, that 2 e d + 2 converges. Page 2

3 5. (7 points) Consider the series n 3 (n 4 + ) 2. i) Use the limit comparison test to show that the series is convergent. ii) Determine whether 0 n 3 (n 4 + ) is true or false by comparing the series to an integral. (Hint: First find the interval where the integral comparison test is applicable. Then, use the integral to estimate the applicable portion of the series, and add the rest by hand.) Solution: i) Limit compare to, letting a n 5 n = n3 and b (n 4 +) 2 n =, n 5 a n lim = lim n b n n n 3 (n 4 +) 2 n 5 n 8 = lim n (n 4 + ) = lim 2 n ( + ) = > 0. n 2 4 Now n 5 converges by p-test, p = 5 >, or by integral test. We conclude, by limit n 3 converges. (n 4 +) 2 comparison test, that ii) The lower bound is clearly true since the series has nonnegative terms only, so 0 n 3. For the upper bound we compare to an integral. Let f() = 3. (n 4 +) 2 ( 4 +) 2 Clearly f is nonnegative and continuous for. We need to know if f is decreasing and if so from where it starts to decrease. f () = ( 4 + ) 3 = 2 (3 5 4 ) ( 4 + ) 3, so f () < 0 if and only if > (3/5) /4, and in particular if. The estimate for the sum is n 3 (n 4 + ) ( 4 + ) d = = 3 4( 4 + ) 8. We have found 0 and so the statement in ii) is true. n 3 (n 4 + ) (7 points) Determine if the series absolutely converges, conditionally converges, or diverges. ( ) n n n 2 + Page 3

4 Solution: The series is alternating because the sum ( )n n can be written in n 2 + the form ( )n b n where b n = n is nonnegative. We apply the alternating series n 2 + test. First the limit of {b n }, lim b n = lim n n n n 2 + = lim n n + n 2 = 0. Now we check that {b n } is (eventually) decreasing. We can consider d = 2 < 0 d if >, and so the b n s decrease. By alternating series test ( )n n converges. n 2 + To see whether the series is absolutely convergent or conditionally convergent we need to study n. We can limit compare it to n 2 +, n lim n n n 2 + n n 2 = lim n n 2 + = lim n + = > 0 n 2 and since the harmonic series diverges (p-test with p = or integral test) we conclude that n diverges. n 2 + Thus ( )n n is conditionally convergent. n (7 points) Find the radius and the interval of convergence of the power series. Using the ratio test and calling a n = n 2 n n 2 lim a n+ = lim n a n n n 2 n n 2 2 n n 2 2 n+ (n + ) = lim ( n ) 2 = 2 n 2 n + 2, so the series converges if /2 < and diverges if /2 >. The radius of convergence is R = 2. We know the series converges in the interval ( 2, 2). We now look at the endpoints. For = 2 2 n 2 n n = 2 n, 2 which converges by p-test with p = 2 >, or by integral test. For = 2 ( 2) n 2 n n 2 = ( ) n n 2, which converges because it is absolutely convergent, or by an application of the alternating series test. The interval of convergence of the power series is I = [ 2, 2]. Page 4

5 8. (7 points) Let g() = 4 + i) Find the Taylor series epansion of g() centered at =. ii) Find g (2) (), the 2 st derivative of g at =. Solution: i) First note that g() = g() = = ( ) = 4 5 = +4 4 = and so + ( ) = ( ) n ( ) n, 5 n and the epansion is valid for ( ) <, that is for 4 < < 6. 5 ii) The coefficient of ( ) 2 in the power series epansion of g around = is given by g(2) (). Using i) we find 2! g (2) () = 4 2! (7 points) Consider f() = e 2 e 2 i) Find the Taylor series around = 0. What is the coefficient of n? ii) What is its radius of convergence? iii) Using the power series obtained in i) compute lim 0 (f()/) Solution: i) We can use the Taylor series of the eponential to find the Taylor series of f e 2 (2) n 2 n n = = n! n! e 2 ( 2) n ( ) n 2 n n = = n! n! and both power series have radius of convergence R =. Then the Taylor series of f is 2 n n n! ( ) n 2 n n n! = ( ( ) n ) 2n n! n, that can be rewritten as 2 2n+2 (2n + )! 2n+ () where we used that ( ) n equals 0 if n is even and equals 2 is n is odd. The coefficient of n is ( ( ) n ) 2n or equivalently, it is 0 if n is even and 2n+ if n is n! n! odd. Page 5

6 ii) The radius of convergence is R = since it is obtained as the sum of two power series with infinite radius of convergence, and the radius of convergence of the sum of power series is at least the smallest between the two, which in this case is infinity. We can also take the epression in () and apply the ratio test. iii) From i) we have and Since f() = 2 2n+2 (2n + )! 2n+ = 4 + f() = n+2 (2n + )! 2n. 2 2n+2 (2n+)! 2n 0 as 0 we get lim 0 f()/ = (8 points) Consider the differential equation dy d = y 2 ( + ) 2 2 2n+2 (2n + )! 2n+, i) Solve the differential equation. Epress y eplicitly in terms of. ii) Find a solution through =, y =. iii) Find the orthogonal trajectory through =, y =. Solution: i) Using the method for separable equations we get dy y = d 2 ( + ), 2 y = + + C, y() = + C( + ). ii) If y() =, we obtain C =, so the solution is 2 y() = 2( + ) 3 +. iii) To find the orthogonal trajectories we need to solve the differential equation that is again separable. y 2 dy = ( + ) 2 d, y 3 3 dy d = ( + )2 y 2 = ( + )3 3 For the one passing through =, y = we obtain C = 3, then y() = (9 ( + ) 3 ) /3. + C, y() = (3C ( + ) 3 ) /3. Page 6

