Vortex knots dynamics and momenta of a tangle:

Size: px
Start display at page:

Download "Vortex knots dynamics and momenta of a tangle:"

Transcription

1 Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot solutions to LIA - Linear and angular momentum in terms of signed area information Selected references Maggioni, F, Alamri, SZ, Barenghi, CF & Ricca, RL 2010 Velocity, energy and helicity of vortex knots and unknots. Phys Rev E 82, Ricca, RL 1993 Torus knots and polynomial invariants for a class of soliton equations. Chaos 3, 83 [Erratum. Chaos 5, 346]. Ricca, RL 2008 Momenta of a vortex tangle by structural complexity analysis. Physica D 237, 2223.

2 Localized induction approximation (LIA) homogeneous incompressible inviscid Space curve C t : C t u = ux,t ω = u u =0 u =0 fluid in R 3 : in as, given by: X(s,t):= X t (s) C ν s [0,L] R 3 Intrinsic reference on (Frenet frame) t ˆ := X (s,t) = X s Vortex line on C t : ω = ω 0ˆ t ω 0 C t, = constant circulation = constant κ asymptotic theory:, given by: t ˆ, n ˆ, b ˆ { } R/a>>1 ˆ t ˆ n R 3 X ˆ b C t X(s,t) = X t = X X = c ˆb = u LIA (Da Rios 1906; Hama & Arms 1961)

3 Intrinsic equations under LIA and NonLinear Schrödinger (NLS) equation u =(u t,u n,u b ) Intrinsic description:, curvature, torsion; u LIA =cˆ b cs,t u t = u n = 0 u b = c under LIA:,,. τ( s,t) C t := ϕ t (C) c = (cτ ) c τ τ = c cτ 2 c + c c Da Rios 1906 Betchov 1965 NLS eq. via Madelung transform: dξ ψ( s,t) = cs,t e i τξ,t 0 s τ R 2 c ψ Im C Re NLS eq.: i ψ + ψ + 1 ψ 2 ψ = 0 2 (Hasimoto 1972) Intrinsic equations by log-derivative: let = s 0 τ ξ,t Θ s,t dξ and consider ψ = c e iθ Da Rios- Betchov eqs.

4 Integrable vortex dynamics and LIA hierarchy Integrable vortex dynamics: u = ( α + βs)cˆ b + ( γ + δs)ˆ β,δ : inhomogeneities (Lakshmanan & Ganesan 1985) LIA hierarchy: γ t + µ 1 c 2ˆ t + c n ˆ + cτˆ b 2 : non-linear stretching (Onuki 1985) µ : axial flow and vorticity (Fukumoto & Miyazaki 1991) u ( 0) = u LIA ( u j+1 ) = ˆ t ˆt + cs,t j u b ( j ) +τun ds (Langer & Perline 1991) = ˆt j+1 F ν ( u 0 ) ν=1 s ν = R u ( 0 ) integrable class: ψ = P ψ ( u n e iθ )+ Q ψ u b e iθ (Nakayama et al. 1992) Hirota class NLSE mkdv sine-g

5 Stationary solutions: Hasimoto soliton τ = const. cs ()= 2 sech s () (Hasimoto 1972)

6 Steady solutions to LIA: torus knots and unknots Look for stationary solutions to LIA in the shape of torus knots and unknots: (Da Rios 1933) Theorem (Ricca 1993). LIA admits torus knot solutions in closed T p,q analytic form, given by: Theorem (Kida 1981). There exists a class of steady torus knot solutions T p,q ( p > 1, q >1 co-prime integers) to LIA in terms of incomplete elliptic integrals, given by r 2 = F r ( J ), α = F α ( E), z = F z Π. r = r 0 +ε sin( wξ ) α = s + ε cos( wξ ) r 0 wr 0 z = t +ε 1 1 r 0 w 2 1/2 cos( wξ ).

7 Proof. First let s write LIA in terms of cartesian coordinates (x, y, z) and cylindrical polar coordinates (r, α, z). From and x = r cos α, y = r sin α, z u LIA = X(s,t) = X X ( ) ( ), by taking time-derivative, we have and by the last equality of ( ), we have We now take the arc-length derivative of to get LIA in cylindrical polar coordinates:. ( ) and substitute in the above,. ( )

8 Now let s consider small-amplitude perturbations. For the vortex ring we have r = R, and α = s/r, so that previous equations reduce to Small-amplitude perturbations are given by taking.. By substituting these into ( ) and taking first-order terms, we have By looking for a traveling-wave solution ξ = s κt as torus knot, we have r = r 0 +ε sin wξ cos( wξ ) α = s + ε r 0 wr 0 z = t +ε 1 1 r 0 w 2 1/2 cos( wξ ).

