Travelling bubbles in a moving boundary problem of Hele-Shaw type

Size: px
Start display at page:

Download "Travelling bubbles in a moving boundary problem of Hele-Shaw type"

Transcription

1 Travelling bubbles in a moving boundary problem of Hele-Shaw type G. Prokert, TU Eindhoven Center for Analysis, Scientific Computing, and Applications (CASA) g.prokert@tue.nl Joint work with M. Günther, Universität Leipzig 1/21

2 Modeling background I: Hele-Shaw bubble with kinetic undercooling ψ =0 ψ=o(1) in R 2 \ Ω (t) as x large Ω (t) n V n = ψ.n+n 1 ψ ψ. n = x +ln l 1 1 ψ := φ x 1, l 0 small: kinetic undercooling parameter 2/21

3 Modeling Background II: Electric streamers PDE Model: (EBERT, ARRAYAS e.a. 02, 04,... ) σ t div (σe) = σf( E ), ρ t = σf( E ), E = φ, div E = ρ σ in R 2 E e 1 as x 1 σ: electron density ρ: ion density E: electric field f: ionization rate 3/21

4 Front solutions Minimal model: (EBERT, ARRAYAS, MEULENBROEK e.a.) Ω (t) (ionized, conductive) R 2 \ Ω (t) (nonionized: ρ=σ=0 ) φ=0 φ=0 n φ~ e 1 as x 1large V φ. n = n φ l φ. n =0 l 0 small interface thickness. Boundary conditions from an analysis of planar fronts in the PDE model. But: The PDE streamer model only admits fronts that advance into the nonionized domain. 4/21

5 Known results: Area is conserved: Vol Ω(t) = const. l = 0: problem is strongly linearly ill-posed l > 0: short-time existence of solutions for sufficiently regular initial boundaries (P. 99) 5/21

6 Travelling bubbles (TB) Ansatz: Ω(t) = Ω + νt, comoving frame: Ω ν ψ = 0 in R 2 \ Ω, ψ l n ψ = x 1 + ln 1 on Ω, ψ = O(1) as x, n ψ + ( e 1 ν)n = 0 on Ω. stationary FBP for (Ω, ν). 6/21

7 Trivial TBs: Circles Ω 0 = B(0, 1), ν 0 = 2 l + 1 e 1, ψ = l 1 x 1 l + 1 x 2. Translation and scaling invariance three-parameter family Ω = B(a, R), ν = 2R l + R e 1. 7/21

8 Nontrivial TBs: l = 0: Ellipses Ω := {(x 1, x 2 ) x 2 1/a 2 + a 2 x 2 2 < 1}, ν = (1 + a 2 ) e 1. l = 1: ν = e 1 : purely geometric problem: n 1 = x 1 on Ω various families of nonsmooth domains bounded by circular arcs 8/21

9 The problem Find all TB solutions (Ω, ν) near the unit circle for fixed l. Small perturbation approach: Unknown: u : S R + S Ω u Ω u := {x R 2 0 < x < u(x/ x )} {0} Transformation via x(u)(θ) := u(θ)(cos θ, sin θ) T. Note: x(u) Diff(S, Ω u ) 9/21

10 Operator equation TB problem F (u, ν) := l ν n(u) x 1 (u) + A l (u) [ x 1 (u) ln 1 (u) ] = 0 on S. n(u): transformed outer unit normal (nonlinear DO of order 1) A l (u): transformed exterior Robin-Dirichlet operator (nonlinear ΨDO of order 1) Normalization conditions: u 2 (θ) dθ = 2π, S S u 3 (θ)(cos θ, sin θ) T dθ = 0. 10/21

11 The nonlocal operator A l Properties: A l C (H s +(S), L(H t 1 (S), H t (S))), s > 3/2, t [1/2, s] + corresponding locally uniform estimates for Fréchet derivatives. Linearization: A l (u) = ψ x(u) A l(u)[h] = ψ x(u) + ( r ψ x(u))h, where ψ = ψ (u)[h] solves ψ = 0 in R 2 \ Ω u, ψ l n ψ = r ψh + l ( r n ψh + ψ n (u)[h] ) on Ω u, ψ = O(1) as x. r : radial directional derivative. 11/21

