On Chern-Simons-Schrödinger equations including a vortex point

Size: px
Start display at page:

Download "On Chern-Simons-Schrödinger equations including a vortex point"

Transcription

1 On Chern-Simons-Schrödinger equations including a vortex point Alessio Pomponio Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Workshop in Nonlinear PDEs Brussels, September 7 11, 2015.

2 We are concerned with the Chern-Simons-Schrödinger equations: id 0 φ + (D 1 D 1 + D 2 D 2 )φ + φ p 1 φ = 0, 0 A 1 1 A 0 = Im( φd 2 φ), (1) 0 A 2 2 A 0 = Im( φd 1 φ), 1 A 2 2 A 1 = 1 2 φ 2. Here t R, x = (x 1, x 2 ) R 2 and the unknowns are (φ, A 0, A 1, A 2 ), where φ : R R 2 C is the scalar field, A µ : R R 2 R are the components of the gauge potential, namely (A 0, A 1, A 2 ) = (A 0, A), and D µ = µ + ia µ is the covariant derivative (µ = 0, 1, 2).

3 This model was first proposed and studied by Jackiw & Pi, in several papers in the beginning of 90s in order to describe nonrelativistic matter interacting with Chern-Simons gauge fields in the plane.

4 This model was first proposed and studied by Jackiw & Pi, in several papers in the beginning of 90s in order to describe nonrelativistic matter interacting with Chern-Simons gauge fields in the plane. The initial value problem, as well as global existence and blow-up, has been addressed in [Bergé, de Bouard & Saut, 1995; Huh, ] for the case p = 3.

5 The existence of stationary states for (1) and general p > 1 has been studied in [Byeon, Huh & Seok, JFA 2012] for the regular case.

6 The existence of stationary states for (1) and general p > 1 has been studied in [Byeon, Huh & Seok, JFA 2012] for the regular case. They seek the standing wave solutions of the form φ(t, x) = u( x )e iωt, A 0 (x) = k( x ), A 1 (t, x) = x 2 x 2 h( x ), A 2(t, x) = x 1 x 2 h( x ), where ω > 0 is a given frequency and u, k, h are real valued functions on [0, ) and h(0) = 0.

7 More recently, the existence of stationary states for (1) with a vortex point of order N, for an arbitrary N N has been considered in [Byeon, Huh & Seok, 2014].

8 More recently, the existence of stationary states for (1) with a vortex point of order N, for an arbitrary N N has been considered in [Byeon, Huh & Seok, 2014]. They are no more interested in standing wave solutions of the form φ(t, x) = u( x )e iωt, A 0 (x) = k( x ), A 1 (t, x) = x 2 x 2 h( x ), A 2(t, x) = x 1 x 2 h( x ).

9 More recently, the existence of stationary states for (1) with a vortex point of order N, for an arbitrary N N has been considered in [Byeon, Huh & Seok, 2014]. They seek the standing wave solutions of the form φ(t, x) = u( x )e i(nθ+ωt), A 0 (x) = k( x ), A 1 (t, x) = x 2 x 2 h( x ), A 2(t, x) = x 1 x 2 h( x ), where tan θ = x 2 /x 1.

10 With this ansatz, first, they solve A 0, A 1, A 2 in terms of u.

11 With this ansatz, first, they solve A 0, A 1, A 2 in terms of u. They find that h u (s) N A 0 (x) = ξ + u 2 (s) ds, x s where ξ appears as an integration constant and h u (r) = r 0 s 2 u2 (s) ds.

12 With this ansatz, first, they solve A 0, A 1, A 2 in terms of u. They find that h u (s) N A 0 (x) = ξ + u 2 (s) ds, x s where ξ appears as an integration constant and Moreover h u (r) = r 0 s 2 u2 (s) ds. A 1 (x) = x x 2 s x u2 (s) ds, A 2 (x) = x x 1 s x u2 (s) ds.

13 Therefore one need only to solve, in R 2, the equation: u + (ω + ξ + (h u( x ) N) 2 + x 2 + x ) h u (s) N u 2 (s) ds u s = u p 1 u.

14 Therefore one need only to solve, in R 2, the equation: u + (ω + ξ + (h u( x ) N) 2 + x 2 + x ) h u (s) N u 2 (s) ds u s = u p 1 u. Observe that the constant ω + ξ is a gauge invariant of the stationary solutions of the problem.

15 The equation So we will take ξ = 0 in what follows, that is, lim A 0 (x) = 0, x + which was assumed in [Jackiw & Pi, Bergé, de Bouard & Saut].

16 The equation So we will take ξ = 0 in what follows, that is, lim A 0 (x) = 0, x + which was assumed in [Jackiw & Pi, Bergé, de Bouard & Saut]. Our aim is to solve, in R 2, the nonlocal equation: u + (ω + (h u( x ) N) 2 + x 2 + x ) h u (s) N u 2 (s) ds u s = u p 1 u. (CSS) where h u (r) = r 0 s 2 u2 (s) ds.

17 The case N = 0 In [Byeon, Huh, Seok, JFA 2012] it is shown that (CSS) is indeed the Euler-Lagrange equation of the energy functional: I ω : H 1 r (R 2 ) R, defined as I ω (u) = 1 ( u 2 + ωu 2) dx 2 R u 2 ( (x) x ) 2 8 R 2 x 2 su 2 (s) ds dx 1 u p+1 dx. 0 p + 1 R 2

18 The case N = 0 In [Byeon, Huh, Seok, JFA 2012] it is shown that (CSS) is indeed the Euler-Lagrange equation of the energy functional: I ω : H 1 r (R 2 ) R, defined as I ω (u) = 1 ( u 2 + ωu 2) dx 2 R u 2 ( (x) x ) 2 8 R 2 x 2 su 2 (s) ds dx 1 u p+1 dx. 0 p + 1 R 2

19 The case N = 0 In [Byeon, Huh, Seok, JFA 2012] it is shown that (CSS) is indeed the Euler-Lagrange equation of the energy functional: I ω : H 1 r (R 2 ) R, defined as I ω (u) = 1 ( u 2 + ωu 2) dx 2 R u 2 ( (x) x ) 2 8 R 2 x 2 su 2 (s) ds dx 1 u p+1 dx. 0 p + 1 R 2 The nonlocal term is well defined in H 1 r (R 2 ).

20 The case N = 0 When N = 0, formally (CSS) is the Euler-Lagrange equation of the energy functional I ω (u) = 1 ( u 2 + ωu 2) dx 2 R u 2 ( (x) x ) 2 8 R 2 x 2 su 2 (s) ds 2N dx 1 u p+1 dx. 0 p + 1 R 2

21 The case N = 0 When N = 0, formally (CSS) is the Euler-Lagrange equation of the energy functional I ω (u) = 1 ( u 2 + ωu 2) dx 2 R u 2 ( (x) x ) 2 8 R 2 x 2 su 2 (s) ds 2N dx 1 u p+1 dx. 0 p + 1 R 2

22 The case N = 0 The term u 2 (x) R 2 x 2 ( x 2 su 2 (s) ds 2N) dx 0 is not well defined in H 1 r (R 2 ), indeed, in particular, it contains 4N 2 u 2 (x) R 2 x 2 dx.