7 . (7 points) Solve the equation and find a solution that satisfies p() =. Solution: We rewrite the equation as dp d = p + 2 e ( > 0) p p = e. The integrating factor is e d = e ln = e ln = method of the integrating factor, ( p ) = e, p = Now if p() = we need C = e and e d = e + C, p() = e + ( e). = since > 0. Following the p() = e + C. 2. (0 points) Find the general solution to the differential equation y + 2y + y = and find the solution to the boundary value problem y(0) =, y() = 2. Solution: We start with the homogeneous equation y + 2y + y = 0 with characteristic equation r 2 +2r+ = 0, so r = is the only solution. The solution to the homogeneous equation is y c = C e + C 2 e. We use undetermined coefficients to find a particular solution. Set y p = A 2 + B + C, so y p = 2A + B, y p = 2A. Plugging it into the equation gives A 2 + (4A + B) + (2A + 2B + C) = from where A =, 4A + B =, 2A + 2B + C =. This gives A =, B = 3, C = 5 and the particular solution is y p () = The general solution is y = C e + C 2 e For the boundary value problem, y(0) = C + 5 = and y() = C e + C 2 e + 3 = 2 that gives C = 4 and C 2 = 4 e. The solution is y() = 4e + (4 e)e Page 7

8 3. (5 points) For the differential equation y + y = sec i) Show that y = cos() ln cos + sin is a solution to the given differential equation. ii) Find the general solution to the equation. Solution: i)the derivatives are d 2 d cos() ln cos = cos + sin2 cos() ln cos, 2 cos d 2 sin = 2 cos sin. d2 We see that y + y = sin2 + cos = = sec. cos cos ii) The general solution is given by the sum of the solution to the homogeneous equation and a particular solution. The characteristic equation of the homogeneous equation is r 2 + = 0 with roots r = i, r 2 = i, so y c = C cos + C 2 sin. In i) we are given a particular solution so the general solution is y = C cos + C 2 sin + cos() ln cos + sin. 4. ( points) Follow the steps below to find the general solution to the given equation by using the power series method y + 2y y = 0 i) Write power series for y, y and y and find the recurrence for the coefficients. ii) Use the first part to write c 2, c 4 and c 6 in terms of c 0 and c 3, c 5 and c 7 in terms of c. Here c 2, c 3, etc are the coefficients in the power series epansion of y. iii) Use the previous part to write a general formula for the coefficients. Hint: even coefficients and odd coefficients will have a slightly different formula, so write two separate formulas for each case, even and odd. iv) Write the general solution to the equation. v) Find the radius of convergence of the solution. (Hint: Find the radii of convergence of any two linearly independent solutions, and take the smallest of the two.), vi) Find the solution to the initial value problem y(0) =, y (0) =. Solution: i) Setting y = c n n we have y = nc n n, y = Plugging into the equation gives n(n )c n n 2 = (n + 2)(n + )c n+2 n. (n + 2)(n + )c n+2 n + 2 nc n n c n n = 0 Page 8

9 or equivalently ((n + 2)(n + )c n+2 + 2nc n c n ) n = 0. From here we obtain the recurrence ii) Using i) we get 2n c n+2 = (n + 2)(n + ) c n, for n 0. c 2 = 2 c 0, c 4 = c 2 = 3 4! c 0, c 6 = c 4 = 3 7 c 0 6! c 3 = 2 3 c, c 5 = c 3 = 5 5! c, c 7 = c 5 = 5 9 c. 9! iii) We find that in general iv) The general solution is c 2n = ( )n 3 7 (4n 5) c 0, for n 2, (2n)! c 2 = 2 c 0, c 2n+ = ( )n 5 9 (4n 3) c, for n. (2n + )! y =c 0 ( c ( + n=2 ( ) n 3 7 (4n 5) ) 2n (2n)! ( ) n 5 9 (4n 3) ). 2n+ (2n + )! v) The radius of convergence of the first linearly independent solution (the one multiplied by c 0 ). lim a n+ = 2 4n lim n a n n (2n + )(2n + 2) = 2 4/n /n 2 lim n (2 + /n)(2 + 2/n) = 0, Then the radius of convergence is R =. For the second linearly independent solution lim a n+ = 2 4n + lim n n (2n + 2)(2n + 3) = 0, a n Page 9

10 and thus the radius of convergence is R =. Then the radius of convergence of the solution in iv) is R =. vi) Evaluating y(0) = c 0 = and y (0) = c = and the solution is y = n=2 ( ) n 3 7 (4n 5) 2n + (2n)! ( ) n 5 9 (4n 3) 2n+. (2n + )! Page 0

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008

Mathematics 132 Calculus for Physical and Life Sciences 2 Exam 3 Review Sheet April 15, 2008 Mathematics 32 Calculus for Physical and Life Sciences 2 Eam 3 Review Sheet April 5, 2008 Sample Eam Questions - Solutions This list is much longer than the actual eam will be (to give you some idea of

More information

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and

Spring 2011 solutions. We solve this via integration by parts with u = x 2 du = 2xdx. This is another integration by parts with u = x du = dx and Math - 8 Rahman Final Eam Practice Problems () We use disks to solve this, Spring solutions V π (e ) d π e d. We solve this via integration by parts with u du d and dv e d v e /, V π e π e d. This is another

More information

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck!