12 The linearized TB problem Formally: F (u( ν), ν) = 0 solved by u = u( ν) = 1 + h + o( ν ν 0 ) where where ˆL := D u F (1, ν 0 ). Solvable in terms of Fourier series: ˆLh = l( ν ν 0 ) (cos θ, sin θ) T, h, 1 = h, cos = h, sin = 0, h = ( ν ν 0 ) φ, φ = with c k (l) k l+1 l, so s := 1 l c k (l)(cos(2kθ), sin(2kθ)) T k=1 φ H s (S) for s < s, φ / H s (S) for s > s. 12/21

13 Degeneration Observe: ˆL 2l l + 1 sin θ θ. The leading order coefficient has zeros on S. ˆL is Fredholm in the scale {H s (S)}, but its kernel depends on s. Even for s < s, ˆLh H s 1 does not imply h H s. The nonlinear problem is not straightforwardly tractable by the Implicit Function theorem. 13/21

14 The nonlinear problem: Quasilinearization Trick: Differentiate the problem to get a quasilinear structure: where F (1 + v, ν) = 0 θ F (1 + v, ν) = 0 L(v, ν)v = l( ν ν 0 ) ( sin θ, cos θ) T, L(v, ν)w = θ ˆLw + a(v, v, ν)w + R(v, ν)w, } a(v, v, ν) H s 1 (S) R(v, ν) L(H s (S), H s 1 small, vanish for v = 0. (S)) Caution: dom L(v, ν) depends on v, perturbation does not work straightforwardly here. 14/21

15 The core: Degenerate first order DOs Localized case: Consider with γ(0) = 0, γ < 0. Assume L 0 (γ, b)u := γu + bu = f in ( 1, 1) (D) b + (σ 1/2)γ µ > 0. Then, for f H σ ( 1, 1), supp f ( δ, δ) there is precisely one u H σ ( 1, 1) satisfying (D) and supp u ( δ, δ). Estimate: u σ C f σ. Proof: Extend to R, show degenerate estimate [L 0 u, u] H σ c u 2 H σ use Galerkin approximations. Remark: σ θ L 0 (γ, b) L 0 (γ, b+σγ ) σ θ 15/21

16 Globalize to S, include normalization conditions and perturb (carefully): Estimates for linearized operator Assume v 1 s, ν ν 0, w 1 1 0, w 2 cos 0, w 3 sin 0 small. Then uniquely solvable, L(v, ν)u = f + c, w i, u = g i u t + c C( f t 1 + g ), t [2, s]. 16/21

17 The nonlinear problem: Fixed point iteration Define (v n ) by v 0 = 0, L(v n, ν)v n+1 = l( ν ν 0 ) ( sin θ, cos θ) T + c n+1, w i (v n ), v n+1 = 0. (v n ) remains small in H s, converges in H s 1. c n 0. 17/21

18 Result Fix l (0, 2/7), s [4, 1/l + 1/2) N. For ν ν 0 small, the TB problem has a unique normalized solution u = u( ν) H s with u( ν) = 1 + l( ν ν 0 ) φ + o( ν ν 0 ) in H s 1. 18/21

19 Numerics (in fact, just Mathematica c...) Solutions to the linearized problem: ν ν 0 = ±0.1 e 1 ν ν 0 = ±0.1 e l = 1/ l = 4/ /21

20 Recall TB problem is degenerate elliptic. Upper smoothness bound: s (l) as l 0. Kinetic undercooling regularizes the evolution but deregularizes the travelling bubble profiles. 20/21

21 Open questions Stability / long time behavior of the evolution problem actual smoothness of the TBs 3D case 21/21

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

INTRODUCTION TO PDEs

INTRODUCTION TO PDEs INTRODUCTION TO PDEs In this course we are interested in the numerical approximation of PDEs using finite difference methods (FDM). We will use some simple prototype boundary value problems (BVP) and initial

More information

Classical solutions for the quasi-stationary Stefan problem with surface tension

Classical solutions for the quasi-stationary Stefan problem with surface tension Classical solutions for the quasi-stationary Stefan problem with surface tension Joachim Escher, Gieri Simonett We show that the quasi-stationary two-phase Stefan problem with surface tension has a unique

More information

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao

A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao A Moving Boundary Model Motivated by Electric Breakdown Chiu-Yen Kao Department of Mathematics, The Ohio State University; Department of Mathematics and Computer Science, Claremont McKenna College Workshop

More information

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation A Variational Analysis of a Gauged Nonlinear Schrödinger Equation Alessio Pomponio, joint work with David Ruiz Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Variational and Topological