23 The case N = 0: the space H The functional I ω is well defined in H is defined as endowed by the norm H = {u Hr 1 (R 2 u ) 2 (x) : R 2 x 2 dx < + }, u 2 H = R 2 u(x) 2 + ( ) x 2 u 2 (x) dx.

24 The case N = 0: the space H The functional I ω is well defined in H is defined as endowed by the norm H = {u Hr 1 (R 2 u ) 2 (x) : R 2 x 2 dx < + }, u 2 H = R 2 u(x) 2 + ( ) x 2 u 2 (x) dx. In [Byeon, Huh & Seok, 2014], it is shown that H {u C(R 2 ) : u(0) = 0} L (R 2 ).

25 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term.

26 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below.

27 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below. I ω exhibits a mountain-pass geometry.

28 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below. I ω exhibits a mountain-pass geometry. The existence of a solution is not so direct, since for p (3, 5) the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded.

29 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below. I ω exhibits a mountain-pass geometry. The existence of a solution is not so direct, since for p (3, 5) the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded. This problem is bypassed by using a constrained minimization taking into account the Nehari and Pohozaev identities, if N = 0, in [Byeon, Huh & Seok, JFA2012].

30 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below. I ω exhibits a mountain-pass geometry. The existence of a solution is not so direct, since for p (3, 5) the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded. This problem is bypassed by using a constrained minimization taking into account the Nehari and Pohozaev identities, if N = 0, in [Byeon, Huh & Seok, JFA2012]. If, instead, N = 0, the approach is based on the monotonicity trick, in [Byeon, Huh & Seok, 2014].

31 Byeon-Huh-Seok results: case p > 3 In this case the local nonlinearity dominates the nonlocal term. I ω is unbounded from below. I ω exhibits a mountain-pass geometry. The existence of a solution is not so direct, since for p (3, 5) the (PS) property is not known to hold: we do not know if (PS)-sequences are bounded. This problem is bypassed by using a constrained minimization taking into account the Nehari and Pohozaev identities, if N = 0, in [Byeon, Huh & Seok, JFA2012]. If, instead, N = 0, the approach is based on the monotonicity trick, in [Byeon, Huh & Seok, 2014]. Infinitely many (possibly sign-changing) solutions have been found in [Huh, JMP 2012] for p > 5 and N = 0: this case is more easy since (PS)-condition holds.

32 Byeon-Huh-Seok results: case p = 3 This is a special case:

33 Byeon-Huh-Seok results: case p = 3 This is a special case: for any N N {0}, static solutions can be found by passing to a self-dual equation, which leads to a Liouville equation that can be solved explicitly.

34 Byeon-Huh-Seok results: case p = 3 This is a special case: for any N N {0}, static solutions can be found by passing to a self-dual equation, which leads to a Liouville equation that can be solved explicitly. Any standing wave solutions (φ, A 0, A 1, A 2 ) of the previous type have the following form: (φ, A 0, A 1, A 2 ) = ( 8l(N + 1) lx N e i(nθ+ωt) 1 + lx 2(N+1), where l > 0 is an arbitrary real constant. ( ) 2l(N + 1) lx N lx 2(N+1) ω, ), 2l 2 (N + 1)x 2 lx 2N 1 + lx 2(N+1), 2l2 (N + 1)x 1 lx 2N 1 + lx 2(N+1)

35 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity.

36 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere.

37 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled.

38 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled. By the gauge invariance, this is not a problem if we are looking for solutions (φ, A 0, A 1, A 2 ) of the entire system (1).

39 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled. By the gauge invariance, this is not a problem if we are looking for solutions (φ, A 0, A 1, A 2 ) of the entire system (1). For what concerns the single equation (CSS), a solution u is found only for a particular value of ω.

40 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled. By the gauge invariance, this is not a problem if we are looking for solutions (φ, A 0, A 1, A 2 ) of the entire system (1). For what concerns the single equation (CSS), a solution u is found only for a particular value of ω. The global behavior of the energy functional I ω is not studied.

41 Byeon-Huh-Seok results: case 1 < p < 3 In this case, the nonlocal term prevails over the local nonlinearity. For N = 0, solutions are found as minimizers on a L 2 -sphere. The value ω comes out as a Lagrange multiplier, and it is not controlled. By the gauge invariance, this is not a problem if we are looking for solutions (φ, A 0, A 1, A 2 ) of the entire system (1). For what concerns the single equation (CSS), a solution u is found only for a particular value of ω. The global behavior of the energy functional I ω is not studied. The case N = 0 is not treated.

42 On the boundedness from below of Iω

43 On the boundedness from below of I ω Theorem (Y. Jiang, A.P. & D. Ruiz) Let N N {0} and p (1, 3).

44 On the boundedness from below of I ω Theorem (Y. Jiang, A.P. & D. Ruiz) Let N N {0} and p (1, 3). There exists ω 0 such that: if ω (0, ω 0 ), then I ω is unbounded from below;

45 On the boundedness from below of I ω Theorem (Y. Jiang, A.P. & D. Ruiz) Let N N {0} and p (1, 3). There exists ω 0 such that: if ω (0, ω 0 ), then I ω is unbounded from below; if ω = ω 0, then I ω0 is bounded from below, not coercive and inf I ω0 < 0;

46 On the boundedness from below of I ω Theorem (Y. Jiang, A.P. & D. Ruiz) Let N N {0} and p (1, 3). There exists ω 0 such that: if ω (0, ω 0 ), then I ω is unbounded from below; if ω = ω 0, then I ω0 is bounded from below, not coercive and inf I ω0 < 0; if ω > ω 0, then I ω is bounded from below and coercive.

47 On the boundedness from below of I ω Theorem (Y. Jiang, A.P. & D. Ruiz) Let N N {0} and p (1, 3). There exists ω 0 such that: if ω (0, ω 0 ), then I ω is unbounded from below; if ω = ω 0, then I ω0 is bounded from below, not coercive and inf I ω0 < 0; if ω > ω 0, then I ω is bounded from below and coercive. ω 0 has an explicit expression: ω 0 = 3 p 3 + p 3 p 1 2(3 p) p ( m 2 (3 + p) p 1 ) p 1 2(3 p), with m = + ( ( )) 2 2 p 1 p + 1 cosh2 2 r 1 p dr.

48 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain.

49 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain. There exists a minimizer u n on the ball B(0, n) with Dirichlet boundary conditions.

50 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain. There exists a minimizer u n on the ball B(0, n) with Dirichlet boundary conditions. To prove boundedness of {u n } n, the problem is the possible loss of mass at infinity as n +. We need to study the behavior of those masses.

51 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain. There exists a minimizer u n on the ball B(0, n) with Dirichlet boundary conditions. To prove boundedness of {u n } n, the problem is the possible loss of mass at infinity as n +. We need to study the behavior of those masses. If unbounded, the sequence {u n } n behaves as a soliton, if u n is interpreted as a function of a single real variable.