9 Small-amplitude torus knots and unknots under LIA torus knots torus unknots

10 Linear stability of LIA torus knots T p,q Theorem (Ricca 1995). For any given w = q/ p, is linearly stable iff w >1. T 2,3 ( w >1) T 3,2 ( w <1) (Ricca et al 1999)

11 U 1,m T p,q U m,1 LIA knots and unknots, (Maggioni et al. 2010)

12 Creation and dynamics of trefoil vortex knot in water (Klecker & Irvine 2013)

13 Linear and angular momentum by signed area information χ ω = ω 0 ˆt ω 0 = cst. Let denote the centreline of a vortex filament with. Theorem (Ricca 2008). The components of linear and angular momentum of a vortex filament of circulation Γ, given respectively by P = (P x, P y, P z ) and M = (M x,m y,m z ), can be expressed in terms of signed areas of the projected graph regions:,.

14 Proof. χ ω = ω 0 ˆt ω 0 = cst. Let denote the vortex axis:, and ; - the linear momentum is given by - the angular momentum is given by since X = ˆt = dx, we have X ds = dx and ds How to compute? For individual components, we have where M = 1 3 P = 1 2 X ω d 3 X = 1 2 Γ X X ds V( ω) Λ = ˆν(χ): 3 2 = Γ d 2 X L χ A χ X ( X ω)d 3 X = 1 3 Γ X ( X X )ds V( ω) P x : Λ x P y : Λ y P z : Λ z and and and A x = A Λ x A y = A Λ y A z = A Λ z denotes the standard graph projected along the x-axis and the signed area of. Similarly for the y- and z-axis and M x, M y, M z. = 2 L χ 3 Γ d 2 X A χ,.

15 Computation of signed area of a planar graph To each sub-region of Λ we assign an index that weights the relative contribution from the circulation of neighbouring strands: R j χ 3 where according to the r.h. sign convention of the reference. ˆt ˆ ρ R The signed area of Λ is thus given by where of. is the standard area

16 Thus, by the standard definitions of momenta and the observations above we have: P = 1 2 Γ X X ds = Γ = Γ d 2 X L χ A( χ ) ds = 2 L χ 3 Γ X d 2 X A( χ ) M = 1 3 Γ X X X = 2 3 Γ where, and the signed areas of the projected graphs. Computation of signed area of interacting vortices ( Γ=1 ) Corollary. The components of linear and angular momentum of a vortex tangle T can be computed in terms of signed areas of the projected graph regions.

17 Head-on collision of vortex rings a b (Lim & Nickels 1992)

Velocity, Energy and Helicity of Vortex Knots and Unknots. F. Maggioni ( )

Velocity, Energy and Helicity of Vortex Knots and Unknots. F. Maggioni ( ) Velocity, Energy and Helicity of Vortex Knots and Unknots F. Maggioni ( ) Dept. of Mathematics, Statistics, Computer Science and Applications University of Bergamo (ITALY) ( ) joint work with S. Alamri,

More information

Vortex Motion and Soliton

Vortex Motion and Soliton International Meeting on Perspectives of Soliton Physics 16-17 Feb., 2007, University of Tokyo Vortex Motion and Soliton Yoshi Kimura Graduate School of Mathematics Nagoya University collaboration with

More information

Ravello GNFM Summer School September 11-16, Renzo L. Ricca. Department of Mathematics & Applications, U. Milano-Bicocca

Ravello GNFM Summer School September 11-16, Renzo L. Ricca. Department of Mathematics & Applications, U. Milano-Bicocca Ravello GNFM Summer School September 11-16, 2017 Renzo L. Ricca Department of Mathematics & Applications, U. Milano-Bicocca renzo.ricca@unimib.it Course contents 1. Topological interpretation of helicity

More information

Linear stability of small-amplitude torus knot solutions of the Vortex Filament Equation

Linear stability of small-amplitude torus knot solutions of the Vortex Filament Equation Linear stability of small-amplitude torus knot solutions of the Vortex Filament Equation A. Calini 1 T. Ivey 1 S. Keith 2 S. Lafortune 1 1 College of Charleston 2 University of North Carolina, Chapel Hill

More information

Momenta of a vortex tangle by structural complexity analysis

Momenta of a vortex tangle by structural complexity analysis Physica D 237 (2008) 2223 2227 www.elsevier.com/locate/physd Momenta of a vortex tangle by structural complexity analysis Renzo L. Ricca Department of Mathematics and Applications, University of Milano-Bicocca,

More information

L energia minima dei nodi. Francesca Maggioni

L energia minima dei nodi. Francesca Maggioni L energia minima dei nodi Francesca Maggioni Department of Management, Economics and Quantitative Methods, University of Bergamo (ITALY) Università Cattolica del Sacro Cuore di Brescia, 17 Maggio 2016,