More information

Recent progress on the explicit inversion of geodesic X-ray transforms

Recent progress on the explicit inversion of geodesic X-ray transforms Recent progress on the explicit inversion of geodesic X-ray transforms François Monard Department of Mathematics, University of Washington. Geometric Analysis and PDE seminar University of Cambridge, May

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Sobolev Embedding Theorems Embedding Operators and the Sobolev Embedding Theorem

More information

An inverse source problem in optical molecular imaging

An inverse source problem in optical molecular imaging An inverse source problem in optical molecular imaging Plamen Stefanov 1 Gunther Uhlmann 2 1 2 University of Washington Formulation Direct Problem Singular Operators Inverse Problem Proof Conclusion Figure:

More information

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations

A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations A Recursion Formula for the Construction of Local Conservation Laws of Differential Equations Alexei Cheviakov Department of Mathematics and Statistics, University of Saskatchewan, Saskatoon, Canada December

More information

Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1

Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1 Contents Preface xi I Shock Reflection-Diffraction, Nonlinear Conservation Laws of Mixed Type, and von Neumann s Conjectures 1 1 Shock Reflection-Diffraction, Nonlinear Partial Differential Equations of

More information

A Direct Method for reconstructing inclusions from Electrostatic Data

A Direct Method for reconstructing inclusions from Electrostatic Data A Direct Method for reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with:

More information

approach to Laplacian Growth Problems in 2-D

approach to Laplacian Growth Problems in 2-D Conformal Mapping and Boundary integral approach to Laplacian Growth Problems in 2-D Saleh Tanveer (Ohio State University) Collaborators: X. Xie, J. Ye, M. Siegel Idealized Hele-Shaw flow model Gap averaged

More information

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering.

The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and engineering. Lecture 16 Applications of Conformal Mapping MATH-GA 451.001 Complex Variables The purpose of this lecture is to present a few applications of conformal mappings in problems which arise in physics and

More information

Regularity Theory a Fourth Order PDE with Delta Right Hand Side

Regularity Theory a Fourth Order PDE with Delta Right Hand Side Regularity Theory a Fourth Order PDE with Delta Right Hand Side Graham Hobbs Applied PDEs Seminar, 29th October 2013 Contents Problem and Weak Formulation Example - The Biharmonic Problem Regularity Theory

More information

Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data. Fioralba Cakoni

Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data. Fioralba Cakoni Nonlinear Integral Equations for the Inverse Problem in Corrosion Detection from Partial Cauchy Data Fioralba Cakoni Department of Mathematical Sciences, University of Delaware email: cakoni@math.udel.edu

More information

Electrostatic Imaging via Conformal Mapping. R. Kress. joint work with I. Akduman, Istanbul and H. Haddar, Paris

Electrostatic Imaging via Conformal Mapping. R. Kress. joint work with I. Akduman, Istanbul and H. Haddar, Paris Electrostatic Imaging via Conformal Mapping R. Kress Göttingen joint work with I. Akduman, Istanbul and H. Haddar, Paris Or: A new solution method for inverse boundary value problems for the Laplace equation

More information

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds Joint work (on various projects) with Pierre Albin (UIUC), Hans Christianson (UNC), Jason Metcalfe (UNC), Michael Taylor (UNC), Laurent Thomann (Nantes) Department of Mathematics University of North Carolina,

More information

Degenerate scale problem for plane elasticity in a multiply connected region with outer elliptic boundary

Degenerate scale problem for plane elasticity in a multiply connected region with outer elliptic boundary Arch Appl Mech 00) 80: 055 067 DOI 0.007/s0049-009-0357-3 ORIGINAL Y. Z. Chen X. Y. Lin Z. X. Wang Degenerate scale problem for plane elasticity in a multiply connected region with outer elliptic boundary

More information

Numerical Approximation of Phase Field Models

Numerical Approximation of Phase Field Models Numerical Approximation of Phase Field Models Lecture 2: Allen Cahn and Cahn Hilliard Equations with Smooth Potentials Robert Nürnberg Department of Mathematics Imperial College London TUM Summer School

More information

with deterministic and noise terms for a general non-homogeneous Cahn-Hilliard equation Modeling and Asymptotics

with deterministic and noise terms for a general non-homogeneous Cahn-Hilliard equation Modeling and Asymptotics 12-3-2009 Modeling and Asymptotics for a general non-homogeneous Cahn-Hilliard equation with deterministic and noise terms D.C. Antonopoulou (Joint with G. Karali and G. Kossioris) Department of Applied