Prelim 2 Math Please show your reasoning and all your work. This is a 90 minute exam. Calculators are not needed or permitted. Good luck! April 4, Prelim Math Please show your reasoning and all your work. This is a 9 minute exam. Calculators are not needed or permitted. Good luck! Trigonometric Formulas sin x sin x cos x cos (u + v) cos

More information

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx.

Math 181, Exam 2, Fall 2014 Problem 1 Solution. sin 3 (x) cos(x) dx. Math 8, Eam 2, Fall 24 Problem Solution. Integrals, Part I (Trigonometric integrals: 6 points). Evaluate the integral: sin 3 () cos() d. Solution: We begin by rewriting sin 3 () as Then, after using the

More information

Mat104 Fall 2002, Improper Integrals From Old Exams

Mat104 Fall 2002, Improper Integrals From Old Exams Mat4 Fall 22, Improper Integrals From Old Eams For the following integrals, state whether they are convergent or divergent, and give your reasons. () (2) (3) (4) (5) converges. Break it up as 3 + 2 3 +

More information

MATH 101 Midterm Examination Spring 2009

MATH 101 Midterm Examination Spring 2009 MATH Midterm Eamination Spring 9 Date: May 5, 9 Time: 7 minutes Surname: (Please, print!) Given name(s): Signature: Instructions. This is a closed book eam: No books, no notes, no calculators are allowed!.

More information

MATH section 3.1 Maximum and Minimum Values Page 1 of 7

MATH section 3.1 Maximum and Minimum Values Page 1 of 7 MATH section. Maimum and Minimum Values Page of 7 Definition : Let c be a number in the domain D of a function f. Then c ) is the Absolute maimum value of f on D if ) c f() for all in D. Absolute minimum

More information

Section: I. u 4 du. (9x + 1) + C, 3

Section: I. u 4 du. (9x + 1) + C, 3 EXAM 3 MAT 168 Calculus II Fall 18 Name: Section: I All answers must include either supporting work or an eplanation of your reasoning. MPORTANT: These elements are considered main part of the answer and

More information

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx.

Mathematics 104 Fall Term 2006 Solutions to Final Exam. sin(ln t) dt = e x sin(x) dx. Mathematics 14 Fall Term 26 Solutions to Final Exam 1. Evaluate sin(ln t) dt. Solution. We first make the substitution t = e x, for which dt = e x. This gives sin(ln t) dt = e x sin(x). To evaluate the

More information

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes

Fall 2013 Hour Exam 2 11/08/13 Time Limit: 50 Minutes Math 8 Fall Hour Exam /8/ Time Limit: 5 Minutes Name (Print): This exam contains 9 pages (including this cover page) and 7 problems. Check to see if any pages are missing. Enter all requested information

More information

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2.

1. Evaluate the integrals. a. (9 pts) x e x/2 dx. Solution: Using integration by parts, let u = x du = dx and dv = e x/2 dx v = 2e x/2. MATH 8 Test -SOLUTIONS Spring 4. Evaluate the integrals. a. (9 pts) e / Solution: Using integration y parts, let u = du = and dv = e / v = e /. Then e / = e / e / e / = e / + e / = e / 4e / + c MATH 8

More information

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26.

Answer Key 1973 BC 1969 BC 24. A 14. A 24. C 25. A 26. C 27. C 28. D 29. C 30. D 31. C 13. C 12. D 12. E 3. A 32. B 27. E 34. C 14. D 25. B 26. Answer Key 969 BC 97 BC. C. E. B. D 5. E 6. B 7. D 8. C 9. D. A. B. E. C. D 5. B 6. B 7. B 8. E 9. C. A. B. E. D. C 5. A 6. C 7. C 8. D 9. C. D. C. B. A. D 5. A 6. B 7. D 8. A 9. D. E. D. B. E. E 5. E.

More information

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44

Section 7.4 #1, 5, 6, 8, 12, 13, 44, 53; Section 7.5 #7, 10, 11, 20, 22; Section 7.7 #1, 4, 10, 15, 22, 44 Math B Prof. Audrey Terras HW #4 Solutions Due Tuesday, Oct. 9 Section 7.4 #, 5, 6, 8,, 3, 44, 53; Section 7.5 #7,,,, ; Section 7.7 #, 4,, 5,, 44 7.4. Since 5 = 5 )5 + ), start with So, 5 = A 5 + B 5 +.

More information

VANDERBILT UNIVERSITY MAT 155B, FALL 12 SOLUTIONS TO THE PRACTICE FINAL.

VANDERBILT UNIVERSITY MAT 155B, FALL 12 SOLUTIONS TO THE PRACTICE FINAL. VANDERBILT UNIVERSITY MAT 55B, FALL SOLUTIONS TO THE PRACTICE FINAL. Important: These solutions should be used as a guide on how to solve the problems and they do not represent the format in which answers

More information

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3

Part I: Multiple Choice Mark the correct answer on the bubble sheet provided. n=1. a) None b) 1 c) 2 d) 3 e) 1, 2 f) 1, 3 g) 2, 3 h) 1, 2, 3 Math (Calculus II) Final Eam Form A Fall 22 RED KEY Part I: Multiple Choice Mark the correct answer on the bubble sheet provided.. Which of the following series converge absolutely? ) ( ) n 2) n 2 n (

More information

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin

The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. sin Math : Practice Final Answer Key Name: The answers below are not comprehensive and are meant to indicate the correct way to solve the problem. Problem : Consider the definite integral I = 5 sin ( ) d.