52 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain. There exists a minimizer u n on the ball B(0, n) with Dirichlet boundary conditions. To prove boundedness of {u n } n, the problem is the possible loss of mass at infinity as n +. We need to study the behavior of those masses. If unbounded, the sequence {u n } n behaves as a soliton, if u n is interpreted as a function of a single real variable. I ω admits a natural approximation through a limit functional.

53 Rough sketch of the proof I ω is coercive when the problem is posed on a bounded domain. There exists a minimizer u n on the ball B(0, n) with Dirichlet boundary conditions. To prove boundedness of {u n } n, the problem is the possible loss of mass at infinity as n +. We need to study the behavior of those masses. If unbounded, the sequence {u n } n behaves as a soliton, if u n is interpreted as a function of a single real variable. I ω admits a natural approximation through a limit functional. The critical points of that limit functional, and their energy, can be found explicitly, so we can find ω 0.

54 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +.

55 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. (2π) 1 I ω (u ρ ) = p + 1 ( u ρ 2 + ωu 2 ρ)r dr u 2 ( ρ(r) r 2 su 2 r ρ(s) ds 2N) dr u ρ p+1 r dr.

56 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. (2π) 1 I ω (u ρ ) = ρ + 1 p + 1 ( u 2 + ωu 2 )(r + ρ) dr ρ + u 2 ( (r) r r + ρ ρ 2 (s + ρ)u 2 (s) ds 2N) dr ρ u p+1 (r + ρ) dr.

57 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. (2π) 1 I ω (u ρ ) p + 1 ( u 2 + ωu 2 )(r + ρ) dr + u 2 ( (r) r r + ρ 2 (s + ρ)u 2 (s) ds 2N) dr u p+1 (r + ρ) dr.

58 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. (2π) 1 I ω (u ρ ) p + 1 ( u 2 + ωu 2 )(r + ρ) dr + u 2 ( (r) r r + ρ u p+1 (r + ρ) dr. (s + ρ)u 2 (s) ds 2N) 2 dr

59 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. (2π) 1 I ω (u ρ ) p + 1 ( u 2 + ωu 2 )ρ dr + u 2 ( (r) r ρ u p+1 ρ dr. ρu 2 (s) ds 2N) 2 dr

60 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. [ 1 + (2π) 1 I ω (u ρ ) ρ p + 1 ( u 2 + ωu 2 ) dr + ( r u 2 (r) 2 u 2 (s) ds) dr ] u p+1 dr.

61 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. [ 1 + (2π) 1 I ω (u ρ ) ρ p + 1 ( u 2 + ωu 2 ) dr + ( r u 2 (r) 2 u 2 (s) ds) dr ] u p+1 dr.

62 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. [ 1 + (2π) 1 I ω (u ρ ) ρ ( u 2 + ωu 2 ) dr ( + 1 p ) 3 u 2 (r)dr ] u p+1 dr.

63 The limit functional Let u be a fixed even function which decays exponentially to zero at infinity, and define u ρ (r) = u(r ρ). Let us now estimate I ω (u ρ ) as ρ +. [ 1 + (2π) 1 I ω (u ρ ) ρ ( u 2 + ωu 2 ) dr ( + 1 p ) 3 u 2 (r)dr ] u p+1 dr.

64 For any N N {0}, it is natural to define the limit functional J ω : H 1 (R) R, J ω (u) = p + 1 ( u 2 + ωu 2) dr + 1 ( u p+1 dr. ) 3 u 2 dr

65 For any N N {0}, it is natural to define the limit functional J ω : H 1 (R) R, We have J ω (u) = p + 1 ( u 2 + ωu 2) dr + 1 ( u p+1 dr. ) 3 u 2 dr I ω (u ρ ) 2πρ J ω (u), as ρ +.

66 For any N N {0}, it is natural to define the limit functional J ω : H 1 (R) R, We have J ω (u) = p + 1 ( u 2 + ωu 2) dr + 1 ( u p+1 dr. ) 3 u 2 dr I ω (u ρ ) 2πρ J ω (u), as ρ +. Of course inf J ω < 0 inf I ω =.

67 For any N N {0}, it is natural to define the limit functional J ω : H 1 (R) R, We have J ω (u) = p + 1 ( u 2 + ωu 2) dr + 1 ( u p+1 dr. ) 3 u 2 dr I ω (u ρ ) 2πρ J ω (u), as ρ +. Of course inf J ω < 0 inf I ω =. Actually, we can show that inf J ω < 0 inf I ω =.

68 The limit functional Proposition Let p (1, 3) and ω > 0. Then: a) J ω is coercive and attains its infimum;

69 The limit functional Proposition Let p (1, 3) and ω > 0. Then: a) J ω is coercive and attains its infimum; b) 0 is a local minimum of J ω ;

70 The limit functional Proposition Let p (1, 3) and ω > 0. Then: a) J ω is coercive and attains its infimum; b) 0 is a local minimum of J ω ; c) there exists ω 0 > 0 such that min J ω < 0 if and only if ω (0, ω 0 ).

71 The limit functional Proposition Let p (1, 3) and ω > 0. Then: a) J ω is coercive and attains its infimum; b) 0 is a local minimum of J ω ; c) there exists ω 0 > 0 such that min J ω < 0 if and only if ω (0, ω 0 ). The critical points of J ω, and their energy, can be found explicitly, so we can find ω 0.

72 On the solutions of (CSS), for any N N {0}

73 On the solutions of (CSS), for any N N {0} Theorem (On the boundedness of I ω ) Let p (1, 3). We have: if ω (0, ω 0 ), then I ω is unbounded from below; if ω = ω 0, then I ω0 is bounded from below, not coercive and inf I ω0 < 0; if ω > ω 0, then I ω is bounded from below and coercive. Theorem (Y. Jiang, A.P. & D. Ruiz) For almost every ω (0, ω 0 ], (CSS) admits a positive solution. Moreover, there exist ω > ω > ω 0 such that: if ω > ω, then (CSS) has no solutions different from zero; if ω (ω 0, ω), then (CSS) admits at least two positive solutions: one of them is a global minimizer for I ω and the other is a mountain-pass solution.

74 On the solutions of (CSS), for any N N {0} Theorem (On the boundedness of I ω ) Let p (1, 3). We have: if ω (0, ω 0 ), then I ω is unbounded from below; if ω = ω 0, then I ω0 is bounded from below, not coercive and inf I ω0 < 0; if ω > ω 0, then I ω is bounded from below and coercive. Theorem (Y. Jiang, A.P. & D. Ruiz) For almost every ω (0, ω 0 ], (CSS) admits a positive solution. Moreover, there exist ω > ω > ω 0 such that: if ω > ω, then (CSS) has no solutions different from zero; if ω (ω 0, ω), then (CSS) admits at least two positive solutions: one of them is a global minimizer for I ω and the other is a mountain-pass solution.