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids

Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids Double Layer Potentials on Polygons and Pseudodifferential Operators on Lie Groupoids joint work with Hengguang Li Yu Qiao School of Mathematics and Information Science Shaanxi Normal University Xi an,

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

Lecture 2: Some basic principles of the b-calculus

Lecture 2: Some basic principles of the b-calculus Lecture 2: Some basic principles of the b-calculus Daniel Grieser (Carl von Ossietzky Universität Oldenburg) September 20, 2012 Summer School Singular Analysis Daniel Grieser (Oldenburg) Lecture 2: Some

More information

GREEN S FUNCTIONAL FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS

GREEN S FUNCTIONAL FOR SECOND-ORDER LINEAR DIFFERENTIAL EQUATION WITH NONLOCAL CONDITIONS Electronic Journal of Differential Equations, Vol. 1 (1), No. 11, pp. 1 1. ISSN: 17-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu GREEN S FUNCTIONAL FOR

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

Homogenization of a Hele-Shaw-type problem in periodic time-dependent med

Homogenization of a Hele-Shaw-type problem in periodic time-dependent med Homogenization of a Hele-Shaw-type problem in periodic time-dependent media University of Tokyo npozar@ms.u-tokyo.ac.jp KIAS, Seoul, November 30, 2012 Hele-Shaw problem Model of the pressure-driven }{{}

More information

On Chern-Simons-Schrödinger equations including a vortex point

On Chern-Simons-Schrödinger equations including a vortex point On Chern-Simons-Schrödinger equations including a vortex point Alessio Pomponio Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Workshop in Nonlinear PDEs Brussels, September 7

More information

Multiple scales in streamer discharges, with an emphasis on moving boundary approximations

Multiple scales in streamer discharges, with an emphasis on moving boundary approximations Multiple scales in streamer discharges, with an emphasis on moving boundary approximations U. Ebert 1,2, F. Brau 3, G. Derks 4, W. Hundsdorfer 1, C.-Y. Kao 5, C. Li 2, A. Luque 6, B. Meulenbroek 7, S.

More information

Numerical Solution I

Numerical Solution I Numerical Solution I Stationary Flow R. Kornhuber (FU Berlin) Summerschool Modelling of mass and energy transport in porous media with practical applications October 8-12, 2018 Schedule Classical Solutions

More information

Unique Continuation Properties and Quantitative Estimates of Unique Continuation for Parabolic Equations

Unique Continuation Properties and Quantitative Estimates of Unique Continuation for Parabolic Equations CHAPTER 5 Unique Continuation Properties and Quantitative Estimates of Unique Continuation for Parabolic Equations Sergio Vessella DiMaD, Università di Firenze, via Lombroso 6/17, 50134 Firenze, Italy

More information

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS

HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS HIGH-ORDER ACCURATE METHODS BASED ON DIFFERENCE POTENTIALS FOR 2D PARABOLIC INTERFACE MODELS JASON ALBRIGHT, YEKATERINA EPSHTEYN, AND QING XIA Abstract. Highly-accurate numerical methods that can efficiently

More information

Recovery of anisotropic metrics from travel times

Recovery of anisotropic metrics from travel times Purdue University The Lens Rigidity and the Boundary Rigidity Problems Let M be a bounded domain with boundary. Let g be a Riemannian metric on M. Define the scattering relation σ and the length (travel

More information

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω.

1 The Stokes System. ρ + (ρv) = ρ g(x), and the conservation of momentum has the form. ρ v (λ 1 + µ 1 ) ( v) µ 1 v + p = ρ f(x) in Ω. 1 The Stokes System The motion of a (possibly compressible) homogeneous fluid is described by its density ρ(x, t), pressure p(x, t) and velocity v(x, t). Assume that the fluid is barotropic, i.e., the

More information

METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS

METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS METHODS FOR SOLVING MATHEMATICAL PHYSICS PROBLEMS V.I. Agoshkov, P.B. Dubovski, V.P. Shutyaev CAMBRIDGE INTERNATIONAL SCIENCE PUBLISHING Contents PREFACE 1. MAIN PROBLEMS OF MATHEMATICAL PHYSICS 1 Main