More information

Math 2300 Calculus II University of Colorado

Math 2300 Calculus II University of Colorado Math 3 Calculus II University of Colorado Spring Final eam review problems: ANSWER KEY. Find f (, ) for f(, y) = esin( y) ( + y ) 3/.. Consider the solid region W situated above the region apple apple,

More information

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx

y = x 3 and y = 2x 2 x. 2x 2 x = x 3 x 3 2x 2 + x = 0 x(x 2 2x + 1) = 0 x(x 1) 2 = 0 x = 0 and x = (x 3 (2x 2 x)) dx Millersville University Name Answer Key Mathematics Department MATH 2, Calculus II, Final Examination May 4, 2, 8:AM-:AM Please answer the following questions. Your answers will be evaluated on their correctness,

More information

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals

AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals AP Calculus BC Chapter 8: Integration Techniques, L Hopital s Rule and Improper Integrals 8. Basic Integration Rules In this section we will review various integration strategies. Strategies: I. Separate

More information

1 Exponential Functions Limit Derivative Integral... 5

1 Exponential Functions Limit Derivative Integral... 5 Contents Eponential Functions 3. Limit................................................. 3. Derivative.............................................. 4.3 Integral................................................

More information

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) =

Solutions to Exam 1, Math Solution. Because f(x) is one-to-one, we know the inverse function exists. Recall that (f 1 ) (a) = Solutions to Exam, Math 56 The function f(x) e x + x 3 + x is one-to-one (there is no need to check this) What is (f ) ( + e )? Solution Because f(x) is one-to-one, we know the inverse function exists

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

Math 132 Exam 3 Fall 2016

Math 132 Exam 3 Fall 2016 Math 3 Exam 3 Fall 06 multiple choice questions worth points each. hand graded questions worth and 3 points each. Exam covers sections.-.6: Sequences, Series, Integral, Comparison, Alternating, Absolute

More information

Math 142, Final Exam. 12/7/10.

Math 142, Final Exam. 12/7/10. Math 4, Final Exam. /7/0. No notes, calculator, or text. There are 00 points total. Partial credit may be given. Write your full name in the upper right corner of page. Number the pages in the upper right

More information

Math 113 Fall 2005 key Departmental Final Exam

Math 113 Fall 2005 key Departmental Final Exam Math 3 Fall 5 key Departmental Final Exam Part I: Short Answer and Multiple Choice Questions Do not show your work for problems in this part.. Fill in the blanks with the correct answer. (a) The integral

More information

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell

Power Series. Part 1. J. Gonzalez-Zugasti, University of Massachusetts - Lowell Power Series Part 1 1 Power Series Suppose x is a variable and c k & a are constants. A power series about x = 0 is c k x k A power series about x = a is c k x a k a = center of the power series c k =

More information

2t t dt.. So the distance is (t2 +6) 3/2

2t t dt.. So the distance is (t2 +6) 3/2 Math 8, Solutions to Review for the Final Exam Question : The distance is 5 t t + dt To work that out, integrate by parts with u t +, so that t dt du The integral is t t + dt u du u 3/ (t +) 3/ So the

More information

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed.

FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. Math 150 Name: FINAL - PART 1 MATH 150 SPRING 2017 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS No notes, books, or calculators allowed. 135 points: 45 problems, 3 pts. each. You

More information

Math3B Exam #02 Solution Fall 2017

Math3B Exam #02 Solution Fall 2017 . Integrate. a) 8 MathB Eam # Solution Fall 7 e d b) ln e e d . Integrate. 6 d . Integrate. sin cos d 4. Use Simpsons Rule with n 6 to approimate sin d. Then use integration to get the eact value. 6 6

More information

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx

Math 2260 Exam #2 Solutions. Answer: The plan is to use integration by parts with u = 2x and dv = cos(3x) dx: dv = cos(3x) dx Math 6 Eam # Solutions. Evaluate the indefinite integral cos( d. Answer: The plan is to use integration by parts with u = and dv = cos( d: u = du = d dv = cos( d v = sin(. Then the above integral is equal

More information

Solutions to Math 41 Final Exam December 9, 2013

Solutions to Math 41 Final Exam December 9, 2013 Solutions to Math 4 Final Eam December 9,. points In each part below, use the method of your choice, but show the steps in your computations. a Find f if: f = arctane csc 5 + log 5 points Using the Chain

More information

Integration Techniques for the BC exam

Integration Techniques for the BC exam Integration Techniques for the B eam For the B eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation

More information

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt. Questions. Evaluate the Riemann sum for f() =,, with four subintervals, taking the sample points to be right endpoints. Eplain, with the aid of a diagram, what the Riemann sum represents.. If f() = ln,

More information

Chapter 7: Techniques of Integration

Chapter 7: Techniques of Integration Chapter 7: Techniques of Integration MATH 206-01: Calculus II Department of Mathematics University of Louisville last corrected September 14, 2013 1 / 43 Chapter 7: Techniques of Integration 7.1. Integration

