Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos.

Size: px
Start display at page:

Download "Periodic Solutions of the Serre Equations. John D. Carter. October 24, Joint work with Rodrigo Cienfuegos."

Transcription

1 October 24, 2009 Joint work with Rodrigo Cienfuegos.

2 Outline I. Physical system and governing equations II. The Serre equations A. Derivation B. Justification C. Properties D. Solutions E. Stability

3 Physical System Consider the 1-D flow of an inviscid, irrotational, incompressible fluid. z Η, free surface a 0 z h 0 undisturbed level Η l 0 h 0 z x z 0 at the bottom

4 Governing Equations Consider the 1-D flow of an inviscid, irrotational, incompressible fluid. Let η(x, t) represent the location of the free surface u(x, z, t) represent the horizontal velocity of the fluid w(x, z, t) represent the vertical velocity of the fluid p(x, z, t) represent the pressure in the fluid ɛ = a 0 /h 0 δ = h 0 /l 0 Λ = 2a 0 /l 0 = 2ɛδ (a measure of nonlinearity) (a measure of shallowness) (a measure of steepness)

5 Governing Equations The dimensionless governing equations are u x + w z = 0 for 0 < z < 1 + ɛη u z δw x = 0 for 0 < z < 1 + ɛη ɛu t + ɛ 2 (u 2 ) x + ɛ 2 (uw) z + p x = 0 for 0 < z < 1 + ɛη δ 2 ɛw t + δ 2 ɛ 2 uw x + δ 2 ɛ 2 ww z + p z = 1 for 0 < z < 1 + ɛη w = η t + ɛuη x at z = 1 + ɛη p = 0 at z = 1 + ɛη w = 0 at z = 0

6 Derivation of the Serre Equations Derivation of the Serre Equations

7 Depth Averaging The Serre equations are obtained from the governing equations by (Serre 1953, Su & Gardner 1969, Green & Naghdi 1976) 1. Depth averaging The depth-averaged value of a quantity f (x, z, t) is defined by f (x, t) = 1 h(x, t) h(x,t) 0 f (x, z, t) dz where h(x, t) = 1 + ɛη(x, t) is the location of the free surface. 2. Assuming that δ << 1 3. No restrictions are made on ɛ

8 Governing Equations After depth averaging, the dimensionless governing equations are η t + ɛ(ηu) x = 0 u t + η x + ɛu u x δ2 ( η 3( u xt + ɛu u xx ɛ(u x ) 2)) 3η = x O(δ4, ɛδ 4 )

9 The Serre Equations Truncating this system at O(δ 4, ɛδ 4 ) and transforming back to physical variables gives the Serre Equations η t + (ηu) x = 0 u t + gη x + u u x 1 ( η 3( u xt + u u xx (u x ) 2)) 3η = 0 x where η(x, t) is the dimensional free-surface elevation u(x, t) is the dimensional depth-averaged horizontal velocity g is the acceleration due to gravity

10 Further justification of the Serre Equations Seabra-Santos et al. 1988: Compare range of validity of the Serre equations with other equations Dingemans 1997: Wave and current interactions Guizein & Barthélemy 2002: Soliton creation experiments Barthélemy 2003: Experiments of solitons over steps Cienfuegos et al. 2006: Serre equations for uneven bathymetries El & Grimshaw 2006: Serre equations modeling undular bores Lannes & Bonneton 2009: Serre equations are appropriate for nonlinear shallow water wave propagation

11 Properties of the Serre Equations Serre equation conservation laws

12 Serre Equation Conservation Laws I. Mass II. Momentum t (η) + x (ηu) = 0 t (ηu) + x ( 1 2 gη2 1 3 η3 u xt + ηu η3 u 2 x 1 3 η3 u u xx ) = 0 III. Energy ( 1 t 2 η( gη+u η2 u 2 ) ) ( x + x ηu ( gη+ 1 2 u η2 u 2 x 1 3 η2 (u xt +uu xx ) )) = 0 IV. Irrotationality ( t u ηη x u x 1 ) 3 η2 u xx + x (ηη t u x +gη 1 3 η2 u u xx + 1 ) 2 η2 u 2 x = 0

13 Translation Invariance The Serre equations are invariant under the transformation η(x, t) = ˆη(x st, t) u(x, t) = û(x st, t) + s ˆx = x st where s is any real parameter. Physically, this corresponds to adding a constant horizontal flow to the entire system.

14 Solutions of the Serre Equations Solutions of the Serre Equations

15 Solutions of the Serre Equations η(x, t) = a 0 + a 1 dn 2( κ(x ct), k ) ( u(x, t) = c 1 h ) 0 η(x, t) κ = c = 3a1 2 a 0 (a 0 + a 1 )(a 0 + (1 k 2 )a 1 ) ga0 (a 0 + a 1 )(a 0 + (1 k 2 )a 1 ) h 0 h 0 = a 0 + a 1 E(k) K(k) Here k [0, 1], a 0 > 0, and a 1 > 0 are free parameters.