More information

STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD

STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD Shape optimization 1 G. Allaire STRUCTURAL OPTIMIZATION BY THE LEVEL SET METHOD G. ALLAIRE CMAP, Ecole Polytechnique with F. JOUVE and A.-M. TOADER 1. Introduction 2. Setting of the problem 3. Shape differentiation

More information

Partial Differential Equations

Partial Differential Equations M3M3 Partial Differential Equations Solutions to problem sheet 3/4 1* (i) Show that the second order linear differential operators L and M, defined in some domain Ω R n, and given by Mφ = Lφ = j=1 j=1

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements

A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements W I S S E N T E C H N I K L E I D E N S C H A F T A Domain Decomposition Method for Quasilinear Elliptic PDEs Using Mortar Finite Elements Matthias Gsell and Olaf Steinbach Institute of Computational Mathematics

More information

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit

system CWI, Amsterdam May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit CWI, Amsterdam heijster@cwi.nl May 21, 2008 Dynamic Analysis Seminar Vrije Universiteit Joint work: A. Doelman (CWI/UvA), T.J. Kaper (BU), K. Promislow (MSU) Outline 1 2 3 4 Outline 1 2 3 4 Paradigm U

More information

Minimal Surfaces: Nonparametric Theory. Andrejs Treibergs. January, 2016

Minimal Surfaces: Nonparametric Theory. Andrejs Treibergs. January, 2016 USAC Colloquium Minimal Surfaces: Nonparametric Theory Andrejs Treibergs University of Utah January, 2016 2. USAC Lecture: Minimal Surfaces The URL for these Beamer Slides: Minimal Surfaces: Nonparametric

More information

u xx + u yy = 0. (5.1)

u xx + u yy = 0. (5.1) Chapter 5 Laplace Equation The following equation is called Laplace equation in two independent variables x, y: The non-homogeneous problem u xx + u yy =. (5.1) u xx + u yy = F, (5.) where F is a function

More information

Generalized Lax-Milgram theorem in Banach spaces and its application to the mathematical fluid mechanics.

Generalized Lax-Milgram theorem in Banach spaces and its application to the mathematical fluid mechanics. Second Italian-Japanese Workshop GEOMETRIC PROPERTIES FOR PARABOLIC AND ELLIPTIC PDE s Cortona, Italy, June 2-24, 211 Generalized Lax-Milgram theorem in Banach spaces and its application to the mathematical

More information

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid

Eva Miranda. UPC-Barcelona and BGSMath. XXV International Fall Workshop on Geometry and Physics Madrid b-symplectic manifolds: going to infinity and coming back Eva Miranda UPC-Barcelona and BGSMath XXV International Fall Workshop on Geometry and Physics Madrid Eva Miranda (UPC) b-symplectic manifolds Semptember,

More information

Problem Set Number 01, MIT (Winter-Spring 2018)

Problem Set Number 01, MIT (Winter-Spring 2018) Problem Set Number 01, 18.377 MIT (Winter-Spring 2018) Rodolfo R. Rosales (MIT, Math. Dept., room 2-337, Cambridge, MA 02139) February 28, 2018 Due Thursday, March 8, 2018. Turn it in (by 3PM) at the Math.

More information

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz

ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM. Paweł Goncerz Opuscula Mathematica Vol. 32 No. 3 2012 http://dx.doi.org/10.7494/opmath.2012.32.3.473 ON THE EXISTENCE OF THREE SOLUTIONS FOR QUASILINEAR ELLIPTIC PROBLEM Paweł Goncerz Abstract. We consider a quasilinear

More information

TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS. Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017

TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS. Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017 TOPICS IN NONLINEAR ANALYSIS AND APPLICATIONS Dipartimento di Matematica e Applicazioni Università di Milano Bicocca March 15-16, 2017 Abstracts of the talks Spectral stability under removal of small capacity

More information

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term

A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term A Ginzburg-Landau Type Problem for Nematics with Highly Anisotropic Elastic Term Peter Sternberg In collaboration with Dmitry Golovaty (Akron) and Raghav Venkatraman (Indiana) Department of Mathematics

More information

Boundary problems for fractional Laplacians

Boundary problems for fractional Laplacians Boundary problems for fractional Laplacians Gerd Grubb Copenhagen University Spectral Theory Workshop University of Kent April 14 17, 2014 Introduction The fractional Laplacian ( ) a, 0 < a < 1, has attracted

More information

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley)

SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) SURFACE WAVE DISPERSION PRACTICAL (Keith Priestley) This practical deals with surface waves, which are usually the largest amplitude arrivals on the seismogram. The velocity at which surface waves propagate

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

Numerics and Control of PDEs Lecture 1. IFCAM IISc Bangalore

Numerics and Control of PDEs Lecture 1. IFCAM IISc Bangalore 1/1 Numerics and Control of PDEs Lecture 1 IFCAM IISc Bangalore July 22 August 2, 2013 Introduction to feedback stabilization Stabilizability of F.D.S. Mythily R., Praveen C., Jean-Pierre R. 2/1 Q1. Controllability.