More information

Math 132 Exam 3 Fall 2016

Math 132 Exam 3 Fall 2016 Math 3 Exam 3 Fall 06 multiple choice questions worth points each. hand graded questions worth and 3 points each. Exam covers sections.-.6: Sequences, Series, Integral, Comparison, Alternating, Absolute

More information

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS

SOLUTIONS TO THE FINAL - PART 1 MATH 150 FALL 2016 KUNIYUKI PART 1: 135 POINTS, PART 2: 115 POINTS, TOTAL: 250 POINTS SOLUTIONS TO THE FINAL - PART MATH 5 FALL 6 KUNIYUKI PART : 5 POINTS, PART : 5 POINTS, TOTAL: 5 POINTS No notes, books, or calculators allowed. 5 points: 45 problems, pts. each. You do not have to algebraically

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Department of Mathematical Sciences. Math 226 Calculus Spring 2016 Exam 2V2 DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO

Department of Mathematical Sciences. Math 226 Calculus Spring 2016 Exam 2V2 DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO Department of Mathematical Sciences Math 6 Calculus Spring 6 Eam V DO NOT TURN OVER THIS PAGE UNTIL INSTRUCTED TO DO SO NAME (Printed): INSTRUCTOR: SECTION NO.: When instructed, turn over this cover page

More information

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu

Math 102 Spring 2008: Solutions: HW #3 Instructor: Fei Xu Math Spring 8: Solutions: HW #3 Instructor: Fei Xu. section 7., #8 Evaluate + 3 d. + We ll solve using partial fractions. If we assume 3 A + B + C, clearing denominators gives us A A + B B + C +. Then

More information

Math Calculus II Homework # Due Date Solutions

Math Calculus II Homework # Due Date Solutions Math 35 - Calculus II Homework # - 007.08.3 Due Date - 007.09.07 Solutions Part : Problems from sections 7.3 and 7.4. Section 7.3: 9. + d We will use the substitution cot(θ, d csc (θ. This gives + + cot

More information

Integration Techniques for the AB exam

Integration Techniques for the AB exam For the AB eam, students need to: determine antiderivatives of the basic functions calculate antiderivatives of functions using u-substitution use algebraic manipulation to rewrite the integrand prior

More information

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1)

Midterm Exam #1. (y 2, y) (y + 2, y) (1, 1) Math 5B Integral Calculus March 7, 7 Midterm Eam # Name: Answer Key David Arnold Instructions. points) This eam is open notes, open book. This includes any supplementary tets or online documents. You are

More information

a k 0, then k + 1 = 2 lim 1 + 1

a k 0, then k + 1 = 2 lim 1 + 1 Math 7 - Midterm - Form A - Page From the desk of C. Davis Buenger. https://people.math.osu.edu/buenger.8/ Problem a) [3 pts] If lim a k = then a k converges. False: The divergence test states that if

More information

Math 162: Calculus IIA

Math 162: Calculus IIA Math 62: Calculus IIA Final Exam ANSWERS December 9, 26 Part A. (5 points) Evaluate the integral x 4 x 2 dx Substitute x 2 cos θ: x 8 cos dx θ ( 2 sin θ) dθ 4 x 2 2 sin θ 8 cos θ dθ 8 cos 2 θ cos θ dθ

More information

Math 1310 Final Exam

Math 1310 Final Exam Math 1310 Final Exam December 11, 2014 NAME: INSTRUCTOR: Write neatly and show all your work in the space provided below each question. You may use the back of the exam pages if you need additional space

More information

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen.

D sin x. (By Product Rule of Diff n.) ( ) D 2x ( ) 2. 10x4, or 24x 2 4x 7 ( ) ln x. ln x. , or. ( by Gen. SOLUTIONS TO THE FINAL - PART MATH 50 SPRING 07 KUNIYUKI PART : 35 POINTS, PART : 5 POINTS, TOTAL: 50 POINTS No notes, books, or calculators allowed. 35 points: 45 problems, 3 pts. each. You do not have

More information

MATH 104 SAMPLE FINAL SOLUTIONS. e x/2 cos xdx.

MATH 104 SAMPLE FINAL SOLUTIONS. e x/2 cos xdx. MATH 0 SAMPLE FINAL SOLUTIONS CLAY SHONKWILER () Evaluate the integral e / cos d. Answer: We integrate by parts. Let u = e / and dv = cos d. Then du = e / d and v = sin. Then the above integral is equal

More information

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2

Math 181, Exam 2, Study Guide 2 Problem 1 Solution. 1 + dx. 1 + (cos x)2 dx. 1 + cos2 xdx. = π ( 1 + cos π 2 Math 8, Exam, Study Guide Problem Solution. Use the trapezoid rule with n to estimate the arc-length of the curve y sin x between x and x π. Solution: The arclength is: L b a π π + ( ) dy + (cos x) + cos

More information

Series. Xinyu Liu. April 26, Purdue University

Series. Xinyu Liu. April 26, Purdue University Series Xinyu Liu Purdue University April 26, 2018 Convergence of Series i=0 What is the first step to determine the convergence of a series? a n 2 of 21 Convergence of Series i=0 What is the first step

More information

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013

MATH1120 Calculus II Solution to Supplementary Exercises on Improper Integrals Alex Fok November 2, 2013 () Solution : MATH Calculus II Solution to Supplementary Eercises on Improper Integrals Ale Fok November, 3 b ( + )( + tan ) ( + )( + tan ) +tan b du u ln + tan b ( = ln + π ) (Let u = + tan. Then du =