16 The water surface if k (0, 1): 1 a 0 a 1 1 k 2

17 Constant Solution of the Serre Equations If k = 0, the solution simplifies to η(x, t) = a 0 + a 1 u(x, t) = 0 The water surface if k = 0: a 0 a 1

18 Soliton Solution of the Serre Equations If k = 1, the solution reduces to η(x, t) = a 0 + a 1 sech 2( 3a1 (x ) g(a 0 + a 1 )t) 2a 0 a0 + a 1 u(x, t) = ( g(a 0 + a 1 ) 1 a ) 0 η(x, t) The water surface if k = 1: a 1 a 0

19 Stability of Solutions of the Serre Equations Stability of The soliton solution of the Serre equations is linearly stable (Li 2001).

20 Stability of Solutions of the Serre Equations Transform to a moving coordinate frame The Serre equations become χ = x ct τ = t η τ cη χ + ( ηu ) χ = 0 u τ cu χ + u u χ + η χ 1 ( η 3( u χτ cu χχ + u u χχ (u χ ) 2)) 3η = 0 χ and the solutions become η = η 0 (χ) = a 0 + a 1 dn 2( κχ, k ) ( u = u 0 (χ) = c 1 h ) 0 η 0 (χ)

21 Stability of Solutions of the Serre Equations Consider perturbed solutions of the form η pert (χ, τ) = η 0 (χ) + ɛη 1 (χ, τ) + O(ɛ 2 ) u pert (χ, τ) = u 0 (χ) + ɛu 1 (χ, τ) + O(ɛ 2 ) where ɛ is a small real parameter η 1 (χ, τ) and u 1 (χ, τ) are real-valued functions η 0 (χ) = a 0 + a 1 dn 2 (κχ, k) ( ) u 0 (χ) = c 1 h 0 η 0 (χ)

22 Stability of Solutions of the Serre Equations Without loss of generality, assume η 1 (χ, τ) = H(χ)e Ωτ + c.c. u 1 (χ, τ) = U(χ)e Ωτ + c.c. where H(χ) and U(χ) are complex-valued functions Ω is a complex constant c.c. denotes complex conjugate

23 Stability of Solutions of the Serre Equations This leads the following linear system ( ) ( ) H H L = Ω M U U where ( u L = 0 + (c u 0 ) χ η 0 η ) 0 χ L 21 L 22 ( ) 1 0 M = 0 1 η 0 η 0 χ 1 3 η2 0 χχ and prime represents derivative with respect to χ.

24 Stability of Solutions of the Serre Equations where L 21 = η 0(u 0) 2 cη 0u cη 0u 0 + η 0u 0 u η 0u 0u η 0u 0 u 0 + ( η 0 u 0 u 0 g η 0 (u 0) 2 cη 0 u 0) χ L 22 = u 0 + η 0 η 0u η2 0u 0 + ( c u 0 2η 0 η 0u η2 0u 0) χ + ( η 0 η 0u 0 cη 0 η η2 0u 0 ) χχ + ( 1 3 η2 0u cη2 0 ) χχχ

25 Stability of Solutions of the Serre Equations L ( ) ( ) H H = Ω M U U We solved this system using the Fourier-Floquet-Hill Method (Deconinck & Kutz 2006). This method allows the computation of eigenvalues corresponding to eigenfunctions of the form ( ) ( ) H = e iρχ H P U U P where H P and U P are periodic in χ with period 2K/κ ρ [ πκ/(4k), πκ/(4k)). If ρ = 0, then the perturbation has the same period as the unperturbed solution.

26 Stability of Solutions of the Serre Equations We conducted three series of numerical simulations I. Fixed a 0 and k, varying a 1 II. Fixed a 0 and a 1, varying k III. Fixed a 0 and wave amplitude, varying k and a 1 simultaneously wave amplitude=a 1 k 2

27 Case I: Fixed a 0 and k a 0 = 0.3, k = 0.75, N = 75, P = 1500 Case I: Fixed a 0 and k a 1 δ ɛ Λ

28 Case I: Fixed a 0 and k m a m a e e a m e m a e

29 Case I: Fixed a 0 and k Observations: If a 1 is small enough, there are no Ωs with positive real part. Therefore the solution is linearly stable. If a 1 is large enough, then there are Ωs with positive real part. Therefore the solution is linearly unstable. The cutoff between stability and instability is at a The maximum growth rate increases as a 1 increases. All instabilities are oscillatory instabilities. The rate of instability oscillation increases as a 1 increases. For each value of a 1, there is only one band of instabilities (for these parameters). Generally, the instability with maximal growth rate corresponds to a perturbation with nonzero ρ.