75 Sketch of the proof: case ω (0, ω 0 ]

76 Sketch of the proof: case ω (0, ω 0 ] Performing the rescaling u u ω = ω u( ω ), we get [ 1 ( I ω (u ω ) = ω u 2 + u 2) dx 2 R u 2 ( (x) x ) 2 ] 8 R 2 x 2 su 2 (s)ds 2N dx ω p 3 2 u p+1 dx. 0 p + 1 R 2

77 Sketch of the proof: case ω (0, ω 0 ] Performing the rescaling u u ω = ω u( ω ), we get [ 1 ( I ω (u ω ) = ω u 2 + u 2) dx 2 R u 2 ( (x) x ) 2 ] 8 R 2 x 2 su 2 (s)ds 2N dx ω p 3 2 u p+1 dx. 0 p + 1 R 2 The geometrical assumptions of the Mountain Pass Theorem are satisfied and we can apply the monotonicity trick [Struwe, Jeanjean], finding a solution for almost every ω (0, ω 0 ].

78 Sketch of the proof: case ω > ω0

79 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero.

80 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero. Since inf I ω0 < 0, there exists ω > ω 0 such that inf I ω < 0 for ω (ω 0, ω).

81 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero. Since inf I ω0 < 0, there exists ω > ω 0 such that inf I ω < 0 for ω (ω 0, ω). Being I ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level).

82 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero. Since inf I ω0 < 0, there exists ω > ω 0 such that inf I ω < 0 for ω (ω 0, ω). Being I ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level). If ω (ω 0, ω), the functional satisfies the geometrical assumptions of the Mountain Pass Theorem.

83 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero. Since inf I ω0 < 0, there exists ω > ω 0 such that inf I ω < 0 for ω (ω 0, ω). Being I ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level). If ω (ω 0, ω), the functional satisfies the geometrical assumptions of the Mountain Pass Theorem. Since I ω is coercive, (PS) sequences are bounded.

84 Sketch of the proof: case ω > ω 0 By Pohozaev identity arguments, we infer that there exists ω > ω 0 such that, if ω > ω, then (CSS) has no solutions different from zero. Since inf I ω0 < 0, there exists ω > ω 0 such that inf I ω < 0 for ω (ω 0, ω). Being I ω coercive and weakly lower semicontinuous, the infimum is attained (at negative level). If ω (ω 0, ω), the functional satisfies the geometrical assumptions of the Mountain Pass Theorem. Since I ω is coercive, (PS) sequences are bounded. We find a second solution (a mountain-pass solution) which is at a positive energy level.

85 Thank you for your attention!!!

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation

A Variational Analysis of a Gauged Nonlinear Schrödinger Equation A Variational Analysis of a Gauged Nonlinear Schrödinger Equation Alessio Pomponio, joint work with David Ruiz Dipartimento di Meccanica, Matematica e Management, Politecnico di Bari Variational and Topological

More information

Some results on the nonlinear Klein-Gordon-Maxwell equations

Some results on the nonlinear Klein-Gordon-Maxwell equations Some results on the nonlinear Klein-Gordon-Maxwell equations Alessio Pomponio Dipartimento di Matematica, Politecnico di Bari, Italy Granada, Spain, 2011 A solitary wave is a solution of a field equation

More information

The Chern-Simons-Schrödinger equation

The Chern-Simons-Schrödinger equation The Chern-Simons-Schrödinger equation Low regularity local wellposedness Baoping Liu, Paul Smith, Daniel Tataru University of California, Berkeley July 16, 2012 Paul Smith (UC Berkeley) Chern-Simons-Schrödinger

More information

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem

EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS WITH UNBOUNDED POTENTIAL. 1. Introduction In this article, we consider the Kirchhoff type problem Electronic Journal of Differential Equations, Vol. 207 (207), No. 84, pp. 2. ISSN: 072-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS FOR KIRCHHOFF TYPE EQUATIONS

More information

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3

Brownian Motion. 1 Definition Brownian Motion Wiener measure... 3 Brownian Motion Contents 1 Definition 2 1.1 Brownian Motion................................. 2 1.2 Wiener measure.................................. 3 2 Construction 4 2.1 Gaussian process.................................

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

Boot camp - Problem set

Boot camp - Problem set Boot camp - Problem set Luis Silvestre September 29, 2017 In the summer of 2017, I led an intensive study group with four undergraduate students at the University of Chicago (Matthew Correia, David Lind,

More information

On the Schrödinger Equation in R N under the Effect of a General Nonlinear Term

On the Schrödinger Equation in R N under the Effect of a General Nonlinear Term On the Schrödinger Equation in under the Effect of a General Nonlinear Term A. AZZOLLINI & A. POMPONIO ABSTRACT. In this paper we prove the existence of a positive solution to the equation u + V(x)u =

More information

Solutions with prescribed mass for nonlinear Schrödinger equations

Solutions with prescribed mass for nonlinear Schrödinger equations Solutions with prescribed mass for nonlinear Schrödinger equations Dario Pierotti Dipartimento di Matematica, Politecnico di Milano (ITALY) Varese - September 17, 2015 Work in progress with Gianmaria Verzini

More information

Blow-up solutions for critical Trudinger-Moser equations in R 2

Blow-up solutions for critical Trudinger-Moser equations in R 2 Blow-up solutions for critical Trudinger-Moser equations in R 2 Bernhard Ruf Università degli Studi di Milano The classical Sobolev embeddings We have the following well-known Sobolev inequalities: let

More information

Math The Laplacian. 1 Green s Identities, Fundamental Solution

Math The Laplacian. 1 Green s Identities, Fundamental Solution Math. 209 The Laplacian Green s Identities, Fundamental Solution Let be a bounded open set in R n, n 2, with smooth boundary. The fact that the boundary is smooth means that at each point x the external

More information

Uniqueness of ground state solutions of non-local equations in R N

Uniqueness of ground state solutions of non-local equations in R N Uniqueness of ground state solutions of non-local equations in R N Rupert L. Frank Department of Mathematics Princeton University Joint work with Enno Lenzmann and Luis Silvestre Uniqueness and non-degeneracy

More information

On Schrödinger equations with inverse-square singular potentials

On Schrödinger equations with inverse-square singular potentials On Schrödinger equations with inverse-square singular potentials Veronica Felli Dipartimento di Statistica University of Milano Bicocca veronica.felli@unimib.it joint work with Elsa M. Marchini and Susanna

More information

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS

REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS REGULAR LAGRANGE MULTIPLIERS FOR CONTROL PROBLEMS WITH MIXED POINTWISE CONTROL-STATE CONSTRAINTS fredi tröltzsch 1 Abstract. A class of quadratic optimization problems in Hilbert spaces is considered,

More information

Nonlinear stabilization via a linear observability

Nonlinear stabilization via a linear observability via a linear observability Kaïs Ammari Department of Mathematics University of Monastir Joint work with Fathia Alabau-Boussouira Collocated feedback stabilization Outline 1 Introduction and main result