More information

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2

Math 2250 Final Exam Practice Problem Solutions. f(x) = ln x x. 1 x. lim. lim. x x = lim. = lim 2 Math 5 Final Eam Practice Problem Solutions. What are the domain and range of the function f() = ln? Answer: is only defined for, and ln is only defined for >. Hence, the domain of the function is >. Notice

More information

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh

MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By Dr. Mohammed Ramidh MATHEMATICS Lecture. 4 Chapter.8 TECHNIQUES OF INTEGRATION By TECHNIQUES OF INTEGRATION OVERVIEW The Fundamental Theorem connects antiderivatives and the definite integral. Evaluating the indefinite integral,

More information

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6

Calculus II Practice Test Problems for Chapter 7 Page 1 of 6 Calculus II Practice Test Problems for Chapter 7 Page of 6 This is a set of practice test problems for Chapter 7. This is in no way an inclusive set of problems there can be other types of problems on

More information

MA 114 Worksheet #01: Integration by parts

MA 114 Worksheet #01: Integration by parts Fall 8 MA 4 Worksheet Thursday, 3 August 8 MA 4 Worksheet #: Integration by parts. For each of the following integrals, determine if it is best evaluated by integration by parts or by substitution. If

More information

Absolute Convergence and the Ratio Test

Absolute Convergence and the Ratio Test Absolute Convergence and the Ratio Test MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Bacground Remar: All previously covered tests for convergence/divergence apply only

More information

Calculus I Sample Final exam

Calculus I Sample Final exam Calculus I Sample Final exam Solutions [] Compute the following integrals: a) b) 4 x ln x) Substituting u = ln x, 4 x ln x) = ln 4 ln u du = u ln 4 ln = ln ln 4 Taking common denominator, using properties

More information

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer.

Math Review for Exam Answer each of the following questions as either True or False. Circle the correct answer. Math 22 - Review for Exam 3. Answer each of the following questions as either True or False. Circle the correct answer. (a) True/False: If a n > 0 and a n 0, the series a n converges. Soln: False: Let

More information

Math 170 Calculus I Final Exam Review Solutions

Math 170 Calculus I Final Exam Review Solutions Math 70 Calculus I Final Eam Review Solutions. Find the following its: (a (b (c (d 3 = + = 6 + 5 = 3 + 0 3 4 = sin( (e 0 cos( = (f 0 ln(sin( ln(tan( = ln( (g (h 0 + cot( ln( = sin(π/ = π. Find any values

More information

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002

171, Calculus 1. Summer 1, CRN 50248, Section 001. Time: MTWR, 6:30 p.m. 8:30 p.m. Room: BR-43. CRN 50248, Section 002 171, Calculus 1 Summer 1, 018 CRN 5048, Section 001 Time: MTWR, 6:0 p.m. 8:0 p.m. Room: BR-4 CRN 5048, Section 00 Time: MTWR, 11:0 a.m. 1:0 p.m. Room: BR-4 CONTENTS Syllabus Reviews for tests 1 Review

More information

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS

EXAM. Practice for Second Exam. Math , Fall Nov 4, 2003 ANSWERS EXAM Practice for Second Eam Math 135-006, Fall 003 Nov 4, 003 ANSWERS i Problem 1. In each part, find the integral. A. d (4 ) 3/ Make the substitution sin(θ). d cos(θ) dθ. We also have Then, we have d/dθ

More information

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3.

x 2 y = 1 2. Problem 2. Compute the Taylor series (at the base point 0) for the function 1 (1 x) 3. MATH 8.0 - FINAL EXAM - SOME REVIEW PROBLEMS WITH SOLUTIONS 8.0 Calculus, Fall 207 Professor: Jared Speck Problem. Consider the following curve in the plane: x 2 y = 2. Let a be a number. The portion of

More information

Math 122 Test 3. April 15, 2014

Math 122 Test 3. April 15, 2014 SI: Math 1 Test 3 April 15, 014 EF: 1 3 4 5 6 7 8 Total Name Directions: 1. No books, notes or 6 year olds with ear infections. You may use a calculator to do routine arithmetic computations. You may not

More information

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral

MATH MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS Calculus, Fall 2017 Professor: Jared Speck. Problem 1. Approximate the integral MATH 8. - MIDTERM 4 - SOME REVIEW PROBLEMS WITH SOLUTIONS 8. Calculus, Fall 7 Professor: Jared Speck Problem. Approimate the integral 4 d using first Simpson s rule with two equal intervals and then the

More information

(ii) y = ln 1 ] t 3 t x x2 9

(ii) y = ln 1 ] t 3 t x x2 9 Study Guide for Eam 1 1. You are supposed to be able to determine the domain of a function, looking at the conditions for its epression to be well-defined. Some eamples of the conditions are: What is inside

More information

1969 AP Calculus BC: Section I

1969 AP Calculus BC: Section I 969 AP Calculus BC: Section I 9 Minutes No Calculator Note: In this eamination, ln denotes the natural logarithm of (that is, logarithm to the base e).. t The asymptotes of the graph of the parametric

More information

4x x dx. 3 3 x2 dx = x3 ln(x 2 )

4x x dx. 3 3 x2 dx = x3 ln(x 2 ) Problem. a) Compute the definite integral 4 + d This can be done by a u-substitution. Take u = +, so that du = d, which menas that 4 d = du. Notice that u() = and u() = 6, so our integral becomes 6 u du