More information

Vortex knots dynamics in Euler fluids

Vortex knots dynamics in Euler fluids Available online at www.sciencedirect.com Procedia IUTAM 7 (2013 ) 29 38 Topological Fluid Dynamics: Theory and Applications Vortex knots dynamics in Euler fluids Francesca Maggioni a, Sultan Z. Alamri

More information

On the stability of filament flows and Schrödinger maps

On the stability of filament flows and Schrödinger maps On the stability of filament flows and Schrödinger maps Robert L. Jerrard 1 Didier Smets 2 1 Department of Mathematics University of Toronto 2 Laboratoire Jacques-Louis Lions Université Pierre et Marie

More information

GEOMETRY AND TOPOLOGY OF FINITE-GAP VORTEX FILAMENTS

GEOMETRY AND TOPOLOGY OF FINITE-GAP VORTEX FILAMENTS Seventh International Conference on Geometry, Integrability and Quantization June 2 10, 2005, Varna, Bulgaria Ivaïlo M. Mladenov and Manuel de León, Editors SOFTEX, Sofia 2005, pp 1 16 GEOMETRY AND TOPOLOGY

More information

Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation

Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation Mathematics and Computers in Simulation 55 (2001) 341 350 Knot types, Floquet spectra, and finite-gap solutions of the vortex filament equation Annalisa M. Calini, Thomas A. Ivey a Department of Mathematics,

More information

Magnetic knots and groundstate energy spectrum:

Magnetic knots and groundstate energy spectrum: Lecture 3 Magnetic knots and groundstate energy spectrum: - Magnetic relaxation - Topology bounds the energy - Inflexional instability of magnetic knots - Constrained minimization of magnetic energy -

More information

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

THE PLANAR FILAMENT EQUATION. Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University THE PLANAR FILAMENT EQUATION Joel Langer and Ron Perline arxiv:solv-int/9431v1 25 Mar 1994 Dept. of Mathematics, Case Western Reserve University Dept. of Mathematics and Computer Science, Drexel University

More information

1-D cubic NLS with several Diracs as initial data and consequences

1-D cubic NLS with several Diracs as initial data and consequences 1-D cubic NLS with several Diracs as initial data and consequences Valeria Banica (Univ. Pierre et Marie Curie) joint work with Luis Vega (BCAM) Roma, September 2017 1/20 Plan of the talk The 1-D cubic

More information

Helicity conservation under quantum reconnection of vortex rings

Helicity conservation under quantum reconnection of vortex rings Helicity conservation under quantum reconnection of vortex rings Simone Zuccher Department of omputer Science, U. Verona, a Vignal 2, Strada Le Grazie 15, 37134 Verona, Italy Renzo L. Ricca Department

More information

Vortex motion. Wasilij Barsukow, July 1, 2016

Vortex motion. Wasilij Barsukow, July 1, 2016 The concept of vorticity We call Vortex motion Wasilij Barsukow, mail@sturzhang.de July, 206 ω = v vorticity. It is a measure of the swirlyness of the flow, but is also present in shear flows where the

More information

THOMAS A. IVEY. s 2 γ

THOMAS A. IVEY. s 2 γ HELICES, HASIMOTO SURFACES AND BÄCKLUND TRANSFORMATIONS THOMAS A. IVEY Abstract. Travelling wave solutions to the vortex filament flow generated byelastica produce surfaces in R 3 that carrymutuallyorthogonal

More information

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t)

V (r,t) = i ˆ u( x, y,z,t) + ˆ j v( x, y,z,t) + k ˆ w( x, y, z,t) IV. DIFFERENTIAL RELATIONS FOR A FLUID PARTICLE This chapter presents the development and application of the basic differential equations of fluid motion. Simplifications in the general equations and common

More information

Non-Riemannian Geometry of Twisted Flux Tubes

Non-Riemannian Geometry of Twisted Flux Tubes 1290 Brazilian Journal of Physics, vol. 36, no. 4A, December, 2006 Non-Riemannian Geometry of Twisted Flux Tubes L. C. Garcia de Andrade Departamento de Física Teórica, Instituto de Física, UERJ, Brazil

More information

Quantum vortex reconnections

Quantum vortex reconnections Quantum vortex reconnections A.W. Baggaley 1,2, S. Zuccher 4, Carlo F Barenghi 2, 3, A.J. Youd 2 1 University of Glasgow 2 Joint Quantum Centre Durham-Newcastle 3 Newcastle University 4 University of Verona

More information

Slide of the Seminar

Slide of the Seminar Slide of the Seminar! Dynamics of the Vortex Lines Density in Superfluid Turbulence!! Prof. Anna Pomyalov ERC Advanced Grant (N. 339032) NewTURB (P.I. Prof. Luca Biferale)! Università degli Studi di Roma