More information

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL

EXISTENCE OF NONTRIVIAL SOLUTIONS FOR A QUASILINEAR SCHRÖDINGER EQUATIONS WITH SIGN-CHANGING POTENTIAL Electronic Journal of Differential Equations, Vol. 2014 (2014), No. 05, pp. 1 8. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTENCE OF NONTRIVIAL

More information

ODE solutions for the fractional Laplacian equations arising in co

ODE solutions for the fractional Laplacian equations arising in co ODE solutions for the fractional Laplacian equations arising in conformal geometry Granada, November 7th, 2014 Background Classical Yamabe problem (M n, g) = Riemannian manifold; n 3, g = u 4 n 2 g conformal

More information

Phase-field systems with nonlinear coupling and dynamic boundary conditions

Phase-field systems with nonlinear coupling and dynamic boundary conditions 1 / 46 Phase-field systems with nonlinear coupling and dynamic boundary conditions Cecilia Cavaterra Dipartimento di Matematica F. Enriques Università degli Studi di Milano cecilia.cavaterra@unimi.it VIII

More information

AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS. Vieri Benci Donato Fortunato. 1. Introduction

AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS. Vieri Benci Donato Fortunato. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume, 998, 83 93 AN EIGENVALUE PROBLEM FOR THE SCHRÖDINGER MAXWELL EQUATIONS Vieri Benci Donato Fortunato Dedicated to

More information

Vortex solutions of the Liouville equation

Vortex solutions of the Liouville equation Vortex solutions of the Liouville equation P. A. HORVÁTHY and J.-C. YÉRA Laboratoire de Mathématiques et de Physique Théorique arxiv:hep-th/9805161v1 25 May 1998 Université de Tours Parc de Grandmont,

More information

Existence of Positive Solutions to a Nonlinear Biharmonic Equation

Existence of Positive Solutions to a Nonlinear Biharmonic Equation International Mathematical Forum, 3, 2008, no. 40, 1959-1964 Existence of Positive Solutions to a Nonlinear Biharmonic Equation S. H. Al Hashimi Department of Chemical Engineering The Petroleum Institute,

More information

Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere

Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere Equivariant self-similar wave maps from Minkowski spacetime into 3-sphere arxiv:math-ph/99126v1 17 Oct 1999 Piotr Bizoń Institute of Physics, Jagellonian University, Kraków, Poland March 26, 28 Abstract

More information

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0.

v( x) u( y) dy for any r > 0, B r ( x) Ω, or equivalently u( w) ds for any r > 0, B r ( x) Ω, or ( not really) equivalently if v exists, v 0. Sep. 26 The Perron Method In this lecture we show that one can show existence of solutions using maximum principle alone.. The Perron method. Recall in the last lecture we have shown the existence of solutions

More information

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS ADILBEK KAIRZHAN, DMITRY E. PELINOVSKY, AND ROY H. GOODMAN Abstract. When the coefficients of the cubic terms match the coefficients in the boundary

More information

1 Lyapunov theory of stability

1 Lyapunov theory of stability M.Kawski, APM 581 Diff Equns Intro to Lyapunov theory. November 15, 29 1 1 Lyapunov theory of stability Introduction. Lyapunov s second (or direct) method provides tools for studying (asymptotic) stability

More information

Hardy Rellich inequalities with boundary remainder terms and applications

Hardy Rellich inequalities with boundary remainder terms and applications manuscripta mathematica manuscript No. (will be inserted by the editor) Elvise Berchio Daniele Cassani Filippo Gazzola Hardy Rellich inequalities with boundary remainder terms and applications Received:

More information

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations

Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations Bound-state solutions and well-posedness of the dispersion-managed nonlinear Schrödinger and related equations J. Albert and E. Kahlil University of Oklahoma, Langston University 10th IMACS Conference,

More information

arxiv: v3 [math.ap] 1 Oct 2018

arxiv: v3 [math.ap] 1 Oct 2018 ON A CLASS OF NONLINEAR SCHRÖDINGER-POISSON SYSTEMS INVOLVING A NONRADIAL CHARGE DENSITY CARLO MERCURI AND TERESA MEGAN TYLER arxiv:1805.00964v3 [math.ap] 1 Oct 018 Abstract. In the spirit of the classical

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 1017-060X (Print) ISSN: 1735-8515 (Online) Bulletin of the Iranian Mathematical Society Vol. 42 (2016), No. 1, pp. 129 141. Title: On nonlocal elliptic system of p-kirchhoff-type in Author(s): L.

More information

Lecture Notes for LG s Diff. Analysis

Lecture Notes for LG s Diff. Analysis Lecture Notes for LG s Diff. Analysis trans. Paul Gallagher Feb. 18, 2015 1 Schauder Estimate Recall the following proposition: Proposition 1.1 (Baby Schauder). If 0 < λ [a ij ] C α B, Lu = 0, then a ij

More information

A minimization problem for the Nonlinear

A minimization problem for the Nonlinear São Paulo Journal of Mathematical Sciences 5, 2 (211), 149 173 A minimization problem for the Nonlinear Schrödinger-Poisson type Equation Gaetano Siciliano Dipartimento di Matematica, Università degli

More information

APMA 2811Q. Homework #1. Due: 9/25/13. 1 exp ( f (x) 2) dx, I[f] =

APMA 2811Q. Homework #1. Due: 9/25/13. 1 exp ( f (x) 2) dx, I[f] = APMA 8Q Homework # Due: 9/5/3. Ill-posed problems a) Consider I : W,, ) R defined by exp f x) ) dx, where W,, ) = f W,, ) : f) = f) = }. Show that I has no minimizer in A. This problem is not coercive

More information

The Helically Reduced Wave Equation as a Symmetric Positive System

The Helically Reduced Wave Equation as a Symmetric Positive System Utah State University DigitalCommons@USU All Physics Faculty Publications Physics 2003 The Helically Reduced Wave Equation as a Symmetric Positive System Charles G. Torre Utah State University Follow this

More information

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES

CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES CLASSIFICATION OF NON-ABELIAN CHERN-SIMONS VORTICES arxiv:hep-th/9310182v1 27 Oct 1993 Gerald V. Dunne Department of Physics University of Connecticut 2152 Hillside Road Storrs, CT 06269 USA dunne@hep.phys.uconn.edu

More information

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS

EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC SCHRÖDINGER EQUATIONS Electronic Journal of Differential Equations, Vol. 017 (017), No. 15, pp. 1 7. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EXISTENCE OF SOLUTIONS TO ASYMPTOTICALLY PERIODIC

More information

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds

Bielefeld Course on Nonlinear Waves - June 29, Department of Mathematics University of North Carolina, Chapel Hill. Solitons on Manifolds Joint work (on various projects) with Pierre Albin (UIUC), Hans Christianson (UNC), Jason Metcalfe (UNC), Michael Taylor (UNC), Laurent Thomann (Nantes) Department of Mathematics University of North Carolina,