More information

Answer Key. ( 1) n (2x+3) n. n n=1. (2x+3) n. = lim. < 1 or 2x+3 < 4. ( 1) ( 1) 2n n

Answer Key. ( 1) n (2x+3) n. n n=1. (2x+3) n. = lim. < 1 or 2x+3 < 4. ( 1) ( 1) 2n n Math Midterm Eam #3 December, 3 Answer Key. [5 Points] Find the Interval and Radius of Convergence for the following power series. Analyze carefully and with full justification. Use Ratio Test. L lim a

More information

MATH 162. FINAL EXAM ANSWERS December 17, 2006

MATH 162. FINAL EXAM ANSWERS December 17, 2006 MATH 6 FINAL EXAM ANSWERS December 7, 6 Part A. ( points) Find the volume of the solid obtained by rotating about the y-axis the region under the curve y x, for / x. Using the shell method, the radius

More information

Calculus 1: Sample Questions, Final Exam

Calculus 1: Sample Questions, Final Exam Calculus : Sample Questions, Final Eam. Evaluate the following integrals. Show your work and simplify your answers if asked. (a) Evaluate integer. Solution: e 3 e (b) Evaluate integer. Solution: π π (c)

More information

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13

3 Applications of Derivatives Instantaneous Rates of Change Optimization Related Rates... 13 Contents Limits Derivatives 3. Difference Quotients......................................... 3. Average Rate of Change...................................... 4.3 Derivative Rules...........................................

More information

Learning Objectives for Math 166

Learning Objectives for Math 166 Learning Objectives for Math 166 Chapter 6 Applications of Definite Integrals Section 6.1: Volumes Using Cross-Sections Draw and label both 2-dimensional perspectives and 3-dimensional sketches of the

More information

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2

2016 FAMAT Convention Mu Integration 1 = 80 0 = 80. dx 1 + x 2 = arctan x] k2 6 FAMAT Convention Mu Integration. A. 3 3 7 6 6 3 ] 3 6 6 3. B. For quadratic functions, Simpson s Rule is eact. Thus, 3. D.. B. lim 5 3 + ) 3 + ] 5 8 8 cot θ) dθ csc θ ) dθ cot θ θ + C n k n + k n lim

More information

First Midterm Examination

First Midterm Examination Çankaya University Department of Mathematics 016-017 Fall Semester MATH 155 - Calculus for Engineering I First Midterm Eamination 1) Find the domain and range of the following functions. Eplain your solution.

More information

Math Test #3 Info and Review Exercises

Math Test #3 Info and Review Exercises Math 181 - Test #3 Info and Review Exercises Fall 2018, Prof. Beydler Test Info Date: Wednesday, November 28, 2018 Will cover sections 10.1-10.4, 11.1-11.7. You ll have the entire class to finish the test.

More information

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves:

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves: 5 微甲 6- 班期末考解答和評分標準. (%) Find the orthogonal trajectories of the family of curves y = tan (kx), where k is an arbitrary constant. For the original curves: dy dx = tan y k = +k x x sin y cos y = +tan y

More information

Math 113/113H Winter 2006 Departmental Final Exam

Math 113/113H Winter 2006 Departmental Final Exam Name KEY Instructor Section No. Student Number Math 3/3H Winter 26 Departmental Final Exam Instructions: The time limit is 3 hours. Problems -6 short-answer questions, each worth 2 points. Problems 7 through

More information

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds?

= π + sin π = π + 0 = π, so the object is moving at a speed of π feet per second after π seconds. (c) How far does it go in π seconds? Mathematics 115 Professor Alan H. Stein April 18, 005 SOLUTIONS 1. Define what is meant by an antiderivative or indefinite integral of a function f(x). Solution: An antiderivative or indefinite integral

More information

DRAFT - Math 102 Lecture Note - Dr. Said Algarni

DRAFT - Math 102 Lecture Note - Dr. Said Algarni Math02 - Term72 - Guides and Exercises - DRAFT 7 Techniques of Integration A summery for the most important integrals that we have learned so far: 7. Integration by Parts The Product Rule states that if

More information

Final Examination Solutions

Final Examination Solutions Math. 5, Sections 5 53 (Fulling) 7 December Final Examination Solutions Test Forms A and B were the same except for the order of the multiple-choice responses. This key is based on Form A. Name: Section:

More information

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1.

10.1 Sequences. Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1. 10.1 Sequences Example: A sequence is a function f(n) whose domain is a subset of the integers. Notation: *Note: n = 0 vs. n = 1 Examples: EX1: Find a formula for the general term a n of the sequence,

More information

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007

MATH 1220 Midterm 1 Thurs., Sept. 20, 2007 MATH 220 Midterm Thurs., Sept. 20, 2007 Write your name and ID number at the top of this page. Show all your work. You may refer to one double-sided sheet of notes during the eam and nothing else. Calculators

More information

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes

Chapter 8 Indeterminate Forms and Improper Integrals Math Class Notes Chapter 8 Indeterminate Forms and Improper Integrals Math 1220-004 Class Notes Section 8.1: Indeterminate Forms of Type 0 0 Fact: The it of quotient is equal to the quotient of the its. (book page 68)

More information

Homework Problem Answers

Homework Problem Answers Homework Problem Answers Integration by Parts. (x + ln(x + x. 5x tan 9x 5 ln sec 9x 9 8 (. 55 π π + 6 ln 4. 9 ln 9 (ln 6 8 8 5. (6 + 56 0/ 6. 6 x sin x +6cos x. ( + x e x 8. 4/e 9. 5 x [sin(ln x cos(ln

More information

Friday 09/15/2017 Midterm I 50 minutes

Friday 09/15/2017 Midterm I 50 minutes Fa 17: MATH 2924 040 Differential and Integral Calculus II Noel Brady Friday 09/15/2017 Midterm I 50 minutes Name: Student ID: Instructions. 1. Attempt all questions. 2. Do not write on back of exam sheets.