More information

MHD dynamo generation via Riemannian soliton theory

MHD dynamo generation via Riemannian soliton theory arxiv:physics/0510057v1 [physics.plasm-ph] 7 Oct 2005 MHD dynamo generation via Riemannian soliton theory L.C. Garcia de Andrade 1 Abstract Heisenberg spin equation equivalence to nonlinear Schrödinger

More information

arxiv: v2 [physics.flu-dyn] 30 Jun 2016

arxiv: v2 [physics.flu-dyn] 30 Jun 2016 Helicity within the vortex filament model arxiv:64.335v [physics.flu-dyn] 3 Jun 6 R. Hänninen, N. Hietala, and H. Salman Department of Applied Physics, Aalto University, P.O. Box 5, FI-76 AALTO, Finland

More information

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible

Vorticity Equation Marine Hydrodynamics Lecture 9. Return to viscous incompressible flow. N-S equation: v. Now: v = v + = 0 incompressible 13.01 Marine Hydrodynamics, Fall 004 Lecture 9 Copyright c 004 MIT - Department of Ocean Engineering, All rights reserved. Vorticity Equation 13.01 - Marine Hydrodynamics Lecture 9 Return to viscous incompressible

More information

3 Generation and diffusion of vorticity

3 Generation and diffusion of vorticity Version date: March 22, 21 1 3 Generation and diffusion of vorticity 3.1 The vorticity equation We start from Navier Stokes: u t + u u = 1 ρ p + ν 2 u 1) where we have not included a term describing a

More information

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form

F1.9AB2 1. r 2 θ2 + sin 2 α. and. p θ = mr 2 θ. p2 θ. (d) In light of the information in part (c) above, we can express the Hamiltonian in the form F1.9AB2 1 Question 1 (20 Marks) A cone of semi-angle α has its axis vertical and vertex downwards, as in Figure 1 (overleaf). A point mass m slides without friction on the inside of the cone under the

More information

Exact Solution and Vortex Filament for the Hirota Equation

Exact Solution and Vortex Filament for the Hirota Equation Eact Solution and Vorte Filament for the Hirota Equation Francesco Demontis (joint work with G. Ortenzi and C. van der Mee) Università degli Studi di Cagliari Dipartimento di Matematica e Informatica Two

More information

Kirchhoff s Elliptical Vortex

Kirchhoff s Elliptical Vortex 1 Figure 1. An elliptical vortex oriented at an angle φ with respect to the positive x axis. Kirchhoff s Elliptical Vortex In the atmospheric and oceanic context, two-dimensional (height-independent) vortices

More information

3.5 Vorticity Equation

3.5 Vorticity Equation .0 - Marine Hydrodynamics, Spring 005 Lecture 9.0 - Marine Hydrodynamics Lecture 9 Lecture 9 is structured as follows: In paragraph 3.5 we return to the full Navier-Stokes equations (unsteady, viscous

More information

Exact Solution and Vortex Filament for the Hirota Equation

Exact Solution and Vortex Filament for the Hirota Equation Exact Solution and Vortex Filament for the Hirota Equation Francesco Demontis (joint work with G. Ortenzi and C. van der Mee) Università degli Studi di Cagliari Dipartimento di Matematica e Informatica

More information

Invariant Variational Problems & Invariant Curve Flows

Invariant Variational Problems & Invariant Curve Flows Invariant Variational Problems & Invariant Curve Flows Peter J. Olver University of Minnesota http://www.math.umn.edu/ olver Oxford, December, 2008 Basic Notation x = (x 1,..., x p ) independent variables

More information

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics

AE301 Aerodynamics I UNIT B: Theory of Aerodynamics AE301 Aerodynamics I UNIT B: Theory of Aerodynamics ROAD MAP... B-1: Mathematics for Aerodynamics B-: Flow Field Representations B-3: Potential Flow Analysis B-4: Applications of Potential Flow Analysis

More information

Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II

Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II Michail Todorov Department of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria Work done

More information

Hylomorphic solitons and their dynamics

Hylomorphic solitons and their dynamics Hylomorphic solitons and their dynamics Vieri Benci Dipartimento di Matematica Applicata U. Dini Università di Pisa 18th May 2009 Vieri Benci (DMA-Pisa) Hylomorphic solitons 18th May 2009 1 / 50 Types

More information

Recursion in curve geometry

Recursion in curve geometry Recursion in curve geometry Joel Langer Abstract. Recursion schemes are familiar in the theory of soliton equations, e.g., in the discussion of infinite hierarchies of conservation laws for such equations.