More information

Nonlinear instability of half-solitons on star graphs

Nonlinear instability of half-solitons on star graphs Nonlinear instability of half-solitons on star graphs Adilbek Kairzhan and Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Workshop Nonlinear Partial Differential Equations on

More information

Electrically and Magnetically Charged Solitons in Gauge Field Th

Electrically and Magnetically Charged Solitons in Gauge Field Th Electrically and Magnetically Charged Solitons in Gauge Field Theory Polytechnic Institute of New York University Talk at the conference Differential and Topological Problems in Modern Theoretical Physics,

More information

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION

A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION A CONVEX-CONCAVE ELLIPTIC PROBLEM WITH A PARAMETER ON THE BOUNDARY CONDITION JORGE GARCÍA-MELIÁN, JULIO D. ROSSI AND JOSÉ C. SABINA DE LIS Abstract. In this paper we study existence and multiplicity of

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Nonlinear problems with lack of compactness in Critical Point Theory

Nonlinear problems with lack of compactness in Critical Point Theory Nonlinear problems with lack of compactness in Critical Point Theory Carlo Mercuri CASA Day Eindhoven, 11th April 2012 Critical points Many linear and nonlinear PDE s have the form P(u) = 0, u X. (1) Here

More information

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems

Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Chapter 1 Foundations of Elliptic Boundary Value Problems 1.1 Euler equations of variational problems Elliptic boundary value problems often occur as the Euler equations of variational problems the latter

More information

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION

NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian UNDER NONHOMOGENEOUS NEUMANN BOUNDARY CONDITION Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 210, pp. 1 7. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu NONLINEAR FREDHOLM ALTERNATIVE FOR THE p-laplacian

More information

Nodal solutions of a NLS equation concentrating on lower dimensional spheres

Nodal solutions of a NLS equation concentrating on lower dimensional spheres Presentation Nodal solutions of a NLS equation concentrating on lower dimensional spheres Marcos T.O. Pimenta and Giovany J. M. Figueiredo Unesp / UFPA Brussels, September 7th, 2015 * Supported by FAPESP

More information

2 A Model, Harmonic Map, Problem

2 A Model, Harmonic Map, Problem ELLIPTIC SYSTEMS JOHN E. HUTCHINSON Department of Mathematics School of Mathematical Sciences, A.N.U. 1 Introduction Elliptic equations model the behaviour of scalar quantities u, such as temperature or

More information

arxiv: v1 [math.ap] 16 Jan 2015

arxiv: v1 [math.ap] 16 Jan 2015 Three positive solutions of a nonlinear Dirichlet problem with competing power nonlinearities Vladimir Lubyshev January 19, 2015 arxiv:1501.03870v1 [math.ap] 16 Jan 2015 Abstract This paper studies a nonlinear

More information

Some lecture notes for Math 6050E: PDEs, Fall 2016

Some lecture notes for Math 6050E: PDEs, Fall 2016 Some lecture notes for Math 65E: PDEs, Fall 216 Tianling Jin December 1, 216 1 Variational methods We discuss an example of the use of variational methods in obtaining existence of solutions. Theorem 1.1.

More information

Control, Stabilization and Numerics for Partial Differential Equations

Control, Stabilization and Numerics for Partial Differential Equations Paris-Sud, Orsay, December 06 Control, Stabilization and Numerics for Partial Differential Equations Enrique Zuazua Universidad Autónoma 28049 Madrid, Spain enrique.zuazua@uam.es http://www.uam.es/enrique.zuazua

More information

Elliptic stability for stationary Schrödinger equations by Emmanuel Hebey. Part III/VI A priori blow-up theories March 2015

Elliptic stability for stationary Schrödinger equations by Emmanuel Hebey. Part III/VI A priori blow-up theories March 2015 Elliptic stability for stationary Schrödinger equations by Emmanuel Hebey Part III/VI A priori blow-up theories March 2015 Nonlinear analysis arising from geometry and physics Conference in honor of Professor

More information

Non-radial solutions to a bi-harmonic equation with negative exponent

Non-radial solutions to a bi-harmonic equation with negative exponent Non-radial solutions to a bi-harmonic equation with negative exponent Ali Hyder Department of Mathematics, University of British Columbia, Vancouver BC V6TZ2, Canada ali.hyder@math.ubc.ca Juncheng Wei

More information

A Concise Course on Stochastic Partial Differential Equations

A Concise Course on Stochastic Partial Differential Equations A Concise Course on Stochastic Partial Differential Equations Michael Röckner Reference: C. Prevot, M. Röckner: Springer LN in Math. 1905, Berlin (2007) And see the references therein for the original

More information

arxiv: v1 [math.ap] 28 Aug 2018

arxiv: v1 [math.ap] 28 Aug 2018 Note on semiclassical states for the Schrödinger equation with nonautonomous nonlinearities Bartosz Bieganowski Nicolaus Copernicus University, Faculty of Mathematics and Computer Science, ul. Chopina

More information

Dirac equation for dummies or theory of elasticity for the seriously advanced

Dirac equation for dummies or theory of elasticity for the seriously advanced Dirac equation for dummies or theory of elasticity for the seriously advanced James Burnett, Olga Chervova and Dmitri Vassiliev 30 January 2009 KCL Colloquium Dirac s equation is a model for (a) electron

More information

Qualitative behavior of global solutions to some nonlinear fourth order differential equations

Qualitative behavior of global solutions to some nonlinear fourth order differential equations Qualitative behavior of global solutions to some nonlinear fourth order differential equations Elvise BERCHIO - Alberto FERRERO - Filippo GAZZOLA - Paschalis KARAGEORGIS Abstract We study global solutions

More information

Nonlinear elliptic systems with exponential nonlinearities

Nonlinear elliptic systems with exponential nonlinearities 22-Fez conference on Partial Differential Equations, Electronic Journal of Differential Equations, Conference 9, 22, pp 139 147. http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu

More information

Ground state on the bounded and unbounded graphs

Ground state on the bounded and unbounded graphs Ground state on the bounded and unbounded graphs Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Joint work with Jeremy Marzuola, University of North Carolina, USA Workshop Mathematical

More information

Perturbations of singular solutions to Gelfand s problem p.1

Perturbations of singular solutions to Gelfand s problem p.1 Perturbations of singular solutions to Gelfand s problem Juan Dávila (Universidad de Chile) In celebration of the 60th birthday of Ireneo Peral February 2007 collaboration with Louis Dupaigne (Université

More information

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping.

Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. Minimization Contents: 1. Minimization. 2. The theorem of Lions-Stampacchia for variational inequalities. 3. Γ -Convergence. 4. Duality mapping. 1 Minimization A Topological Result. Let S be a topological

More information

Stable solitons of the cubic-quintic NLS with a delta-function potential

Stable solitons of the cubic-quintic NLS with a delta-function potential Stable solitons of the cubic-quintic NLS with a delta-function potential François Genoud TU Delft Besançon, 7 January 015 The cubic-quintic NLS with a δ-potential We consider the nonlinear Schrödinger

More information

arxiv: v2 [math.ap] 28 Nov 2016

arxiv: v2 [math.ap] 28 Nov 2016 ONE-DIMENSIONAL SAIONARY MEAN-FIELD GAMES WIH LOCAL COUPLING DIOGO A. GOMES, LEVON NURBEKYAN, AND MARIANA PRAZERES arxiv:1611.8161v [math.ap] 8 Nov 16 Abstract. A standard assumption in mean-field game

More information

y = h + η(x,t) Δϕ = 0

y = h + η(x,t) Δϕ = 0 HYDRODYNAMIC PROBLEM y = h + η(x,t) Δϕ = 0 y ϕ y = 0 y = 0 Kinematic boundary condition: η t = ϕ y η x ϕ x Dynamical boundary condition: z x ϕ t + 1 2 ϕ 2 + gη + D 1 1 η xx ρ (1 + η 2 x ) 1/2 (1 + η 2

More information

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN

MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS WITH THE SECOND HESSIAN Electronic Journal of Differential Equations, Vol 2016 (2016), No 289, pp 1 16 ISSN: 1072-6691 URL: http://ejdemathtxstateedu or http://ejdemathuntedu MULTIPLE SOLUTIONS FOR BIHARMONIC ELLIPTIC PROBLEMS

More information

Abelian and non-abelian Hopfions in all odd dimensions

Abelian and non-abelian Hopfions in all odd dimensions Abelian and non-abelian Hopfions in all odd dimensions Tigran Tchrakian Dublin Institute for Advanced Studies (DIAS) National University of Ireland Maynooth, Ireland 7 December, 2012 Table of contents

More information

Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys Homework 1

Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys Homework 1 PHYS 6124 Handout 6 23 August 2012 Mathematical Methods of Physics I ChaosBook.org/ predrag/courses/phys-6124-12 Homework 1 Prof. P. Goldbart School of Physics Georgia Tech Homework assignments are posted

More information

Weighted Trudinger-Moser inequalities and associated Liouville type equations

Weighted Trudinger-Moser inequalities and associated Liouville type equations Weighted Trudinger-Moser inequalities and associated Liouville type equations Marta Calanchi, Eugenio Massa and ernhard Ruf Abstract We discuss some Trudinger Moser inequalities with weighted Sobolev norms.

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Topological Solitons from Geometry

Topological Solitons from Geometry Topological Solitons from Geometry Maciej Dunajski Department of Applied Mathematics and Theoretical Physics University of Cambridge Atiyah, Manton, Schroers. Geometric models of matter. arxiv:1111.2934.

More information

Nonlinear Wave Equations and Solitary Wave Solutions in Mathematical Physics

Nonlinear Wave Equations and Solitary Wave Solutions in Mathematical Physics Claremont Colleges Scholarship @ Claremont HMC Senior Theses HMC Student Scholarship 2012 Nonlinear Wave Equations and Solitary Wave Solutions in Mathematical Physics Trevor Caldwell Harvey Mudd College

More information

18.325: Vortex Dynamics

18.325: Vortex Dynamics 8.35: Vortex Dynamics Problem Sheet. Fluid is barotropic which means p = p(. The Euler equation, in presence of a conservative body force, is Du Dt = p χ. This can be written, on use of a vector identity,

More information

Spotlight on Laplace s Equation

Spotlight on Laplace s Equation 16 Spotlight on Laplace s Equation Reference: Sections 1.1,1.2, and 1.5. Laplace s equation is the undriven, linear, second-order PDE 2 u = (1) We defined diffusivity on page 587. where 2 is the Laplacian

More information

MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH

MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH MULTIPLE SOLUTIONS FOR A KIRCHHOFF EQUATION WITH NONLINEARITY HAVING ARBITRARY GROWTH MARCELO F. FURTADO AND HENRIQUE R. ZANATA Abstract. We prove the existence of infinitely many solutions for the Kirchhoff

More information

OPTIMAL POTENTIALS FOR SCHRÖDINGER OPERATORS. 1. Introduction In this paper we consider optimization problems of the form. min F (V ) : V V, (1.

OPTIMAL POTENTIALS FOR SCHRÖDINGER OPERATORS. 1. Introduction In this paper we consider optimization problems of the form. min F (V ) : V V, (1. OPTIMAL POTENTIALS FOR SCHRÖDINGER OPERATORS G. BUTTAZZO, A. GEROLIN, B. RUFFINI, AND B. VELICHKOV Abstract. We consider the Schrödinger operator + V (x) on H 0 (), where is a given domain of R d. Our

More information

ON THE HYPERBOLIC RELAXATION OF THE CAHN-HILLIARD EQUATION IN 3-D: APPROXIMATION AND LONG TIME BEHAVIOUR

ON THE HYPERBOLIC RELAXATION OF THE CAHN-HILLIARD EQUATION IN 3-D: APPROXIMATION AND LONG TIME BEHAVIOUR ON THE HYPERBOLIC RELAXATION OF THE CAHN-HILLIARD EQUATION IN 3-D: APPROXIMATION AND LONG TIME BEHAVIOUR ANTONIO SEGATTI Abstract. In this paper we consider the hyperbolic relaxation of the Cahn-Hilliard

More information

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM

EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM EXISTENCE RESULTS FOR OPERATOR EQUATIONS INVOLVING DUALITY MAPPINGS VIA THE MOUNTAIN PASS THEOREM JENICĂ CRÎNGANU We derive existence results for operator equations having the form J ϕu = N f u, by using

More information

TRANSPORT IN POROUS MEDIA

TRANSPORT IN POROUS MEDIA 1 TRANSPORT IN POROUS MEDIA G. ALLAIRE CMAP, Ecole Polytechnique 1. Introduction 2. Main result in an unbounded domain 3. Asymptotic expansions with drift 4. Two-scale convergence with drift 5. The case

More information

Scaling properties of functionals and existence of constrained minimizers

Scaling properties of functionals and existence of constrained minimizers Journal of Functional Analysis 61 (11) 486 57 www.elsevier.com/locate/jfa Scaling properties of functionals and existence of constrained minimizers Jacopo Bellazzini a,, Gaetano Siciliano b a Università

More information

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS

MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS MODULUS OF CONTINUITY OF THE DIRICHLET SOLUTIONS HIROAKI AIKAWA Abstract. Let D be a bounded domain in R n with n 2. For a function f on D we denote by H D f the Dirichlet solution, for the Laplacian,

More information

Hylomorphic solitons and their dynamics

Hylomorphic solitons and their dynamics Hylomorphic solitons and their dynamics Vieri Benci Dipartimento di Matematica Applicata U. Dini Università di Pisa 18th May 2009 Vieri Benci (DMA-Pisa) Hylomorphic solitons 18th May 2009 1 / 50 Types

More information

Linear and Nonlinear Aspects of Vortices : the Ginzburg-Landau Model. F. Pacard T. Rivière

Linear and Nonlinear Aspects of Vortices : the Ginzburg-Landau Model. F. Pacard T. Rivière Linear and Nonlinear Aspects of Vortices : the Ginzburg-Landau Model F. Pacard T. Rivière January 28, 2004 Contents 1 Qualitative Aspects of Ginzburg-Landau Equations 1 1.1 The integrable case..........................