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 42 (2016), No. 1, pp. 129 141. Title: On nonlocal elliptic system of p-kirchhoff-type in Author(s): L.

More information

Large-time behaviour of Hele-Shaw flow with injection or suction for perturbed balls in R N

Large-time behaviour of Hele-Shaw flow with injection or suction for perturbed balls in R N Large-time behaviour of Hele-Shaw flow with injection or suction for perturbed balls in R N E. Vondenhoff Department of Mathematics and Computer Science Technische Universiteit Eindhoven P.O. Box 53, 5600

More information

Nonlinear Analysis. Global solution curves for boundary value problems, with linear part at resonance

Nonlinear Analysis. Global solution curves for boundary value problems, with linear part at resonance Nonlinear Analysis 71 (29) 2456 2467 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na Global solution curves for boundary value problems, with linear

More information

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ]

Chapter 2. Vector Calculus. 2.1 Directional Derivatives and Gradients. [Bourne, pp ] & [Anton, pp ] Chapter 2 Vector Calculus 2.1 Directional Derivatives and Gradients [Bourne, pp. 97 104] & [Anton, pp. 974 991] Definition 2.1. Let f : Ω R be a continuously differentiable scalar field on a region Ω R

More information

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs

AM 205: lecture 14. Last time: Boundary value problems Today: Numerical solution of PDEs AM 205: lecture 14 Last time: Boundary value problems Today: Numerical solution of PDEs ODE BVPs A more general approach is to formulate a coupled system of equations for the BVP based on a finite difference

More information

Linear and Nonlinear Oscillators (Lecture 2)

Linear and Nonlinear Oscillators (Lecture 2) Linear and Nonlinear Oscillators (Lecture 2) January 25, 2016 7/441 Lecture outline A simple model of a linear oscillator lies in the foundation of many physical phenomena in accelerator dynamics. A typical

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

The Helically Reduced Wave Equation as a Symmetric Positive System

The Helically Reduced Wave Equation as a Symmetric Positive System Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 The Helically Reduced Wave Equation as a Symmetric Positive System Charles G. Torre Utah State University Follow this

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

The oblique derivative problem for general elliptic systems in Lipschitz domains

The oblique derivative problem for general elliptic systems in Lipschitz domains M. MITREA The oblique derivative problem for general elliptic systems in Lipschitz domains Let M be a smooth, oriented, connected, compact, boundaryless manifold of real dimension m, and let T M and T

More information

Homogenization of micro-resonances and localization of waves.

Homogenization of micro-resonances and localization of waves. Homogenization of micro-resonances and localization of waves. Valery Smyshlyaev University College London, UK July 13, 2012 (joint work with Ilia Kamotski UCL, and Shane Cooper Bath/ Cardiff) Valery Smyshlyaev

More information

Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions

Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions François Monard Department of Mathematics, University of Washington. Nov. 13, 2014 UW Numerical Analysis Research

More information

The Helmholtz Equation

The Helmholtz Equation The Helmholtz Equation Seminar BEM on Wave Scattering Rene Rühr ETH Zürich October 28, 2010 Outline Steklov-Poincare Operator Helmholtz Equation: From the Wave equation to Radiation condition Uniqueness

More information

M.Sc. in Meteorology. Numerical Weather Prediction

M.Sc. in Meteorology. Numerical Weather Prediction M.Sc. in Meteorology UCD Numerical Weather Prediction Prof Peter Lynch Meteorology & Climate Centre School of Mathematical Sciences University College Dublin Second Semester, 2005 2006. In this section

More information

Hardy inequalities, heat kernels and wave propagation

Hardy inequalities, heat kernels and wave propagation Outline Hardy inequalities, heat kernels and wave propagation Basque Center for Applied Mathematics (BCAM) Bilbao, Basque Country, Spain zuazua@bcamath.org http://www.bcamath.org/zuazua/ Third Brazilian