More information

Theory of singular vortex solutions of the nonlinear Schrödinger equation

Theory of singular vortex solutions of the nonlinear Schrödinger equation Physica D 37 (8) 696 73 www.elsevier.com/locate/physd Theory of singular vortex solutions of the nonlinear Schrödinger equation Gadi Fibich, Nir Gavish School of Mathematical Sciences, Tel Aviv University,

More information

On stability of N-solitons of a fourth order nonlinear Schrödinger equation

On stability of N-solitons of a fourth order nonlinear Schrödinger equation On stability of N-solitons of a fourth order nonlinear Schrödinger equation Zhong Wang Foshan University Nonlinear Waveguides and Related Topics, 1-3 Oct 2018, Toulouse 2018. 10. 3 Zhong Wang Nonlinear

More information

Velocities in Quantum Mechanics

Velocities in Quantum Mechanics Velocities in Quantum Mechanics Toshiki Shimbori and Tsunehiro Kobayashi Institute of Physics, University of Tsukuba Ibaraki 305-8571, Japan Department of General Education for the Hearing Impaired, Tsukuba

More information

1 Introduction. DNS of helical vortices. Ivan Delbende (1,2), Maurice Rossi (1,3), Benjamin Piton (1,2)

1 Introduction. DNS of helical vortices. Ivan Delbende (1,2), Maurice Rossi (1,3), Benjamin Piton (1,2) DNS of helical vortices Ivan Delbende (,), Maurice Rossi (,3), Benjamin Piton (,) () UPMC, Université Pierre et Marie Curie-Paris 6, France () LIMSI CNRS, UPR35, BP33, 943 Orsay Cedex, France Email : Ivan.Delbende@limsi.fr,

More information

Vorticity and Dynamics

Vorticity and Dynamics Vorticity and Dynamics In Navier-Stokes equation Nonlinear term ω u the Lamb vector is related to the nonlinear term u 2 (u ) u = + ω u 2 Sort of Coriolis force in a rotation frame Viscous term ν u = ν

More information

arxiv: v2 [physics.flu-dyn] 21 Apr 2016

arxiv: v2 [physics.flu-dyn] 21 Apr 2016 Derivation of the Biot-Savart equation from the Nonlinear Schrödinger equation Miguel D. Bustamante Complex and Adaptive Systems Laboratory, arxiv:157.786v [physics.flu-dyn] 1 Apr 16 School of Mathematics

More information

PAPER 84 QUANTUM FLUIDS

PAPER 84 QUANTUM FLUIDS MATHEMATICAL TRIPOS Part III Wednesday 6 June 2007 9.00 to 11.00 PAPER 84 QUANTUM FLUIDS Attempt TWO questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY REQUIREMENTS

More information

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Chapter 3 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. 73 3.1 Introduction The study of linear and nonlinear wave propagation

More information

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75)

) 2 ψ +β ψ. x = 0. (71) ν = uk βk/k 2, (74) c x u = β/k 2. (75) 3 Rossby Waves 3.1 Free Barotropic Rossby Waves The dispersion relation for free barotropic Rossby waves can be derived by linearizing the barotropic vortiticy equation in the form (21). This equation

More information

On the leapfrogging phenomenon in fluid mechanics

On the leapfrogging phenomenon in fluid mechanics On the leapfrogging phenomenon in fluid mechanics Didier Smets Université Pierre et Marie Curie - Paris Based on works with Robert L. Jerrard U. of Toronto) CIRM, Luminy, June 27th 2016 1 / 22 Single vortex

More information

Compacton-like solutions in some nonlocal hydrodynamic-type models

Compacton-like solutions in some nonlocal hydrodynamic-type models Compacton-like solutions in some nonlocal hydrodynamic-type models Vsevolod Vladimirov AGH University of Science and technology, Faculty of Applied Mathematics Protaras, October 26, 2008 WMS AGH Compactons

More information

Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials

Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria (Work

More information

Point Vortex Dynamics in Two Dimensions

Point Vortex Dynamics in Two Dimensions Spring School on Fluid Mechanics and Geophysics of Environmental Hazards 9 April to May, 9 Point Vortex Dynamics in Two Dimensions Ruth Musgrave, Mostafa Moghaddami, Victor Avsarkisov, Ruoqian Wang, Wei

More information

Complex Analysis MATH 6300 Fall 2013 Homework 4

Complex Analysis MATH 6300 Fall 2013 Homework 4 Complex Analysis MATH 6300 Fall 2013 Homework 4 Due Wednesday, December 11 at 5 PM Note that to get full credit on any problem in this class, you must solve the problems in an efficient and elegant manner,

More information

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics

Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Fundamentals of Fluid Dynamics: Ideal Flow Theory & Basic Aerodynamics Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/