More information

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.

LEGENDRE POLYNOMIALS AND APPLICATIONS. We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates. LEGENDRE POLYNOMIALS AND APPLICATIONS We construct Legendre polynomials and apply them to solve Dirichlet problems in spherical coordinates.. Legendre equation: series solutions The Legendre equation is

More information

Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R

Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R Propagating terraces and the dynamics of front-like solutions of reaction-diffusion equations on R P. Poláčik School of Mathematics, University of Minnesota Minneapolis, MN 55455 Abstract We consider semilinear

More information

On the relation between scaling properties of functionals and existence of constrained minimizers

On the relation between scaling properties of functionals and existence of constrained minimizers On the relation between scaling properties of functionals and existence of constrained minimizers Jacopo Bellazzini Dipartimento di Matematica Applicata U. Dini Università di Pisa January 11, 2011 J. Bellazzini

More information

arxiv: v1 [math.ap] 24 Oct 2014

arxiv: v1 [math.ap] 24 Oct 2014 Multiple solutions for Kirchhoff equations under the partially sublinear case Xiaojing Feng School of Mathematical Sciences, Shanxi University, Taiyuan 030006, People s Republic of China arxiv:1410.7335v1

More information

Compactness results and applications to some zero mass elliptic problems

Compactness results and applications to some zero mass elliptic problems Compactness results and applications to some zero mass elliptic problems A. Azzollini & A. Pomponio 1 Introduction and statement of the main results In this paper we study the elliptic problem, v = f (v)

More information

BIHARMONIC WAVE MAPS INTO SPHERES

BIHARMONIC WAVE MAPS INTO SPHERES BIHARMONIC WAVE MAPS INTO SPHERES SEBASTIAN HERR, TOBIAS LAMM, AND ROLAND SCHNAUBELT Abstract. A global weak solution of the biharmonic wave map equation in the energy space for spherical targets is constructed.

More information

Symmetry and monotonicity of least energy solutions

Symmetry and monotonicity of least energy solutions Symmetry and monotonicity of least energy solutions Jaeyoung BYEO, Louis JEAJEA and Mihai MARIŞ Abstract We give a simple proof of the fact that for a large class of quasilinear elliptic equations and

More information

Stability of nonlinear locally damped partial differential equations: the continuous and discretized problems. Part II

Stability of nonlinear locally damped partial differential equations: the continuous and discretized problems. Part II . Stability of nonlinear locally damped partial differential equations: the continuous and discretized problems. Part II Fatiha Alabau-Boussouira 1 Emmanuel Trélat 2 1 Univ. de Lorraine, LMAM 2 Univ. Paris

More information

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory

Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Ground State Patterns of Spin-1 Bose-Einstein condensation via Γ-convergence Theory Tien-Tsan Shieh joint work with I-Liang Chern and Chiu-Fen Chou National Center of Theoretical Science December 19, 2015

More information

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang)

Stability and Instability of Standing Waves for the Nonlinear Fractional Schrödinger Equation. Shihui Zhu (joint with J. Zhang) and of Standing Waves the Fractional Schrödinger Equation Shihui Zhu (joint with J. Zhang) Department of Mathematics, Sichuan Normal University & IMS, National University of Singapore P1 iu t ( + k 2 )

More information

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction

SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS. M. Grossi S. Kesavan F. Pacella M. Ramaswamy. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 12, 1998, 47 59 SYMMETRY OF POSITIVE SOLUTIONS OF SOME NONLINEAR EQUATIONS M. Grossi S. Kesavan F. Pacella M. Ramaswamy

More information

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1

Scientific Computing WS 2017/2018. Lecture 18. Jürgen Fuhrmann Lecture 18 Slide 1 Scientific Computing WS 2017/2018 Lecture 18 Jürgen Fuhrmann juergen.fuhrmann@wias-berlin.de Lecture 18 Slide 1 Lecture 18 Slide 2 Weak formulation of homogeneous Dirichlet problem Search u H0 1 (Ω) (here,

More information

Calculus of Variations. Final Examination

Calculus of Variations. Final Examination Université Paris-Saclay M AMS and Optimization January 18th, 018 Calculus of Variations Final Examination Duration : 3h ; all kind of paper documents (notes, books...) are authorized. The total score of

More information

Probing Holographic Superfluids with Solitons

Probing Holographic Superfluids with Solitons Probing Holographic Superfluids with Solitons Sean Nowling Nordita GGI Workshop on AdS4/CFT3 and the Holographic States of Matter work in collaboration with: V. Keränen, E. Keski-Vakkuri, and K.P. Yogendran

More information

On some weighted fractional porous media equations

On some weighted fractional porous media equations On some weighted fractional porous media equations Gabriele Grillo Politecnico di Milano September 16 th, 2015 Anacapri Joint works with M. Muratori and F. Punzo Gabriele Grillo Weighted Fractional PME

More information

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability...

Functional Analysis. Franck Sueur Metric spaces Definitions Completeness Compactness Separability... Functional Analysis Franck Sueur 2018-2019 Contents 1 Metric spaces 1 1.1 Definitions........................................ 1 1.2 Completeness...................................... 3 1.3 Compactness......................................

More information

On John type ellipsoids

On John type ellipsoids On John type ellipsoids B. Klartag Tel Aviv University Abstract Given an arbitrary convex symmetric body K R n, we construct a natural and non-trivial continuous map u K which associates ellipsoids to

More information

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms

On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms On the Brezis and Mironescu conjecture concerning a Gagliardo-Nirenberg inequality for fractional Sobolev norms Vladimir Maz ya Tatyana Shaposhnikova Abstract We prove the Gagliardo-Nirenberg type inequality

More information

Scattering for cubic-quintic nonlinear Schrödinger equation on R 3

Scattering for cubic-quintic nonlinear Schrödinger equation on R 3 Scattering for cubic-quintic nonlinear Schrödinger equation on R 3 Oana Pocovnicu Princeton University March 9th 2013 Joint work with R. Killip (UCLA), T. Oh (Princeton), M. Vişan (UCLA) SCAPDE UCLA 1

More information

SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR DIFFERENCE EQUATIONS ON INTEGERS

SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS FOR DIFFERENCE EQUATIONS ON INTEGERS Electronic Journal of Differential Equations, Vol. 2017 (2017, No. 228, pp. 1 12. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu SEQUENCES OF SMALL HOMOCLINIC SOLUTIONS

More information

Quasi-neutral limit for Euler-Poisson system in the presence of plasma sheaths

Quasi-neutral limit for Euler-Poisson system in the presence of plasma sheaths in the presence of plasma sheaths Department of Mathematical Sciences Ulsan National Institute of Science and Technology (UNIST) joint work with Masahiro Suzuki (Nagoya) and Chang-Yeol Jung (Ulsan) The

More information