30 Case II: Fixed a 0 and a 1 a 0 = 0.3, a 1 = 0.1, N = 75, P = 1500 Case II: Fixed a 0 and a 1 k δ ɛ Λ

31 Case II: Fixed a 0 and a 1 m k e m k e m k e m k e

32 Case II: Fixed a 0 and a 1 Observations: If k is small enough, there is no instability. If k is large enough, there is instability. The cutoff between stability and instability occurs at k As k increases away from zero, the maximum growth rate increases until k Above this value, the maximum growth rate decreases. At k = 0.947, the maximum growth rate is All instabilities are oscillatory instabilities. As k increases, the number of bands of instability increases. Generally, the instability with maximal growth rate corresponds to a ρ 0 perturbation.

33 Case III: Fixed a 0 and wave amplitude a 0 = 0.3, a 1 k 2 = 0.1, N = 75, P = 1500 Case III: Fixed a 0 and wave amplitude k δ ɛ Λ

34 Case III: Fixed a 0 and wave amplitude m k 0.5 m k e e m k e m k e

35 Case III: Fixed a 0 and wave amplitude Observations: If k is small enough, there is no instability. If k is large enough, there is instability. The cutoff between stability and instability occurs at k As k increases away from zero, the maximum growth rate increases until k Above this value, the maximum growth rate decreases. At k = 0.86, the maximum growth rate is All instabilities are oscillatory. As k increases, the number of bands of instabilities increases. Generally, the instability with maximal growth rate corresponds to a ρ 0 perturbation.

36 Summary Waves with sufficiently small amplitude/steepness are stable. Waves with sufficiently large amplitude/steepness are unstable. Series of simulations in which Λ was unbounded, did not exhibit a maximal growth rate. Series of simulations in which Λ was bounded, exhibited a maximal growth rate.

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos.

Stability and Shoaling in the Serre Equations. John D. Carter. March 23, Joint work with Rodrigo Cienfuegos. March 23, 2009 Joint work with Rodrigo Cienfuegos. Outline The Serre equations I. Derivation II. Properties III. Solutions IV. Solution stability V. Wave shoaling Derivation of the Serre Equations Derivation

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS

The Whitham Equation. John D. Carter April 2, Based upon work supported by the NSF under grant DMS April 2, 2015 Based upon work supported by the NSF under grant DMS-1107476. Collaborators Harvey Segur, University of Colorado at Boulder Diane Henderson, Penn State University David George, USGS Vancouver

More information

Dispersion in Shallow Water

Dispersion in Shallow Water Seattle University in collaboration with Harvey Segur University of Colorado at Boulder David George U.S. Geological Survey Diane Henderson Penn State University Outline I. Experiments II. St. Venant equations

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

The effect of a background shear current on large amplitude internal solitary waves

The effect of a background shear current on large amplitude internal solitary waves The effect of a background shear current on large amplitude internal solitary waves Wooyoung Choi Dept. of Mathematical Sciences New Jersey Institute of Technology CAMS Report 0506-4, Fall 005/Spring 006

More information

On the nonlinear dynamics of the traveling-wave solutions of the Serre system

On the nonlinear dynamics of the traveling-wave solutions of the Serre system On the nonlinear dynamics of the traveling-wave solutions of the Serre system Dimitrios Mitsotakis a,, Denys Dutykh b, John Carter c a Victoria University of Wellington, School of Mathematics, Statistics

More information

GFD 2013 Lecture 4: Shallow Water Theory

GFD 2013 Lecture 4: Shallow Water Theory GFD 213 Lecture 4: Shallow Water Theory Paul Linden; notes by Kate Snow and Yuki Yasuda June 2, 214 1 Validity of the hydrostatic approximation In this lecture, we extend the theory of gravity currents

More information

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves

Model Equation, Stability and Dynamics for Wavepacket Solitary Waves p. 1/1 Model Equation, Stability and Dynamics for Wavepacket Solitary Waves Paul Milewski Mathematics, UW-Madison Collaborator: Ben Akers, PhD student p. 2/1 Summary Localized solitary waves exist in the

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

arxiv: v1 [math.na] 27 Jun 2017

arxiv: v1 [math.na] 27 Jun 2017 Behaviour of the Serre Equations in the Presence of Steep Gradients Revisited J.P.A. Pitt a,, C. Zoppou a, S.G. Roberts a arxiv:706.08637v [math.na] 27 Jun 207 a Mathematical Sciences Institute, Australian

More information

Bottom friction effects on linear wave propagation

Bottom friction effects on linear wave propagation Bottom friction effects on linear wave propagation G. Simarro a,, A. Orfila b, A. Galán a,b, G. Zarruk b. a E.T.S.I. Caminos, Canales y Puertos, Universidad de Castilla La Mancha. 13071 Ciudad Real, Spain.