More information

Math 122 Test 3. April 17, 2018

Math 122 Test 3. April 17, 2018 SI: Math Test 3 April 7, 08 EF: 3 4 5 6 7 8 9 0 Total Name Directions:. No books, notes or April showers. You may use a calculator to do routine arithmetic computations. You may not use your calculator

More information

Math 230 Mock Final Exam Detailed Solution

Math 230 Mock Final Exam Detailed Solution Name: Math 30 Mock Final Exam Detailed Solution Disclaimer: This mock exam is for practice purposes only. No graphing calulators TI-89 is allowed on this test. Be sure that all of your work is shown and

More information

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt.

Questions. x 2 e x dx. Use Part 1 of the Fundamental Theorem of Calculus to find the derivative of the functions g(x) = x cost2 dt. Questions. Evaluate the Riemann sum for f() =,, with four subintervals, taking the sample points to be right endpoints. Eplain, with the aid of a diagram, what the Riemann sum represents.. If f() = ln,

More information

Formulas From Calculus

Formulas From Calculus Formulas You Shoul Memorize (an I o mean Memorize!) S 997 Pat Rossi Formulas From Calculus. [sin ()] = cos () 2. [cos ()] = sin () 3. [tan ()] = sec2 () 4. [cot ()] = csc2 () 5. [sec ()] = sec () tan ()

More information

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016

HOMEWORK SOLUTIONS MATH 1910 Sections 8.2, 8.3, 8.5 Fall 2016 HOMEWORK SOLUTIONS MATH 191 Sections 8., 8., 8.5 Fall 16 Problem 8..19 Evaluate using methods similar to those that apply to integral tan m xsec n x. cot x SOLUTION. Using the reduction formula for cot

More information

Chapter 4 Integration

Chapter 4 Integration Chapter 4 Integration SECTION 4.1 Antiderivatives and Indefinite Integration Calculus: Chapter 4 Section 4.1 Antiderivative A function F is an antiderivative of f on an interval I if F '( x) f ( x) for

More information

6.5 Trigonometric Equations

6.5 Trigonometric Equations 6. Trigonometric Equations In this section, we discuss conditional trigonometric equations, that is, equations involving trigonometric functions that are satisfied only by some values of the variable (or

More information

Review of elements of Calculus (functions in one variable)

Review of elements of Calculus (functions in one variable) Review of elements of Calculus (functions in one variable) Mainly adapted from the lectures of prof Greg Kelly Hanford High School, Richland Washington http://online.math.uh.edu/houstonact/ https://sites.google.com/site/gkellymath/home/calculuspowerpoints

More information

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018

Math 1552: Integral Calculus Final Exam Study Guide, Spring 2018 Math 55: Integral Calculus Final Exam Study Guide, Spring 08 PART : Concept Review (Note: concepts may be tested on the exam in the form of true/false or short-answer questions.). Complete each statement

More information

Calculus Math 21B, Winter 2009 Final Exam: Solutions

Calculus Math 21B, Winter 2009 Final Exam: Solutions Calculus Math B, Winter 9 Final Exam: Solutions. (a) Express the area of the region enclosed between the x-axis and the curve y = x 4 x for x as a definite integral. (b) Find the area by evaluating the

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

1 1 1 V r h V r 24 r

1 1 1 V r h V r 24 r February egional 8 ) f x x x f x x f ' ' 9 6 ) ) ) 6x x 6 7 N x x x N ' x N ' 6 6 x x x x x x 8 7 9 9 9 V r h V r r 6 y taking the derivative of the volume with respect to time, we can find the rate at

More information

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x)

1. The following problems are not related: (a) (15 pts, 5 pts ea.) Find the following limits or show that they do not exist: arcsin(x) APPM 5 Final Eam (5 pts) Fall. The following problems are not related: (a) (5 pts, 5 pts ea.) Find the following limits or show that they do not eist: (i) lim e (ii) lim arcsin() (b) (5 pts) Find and classify

More information

Because of the special form of an alternating series, there is an simple way to determine that many such series converge:

Because of the special form of an alternating series, there is an simple way to determine that many such series converge: Section.5 Absolute and Conditional Convergence Another special type of series that we will consider is an alternating series. A series is alternating if the sign of the terms alternates between positive

More information

Solutions to Problem Sheet for Week 6

Solutions to Problem Sheet for Week 6 THE UNIVERSITY OF SYDNEY SCHOOL OF MATHEMATICS AND STATISTICS Solutions to Problem Sheet for Week 6 MATH90: Differential Calculus (Advanced) Semester, 07 Web Page: sydney.edu.au/science/maths/u/ug/jm/math90/

More information

Contents PART II. Foreword

Contents PART II. Foreword Contents PART II Foreword v Preface vii 7. Integrals 87 7. Introduction 88 7. Integration as an Inverse Process of Differentiation 88 7. Methods of Integration 00 7.4 Integrals of some Particular Functions

More information