More information

The double layer potential

The double layer potential The double layer potential In this project, our goal is to explain how the Dirichlet problem for a linear elliptic partial differential equation can be converted into an integral equation by representing

More information

1 Existence of Travelling Wave Fronts for a Reaction-Diffusion Equation with Quadratic- Type Kinetics

1 Existence of Travelling Wave Fronts for a Reaction-Diffusion Equation with Quadratic- Type Kinetics 1 Existence of Travelling Wave Fronts for a Reaction-Diffusion Equation with Quadratic- Type Kinetics Theorem. Consider the equation u t = Du xx + f(u) with f(0) = f(1) = 0, f(u) > 0 on 0 < u < 1, f (0)

More information

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems

Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems Numerical Analysis of Nonlinear Multiharmonic Eddy Current Problems F. Bachinger U. Langer J. Schöberl April 2004 Abstract This work provides a complete analysis of eddy current problems, ranging from

More information

Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends

Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends Alfred K. Louis Institut für Angewandte Mathematik Universität des Saarlandes 66041 Saarbrücken

More information

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4

r 2 dr h2 α = 8m2 q 4 Substituting we find that variational estimate for the energy is m e q 4 E G = 4 Variational calculations for Hydrogen and Helium Recall the variational principle See Chapter 16 of the textbook The variational theorem states that for a Hermitian operator H with the smallest eigenvalue

More information

A LIAPUNOV-SCHMIDT REDUCTION FOR TIME-PERIODIC SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS

A LIAPUNOV-SCHMIDT REDUCTION FOR TIME-PERIODIC SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS A LIAPUNOV-SCHMIDT REDUCTION FOR TIME-PERIODIC SOLUTIONS OF THE COMPRESSIBLE EULER EQUATIONS BLAKE TEMPLE AND ROBIN YOUNG Abstract. Following the authors earlier work in [9, 10], we show that the nonlinear

More information

UNIVERSITY OF MANITOBA

UNIVERSITY OF MANITOBA Question Points Score INSTRUCTIONS TO STUDENTS: This is a 6 hour examination. No extra time will be given. No texts, notes, or other aids are permitted. There are no calculators, cellphones or electronic

More information

A Spectral Method for Nonlinear Elliptic Equations

A Spectral Method for Nonlinear Elliptic Equations A Spectral Method for Nonlinear Elliptic Equations Kendall Atkinson, David Chien, Olaf Hansen July 8, 6 Abstract Let Ω be an open, simply connected, and bounded region in R d, d, and assume its boundary

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

Calderón s inverse problem in 2D Electrical Impedance Tomography

Calderón s inverse problem in 2D Electrical Impedance Tomography Calderón s inverse problem in 2D Electrical Impedance Tomography Kari Astala (University of Helsinki) Joint work with: Matti Lassas, Lassi Päivärinta, Samuli Siltanen, Jennifer Mueller and Alan Perämäki

More information

Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow

Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow Rough metrics, the Kato square root problem, and the continuity of a flow tangent to the Ricci flow Lashi Bandara Mathematical Sciences Chalmers University of Technology and University of Gothenburg 22

More information

2D compressible vortex sheets. Paolo Secchi

2D compressible vortex sheets. Paolo Secchi 2D compressible vortex sheets Paolo Secchi Department of Mathematics Brescia University Joint work with J.F. Coulombel EVEQ 2008, International Summer School on Evolution Equations, Prague, Czech Republic,

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering August 2 nd, 2010 Outline PART II Pseudodifferential

More information

Stability, the Maslov Index, and Spatial Dynamics

Stability, the Maslov Index, and Spatial Dynamics Stability, the Maslov Index, and Spatial Dynamics Margaret Beck Boston University joint work with Graham Cox (MUN), Chris Jones (UNC), Yuri Latushkin (Missouri), Kelly McQuighan (Google), Alim Sukhtayev

More information

Symmetries 2 - Rotations in Space

Symmetries 2 - Rotations in Space Symmetries 2 - Rotations in Space This symmetry is about the isotropy of space, i.e. space is the same in all orientations. Thus, if we continuously rotated an entire system in space, we expect the system

More information

A New Proof of Anti-Maximum Principle Via A Bifurcation Approach

A New Proof of Anti-Maximum Principle Via A Bifurcation Approach A New Proof of Anti-Maximum Principle Via A Bifurcation Approach Junping Shi Abstract We use a bifurcation approach to prove an abstract version of anti-maximum principle. The proof is different from previous