More information

= vorticity dilution + tilting horizontal vortices + microscopic solenoid

= vorticity dilution + tilting horizontal vortices + microscopic solenoid 4.4 Vorticity Eq 4.4.1 Cartesian Coordinates Because ζ = ˆk V, gives D(ζ + f) x minus [v momentum eq. in Cartesian Coordinates] y [u momentum eq. in Cartesian Coordinates] = vorticity dilution + tilting

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability

GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability GFD 2012 Lecture 1: Dynamics of Coherent Structures and their Impact on Transport and Predictability Jeffrey B. Weiss; notes by Duncan Hewitt and Pedram Hassanzadeh June 18, 2012 1 Introduction 1.1 What

More information

In this section, mathematical description of the motion of fluid elements moving in a flow field is

In this section, mathematical description of the motion of fluid elements moving in a flow field is Jun. 05, 015 Chapter 6. Differential Analysis of Fluid Flow 6.1 Fluid Element Kinematics In this section, mathematical description of the motion of fluid elements moving in a flow field is given. A small

More information

Nonlinear Evolution of a Vortex Ring

Nonlinear Evolution of a Vortex Ring Nonlinear Evolution of a Vortex Ring Yuji Hattori Kyushu Institute of Technology, JAPAN Yasuhide Fukumoto Kyushu University, JAPAN EUROMECH Colloquium 491 Vortex dynamics from quantum to geophysical scales

More information

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity

Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Quantized Vortex Stability and Dynamics in Superfluidity and Superconductivity Weizhu Bao Department of Mathematics National University of Singapore Email: matbaowz@nus.edu.sg URL: http://www.math.nus.edu.sg/~bao

More information

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42

5.1 Fluid momentum equation Hydrostatics Archimedes theorem The vorticity equation... 42 Chapter 5 Euler s equation Contents 5.1 Fluid momentum equation........................ 39 5. Hydrostatics................................ 40 5.3 Archimedes theorem........................... 41 5.4 The

More information

Angular momentum. Quantum mechanics. Orbital angular momentum

Angular momentum. Quantum mechanics. Orbital angular momentum Angular momentum 1 Orbital angular momentum Consider a particle described by the Cartesian coordinates (x, y, z r and their conjugate momenta (p x, p y, p z p. The classical definition of the orbital angular

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

B.7 Lie Groups and Differential Equations

B.7 Lie Groups and Differential Equations 96 B.7. LIE GROUPS AND DIFFERENTIAL EQUATIONS B.7 Lie Groups and Differential Equations Peter J. Olver in Minneapolis, MN (U.S.A.) mailto:olver@ima.umn.edu The applications of Lie groups to solve differential

More information

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length.

Mathematical Tripos Part IA Lent Term Example Sheet 1. Calculate its tangent vector dr/du at each point and hence find its total length. Mathematical Tripos Part IA Lent Term 205 ector Calculus Prof B C Allanach Example Sheet Sketch the curve in the plane given parametrically by r(u) = ( x(u), y(u) ) = ( a cos 3 u, a sin 3 u ) with 0 u

More information

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise.

By convention, C > 0 for counterclockwise flow, hence the contour must be counterclockwise. Chapter 4 4.1 The Circulation Theorem Circulation is a measure of rotation. It is calculated for a closed contour by taking the line integral of the velocity component tangent to the contour evaluated

More information

On a variational principle for Beltrami flows

On a variational principle for Beltrami flows On a variational principle for Beltrami flows Rafael González, Andrea Costa, and E. Sergio Santini Citation: Physics of Fluids 22, 074102 (2010); doi: 10.1063/1.3460297 View online: http://dx.doi.org/10.1063/1.3460297

More information

Fission of a longitudinal strain solitary wave in a delaminated bar

Fission of a longitudinal strain solitary wave in a delaminated bar Fission of a longitudinal strain solitary wave in a delaminated bar Karima Khusnutdinova Department of Mathematical Sciences, Loughborough University, UK K.Khusnutdinova@lboro.ac.uk and G.V. Dreiden, A.M.

More information

Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica

Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica American Journal of Applied Sciences (): -6, 4 ISSN 546-99 Science Publications, 4 Programming of the Generalized Nonlinear Paraxial Equation for the Formation of Solitons with Mathematica Frederick Osman

More information

KINEMATICS OF CONTINUA

KINEMATICS OF CONTINUA KINEMATICS OF CONTINUA Introduction Deformation of a continuum Configurations of a continuum Deformation mapping Descriptions of motion Material time derivative Velocity and acceleration Transformation

More information

MAE 101A. Homework 7 - Solutions 3/12/2018

MAE 101A. Homework 7 - Solutions 3/12/2018 MAE 101A Homework 7 - Solutions 3/12/2018 Munson 6.31: The stream function for a two-dimensional, nonviscous, incompressible flow field is given by the expression ψ = 2(x y) where the stream function has

More information

Week 2 Notes, Math 865, Tanveer

Week 2 Notes, Math 865, Tanveer Week 2 Notes, Math 865, Tanveer 1. Incompressible constant density equations in different forms Recall we derived the Navier-Stokes equation for incompressible constant density, i.e. homogeneous flows:

More information

General Solution of the Incompressible, Potential Flow Equations

General Solution of the Incompressible, Potential Flow Equations CHAPTER 3 General Solution of the Incompressible, Potential Flow Equations Developing the basic methodology for obtaining the elementary solutions to potential flow problem. Linear nature of the potential

More information

Singular Limits of the Klein-Gordon Equation

Singular Limits of the Klein-Gordon Equation Singular Limits of the Klein-Gordon Equation Abstract Chi-Kun Lin 1 and Kung-Chien Wu 2 Department of Applied Mathematics National Chiao Tung University Hsinchu 31, TAIWAN We establish the singular limits

More information

Gross-Neveu Condensates, Nonlinear Dirac Equations and Minimal Surfaces

Gross-Neveu Condensates, Nonlinear Dirac Equations and Minimal Surfaces Gross-Neveu Condensates, Nonlinear Dirac Equations and Minimal Surfaces Gerald Dunne University of Connecticut CAQCD 2011, Minnesota, May 2011 Başar, GD, Thies: PRD 2009, 0903.1868 Başar, GD: JHEP 2011,

More information

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request.

Candidates must show on each answer book the type of calculator used. Log Tables, Statistical Tables and Graph Paper are available on request. UNIVERSITY OF EAST ANGLIA School of Mathematics Spring Semester Examination 2004 FLUID DYNAMICS Time allowed: 3 hours Attempt Question 1 and FOUR other questions. Candidates must show on each answer book

More information

Dynamics of the three helical vortex system and instability

Dynamics of the three helical vortex system and instability Dynamics of the three helical vortex system and instability I. Delbende,, M. Rossi, UPMC, Université Pierre et Marie Curie-Paris 6 LIMSI CNRS, BP, 94 Orsay Cedex, France, Ivan.Delbende@limsi.fr CNRS, d

More information

Integrable Equations and Motions of Plane Curves

Integrable Equations and Motions of Plane Curves Proceedings of Institute of Mathematics of AS of Ukraine 2002, Vol. 43, Part 1, 281 290 Integrable Equations and Motions of Plane Curves Kai-Seng CHOU and Changzheng QU Department of Mathematics, The Chinese

More information

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary.

Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section 2.3 when necessary. Thunderstorm Dynamics Houze sections 7.4, 8.3, 8.5, Refer back to equations in Section.3 when necessary. Bluestein Vol. II section 3.4.6. Review article "Dynamics of Tornadic Thunderstorms" by Klemp handout.

More information

FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY

FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY GENERAL PHYSICS RELATIVITY FRACTAL SPACE-TIME THEORY AND SUPERCONDUCTIVITY M. AGOP 1, V. ENACHE, M. BUZDUGAN 1 Department of Physics, Technical Gh. Asachi University, Iaºi 70009, România Faculty of Physics,

More information

Dirac equation for dummies or theory of elasticity for the seriously advanced

Dirac equation for dummies or theory of elasticity for the seriously advanced Dirac equation for dummies or theory of elasticity for the seriously advanced James Burnett, Olga Chervova and Dmitri Vassiliev 30 January 2009 KCL Colloquium Dirac s equation is a model for (a) electron

More information

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos.

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos. March 23, 2009 Joint work with Rodrigo Cienfuegos. Outline The Serre equations I. Derivation II. Properties III. Solutions IV. Solution stability V. Wave shoaling Derivation of the Serre Equations Derivation

More information

Faraday Transport in a Curved Space-Time

Faraday Transport in a Curved Space-Time Commun. math. Phys. 38, 103 110 (1974) by Springer-Verlag 1974 Faraday Transport in a Curved Space-Time J. Madore Laboratoire de Physique Theorique, Institut Henri Poincare, Paris, France Received October

More information

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics

Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Self trapped gravitational waves (geons) with anti-de Sitter asymptotics Gyula Fodor Wigner Research Centre for Physics, Budapest ELTE, 20 March 2017 in collaboration with Péter Forgács (Wigner Research

More information

arxiv:cond-mat/ v2 19 Apr 2001

arxiv:cond-mat/ v2 19 Apr 2001 Theoretical confirmation of Feynman s Hypothesis on the creation of circular vortices in superfluid helium E. Infeld and A. Senatorski So ltan Institute for Nuclear Studies, Hoża 69, 00 681 Warsaw, Poland