More information

Partial Differential Equations

Partial Differential Equations Partial Differential Equations Xu Chen Assistant Professor United Technologies Engineering Build, Rm. 382 Department of Mechanical Engineering University of Connecticut xchen@engr.uconn.edu Contents 1

More information

Elements of linear algebra

Elements of linear algebra Elements of linear algebra Elements of linear algebra A vector space S is a set (numbers, vectors, functions) which has addition and scalar multiplication defined, so that the linear combination c 1 v

More information

Group Actions and Cohomology in the Calculus of Variations

Group Actions and Cohomology in the Calculus of Variations Group Actions and Cohomology in the Calculus of Variations JUHA POHJANPELTO Oregon State and Aalto Universities Focused Research Workshop on Exterior Differential Systems and Lie Theory Fields Institute,

More information

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage:

Nonlinear Analysis 71 (2009) Contents lists available at ScienceDirect. Nonlinear Analysis. journal homepage: Nonlinear Analysis 71 2009 2744 2752 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A nonlinear inequality and applications N.S. Hoang A.G. Ramm

More information

Existence Theory: Green s Functions

Existence Theory: Green s Functions Chapter 5 Existence Theory: Green s Functions In this chapter we describe a method for constructing a Green s Function The method outlined is formal (not rigorous) When we find a solution to a PDE by constructing

More information

Geometry and the Kato square root problem

Geometry and the Kato square root problem Geometry and the Kato square root problem Lashi Bandara Centre for Mathematics and its Applications Australian National University 7 June 2013 Geometric Analysis Seminar University of Wollongong Lashi

More information

Existence of Pulses for Local and Nonlocal Reaction-Diffusion Equations

Existence of Pulses for Local and Nonlocal Reaction-Diffusion Equations Existence of Pulses for Local and Nonlocal Reaction-Diffusion Equations Nathalie Eymard, Vitaly Volpert, Vitali Vougalter To cite this version: Nathalie Eymard, Vitaly Volpert, Vitali Vougalter. Existence

More information

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ,

ξ,i = x nx i x 3 + δ ni + x n x = 0. x Dξ = x i ξ,i = x nx i x i x 3 Du = λ x λ 2 xh + x λ h Dξ, 1 PDE, HW 3 solutions Problem 1. No. If a sequence of harmonic polynomials on [ 1,1] n converges uniformly to a limit f then f is harmonic. Problem 2. By definition U r U for every r >. Suppose w is a

More information

Inverse scattering problem from an impedance obstacle

Inverse scattering problem from an impedance obstacle Inverse Inverse scattering problem from an impedance obstacle Department of Mathematics, NCKU 5 th Workshop on Boundary Element Methods, Integral Equations and Related Topics in Taiwan NSYSU, October 4,

More information

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots,

In this chapter we study elliptical PDEs. That is, PDEs of the form. 2 u = lots, Chapter 8 Elliptic PDEs In this chapter we study elliptical PDEs. That is, PDEs of the form 2 u = lots, where lots means lower-order terms (u x, u y,..., u, f). Here are some ways to think about the physical

More information

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs)

13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) 13 PDEs on spatially bounded domains: initial boundary value problems (IBVPs) A prototypical problem we will discuss in detail is the 1D diffusion equation u t = Du xx < x < l, t > finite-length rod u(x,

More information

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010),

A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (2010), A G Ramm, Implicit Function Theorem via the DSM, Nonlinear Analysis: Theory, Methods and Appl., 72, N3-4, (21), 1916-1921. 1 Implicit Function Theorem via the DSM A G Ramm Department of Mathematics Kansas

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

A Simple Explanation of the Sobolev Gradient Method

A Simple Explanation of the Sobolev Gradient Method A Simple Explanation o the Sobolev Gradient Method R. J. Renka July 3, 2006 Abstract We have observed that the term Sobolev gradient is used more oten than it is understood. Also, the term is oten used

More information

i=1 α i. Given an m-times continuously

i=1 α i. Given an m-times continuously 1 Fundamentals 1.1 Classification and characteristics Let Ω R d, d N, d 2, be an open set and α = (α 1,, α d ) T N d 0, N 0 := N {0}, a multiindex with α := d i=1 α i. Given an m-times continuously differentiable

More information