More information

Problem 1: Spin 1 2. particles (10 points)

Problem 1: Spin 1 2. particles (10 points) Problem 1: Spin 1 particles 1 points 1 Consider a system made up of spin 1/ particles. If one measures the spin of the particles, one can only measure spin up or spin down. The general spin state of a

More information

Integrable geometric evolution equations for curves

Integrable geometric evolution equations for curves Contemporary Mathematics Integrable geometric evolution equations for curves Thomas A. Ivey Abstract. The vortex filament flow and planar filament flow are examples of evolution equations which commute

More information

Dissipative Solitons in Physical Systems

Dissipative Solitons in Physical Systems Dissipative Solitons in Physical Systems Talk given by H.-G. Purwins Institute of Applied Physics University of Münster, Germany Chapter 1 Introduction Cosmology and Pattern Formation 1-1 Complex Behaviour

More information

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria SS25

More information

Solitons and vortices in Bose-Einstein condensates with finite-range interaction

Solitons and vortices in Bose-Einstein condensates with finite-range interaction Solitons and vortices in Bose-Einstein condensates with finite-range interaction Luca Salasnich Dipartimento di Fisica e Astronomia Galileo Galilei and CNISM, Università di Padova INO-CNR, Research Unit

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Travelling bubbles in a moving boundary problem of Hele-Shaw type

Travelling bubbles in a moving boundary problem of Hele-Shaw type Travelling bubbles in a moving boundary problem of Hele-Shaw type G. Prokert, TU Eindhoven Center for Analysis, Scientific Computing, and Applications (CASA) g.prokert@tue.nl Joint work with M. Günther,

More information

On the Evolution of the Binormal Flow for a Regular Polygon

On the Evolution of the Binormal Flow for a Regular Polygon On the Evolution of the Binormal Flow for a Regular Polygon Francisco de la Hoz Méndez Department of Applied Mathematics, Statistics and Operations Research University of the Basque Country UPV/EHU Joint

More information

Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos.

Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos. October 24, 2009 Joint work with Rodrigo Cienfuegos. Outline I. Physical system and governing equations II. The Serre equations A. Derivation B. Justification C. Properties D. Solutions E. Stability Physical

More information

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing

Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus. K. C. Shaing Theory for Neoclassical Toroidal Plasma Viscosity in a Toroidally Symmetric Torus K. C. Shaing Plasma and Space Science Center, and ISAPS, National Cheng Kung University, Tainan, Taiwan 70101, Republic

More information

Mathematical Methods for Physics

Mathematical Methods for Physics Mathematical Methods for Physics Peter S. Riseborough June 8, 8 Contents Mathematics and Physics 5 Vector Analysis 6. Vectors................................ 6. Scalar Products............................

More information

Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations

Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations D. D. Holm Solutions to M3-4A16 Assessed Problems # 3 15 Dec 2010 1 Solutions of M3-4A16 Assessed Problems # 3 [#1] Exercises in exterior calculus operations Vector notation for differential basis elements:

More information

The Turbulent Rotational Phase Separator

The Turbulent Rotational Phase Separator The Turbulent Rotational Phase Separator J.G.M. Kuerten and B.P.M. van Esch Dept. of Mechanical Engineering, Technische Universiteit Eindhoven, The Netherlands j.g.m.kuerten@tue.nl Summary. The Rotational

More information

Stochastic nonlinear Schrödinger equations and modulation of solitary waves

Stochastic nonlinear Schrödinger equations and modulation of solitary waves Stochastic nonlinear Schrödinger equations and modulation of solitary waves A. de Bouard CMAP, Ecole Polytechnique, France joint work with R. Fukuizumi (Sendai, Japan) Deterministic and stochastic front

More information

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325

Dynamical Systems and Chaos Part II: Biology Applications. Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Dynamical Systems and Chaos Part II: Biology Applications Lecture 10: Coupled Systems. Ilya Potapov Mathematics Department, TUT Room TD325 Foreword In order to model populations of physical/biological

More information

18.325: Vortex Dynamics

18.325: Vortex Dynamics 8.35: Vortex Dynamics Problem Sheet. Fluid is barotropic which means p = p(. The Euler equation, in presence of a conservative body force, is Du Dt = p χ. This can be written, on use of a vector identity,

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

Internal boundary layers in the ocean circulation

Internal boundary layers in the ocean circulation Internal boundary layers in the ocean circulation Lecture 9 by Andrew Wells We have so far considered boundary layers adjacent to physical boundaries. However, it is also possible to find boundary layers

More information

The curious properties of spin

The curious properties of spin The curious properties of spin February, 07 The Stern-Gerlach experiment The Schrödinger equation predicts degenerate energy levels for atoms electron states that differ only in the z-component of their

More information