More information

Modified Serre Green Naghdi equations with improved or without dispersion

Modified Serre Green Naghdi equations with improved or without dispersion Modified Serre Green Naghdi equations with improved or without dispersion DIDIER CLAMOND Université Côte d Azur Laboratoire J. A. Dieudonné Parc Valrose, 06108 Nice cedex 2, France didier.clamond@gmail.com

More information

Rogue periodic waves for mkdv and NLS equations

Rogue periodic waves for mkdv and NLS equations Rogue periodic waves for mkdv and NLS equations Jinbing Chen and Dmitry Pelinovsky Department of Mathematics, McMaster University, Hamilton, Ontario, Canada http://dmpeli.math.mcmaster.ca AMS Sectional

More information

Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid. Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 2012

Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid. Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 2012 Floquet Theory for Internal Gravity Waves in a Density-Stratified Fluid Yuanxun Bill Bao Senior Supervisor: Professor David J. Muraki August 3, 212 Density-Stratified Fluid Dynamics Density-Stratified

More information

Dispersion relations, stability and linearization

Dispersion relations, stability and linearization Dispersion relations, stability and linearization 1 Dispersion relations Suppose that u(x, t) is a function with domain { < x 0}, and it satisfies a linear, constant coefficient partial differential

More information

Unsteady undular bores in fully nonlinear shallow-water theory

Unsteady undular bores in fully nonlinear shallow-water theory Unsteady undular bores in fully nonlinear shallow-water theory arxiv:nlin/0507029v2 [nlin.ps] 22 Jan 2006 G.A. El 1, R.H.J. Grimshaw 2 Department of Mathematical Sciences, Loughborough University, Loughborough

More information

Algebraic geometry for shallow capillary-gravity waves

Algebraic geometry for shallow capillary-gravity waves Algebraic geometry for shallow capillary-gravity waves DENYS DUTYKH 1 Chargé de Recherche CNRS 1 Université de Savoie Laboratoire de Mathématiques (LAMA) 73376 Le Bourget-du-Lac France Seminar of Computational

More information

Lecture 12: Transcritical flow over an obstacle

Lecture 12: Transcritical flow over an obstacle Lecture 12: Transcritical flow over an obstacle Lecturer: Roger Grimshaw. Write-up: Erinna Chen June 22, 2009 1 Introduction The flow of a fluid over an obstacle is a classical and fundamental problem

More information

Kelvin Helmholtz Instability

Kelvin Helmholtz Instability Kelvin Helmholtz Instability A. Salih Department of Aerospace Engineering Indian Institute of Space Science and Technology, Thiruvananthapuram November 00 One of the most well known instabilities in fluid

More information

Key words. water waves, Boussinesq system, spectral stability, transverse perturbation, solitary waves, cnoidal waves

Key words. water waves, Boussinesq system, spectral stability, transverse perturbation, solitary waves, cnoidal waves SPECTRAL STABILITY OF STATIONARY SOLUTIONS OF A BOUSSINESQ SYSTEM DESCRIBING LONG WAVES IN DISPERSIVE MEDIA MIN CHEN, CHRISTOPHER W. CURTIS, BERNARD DECONINCK, CRYSTAL W. LEE AND NGHIEM NGUYEN Key words.

More information

arxiv: v1 [math-ph] 14 Jan 2019

arxiv: v1 [math-ph] 14 Jan 2019 REMARKS ON EXISTENCE/NONEXISTENCE OF ANALYTIC SOLUTIONS TO HIGHER ORDER KDV EQUATIONS ANNA KARCZEWSKA AND PIOTR ROZMEJ arxiv:1901.04176v1 [math-ph] 14 Jan 2019 ABSTRACT. In this note, we discuss the existence

More information

Exact solutions for shoaling waves in shallow water

Exact solutions for shoaling waves in shallow water Exact solutions for shoaling waves in shallow water Master thesis in Applied and Computational Mathematics Maria Bjørnestad Department of Mathematics University of Bergen February 23, 2017 Acknowledgements

More information

Shallow water approximations for water waves over a moving bottom. Tatsuo Iguchi Department of Mathematics, Keio University

Shallow water approximations for water waves over a moving bottom. Tatsuo Iguchi Department of Mathematics, Keio University Shallow water approximations for water waves over a moving bottom Tatsuo Iguchi Department of Mathematics, Keio University 1 Tsunami generation and simulation Submarine earthquake occures with a seabed

More information

Lecture 1: Introduction to Linear and Non-Linear Waves

Lecture 1: Introduction to Linear and Non-Linear Waves Lecture 1: Introduction to Linear and Non-Linear Waves Lecturer: Harvey Segur. Write-up: Michael Bates June 15, 2009 1 Introduction to Water Waves 1.1 Motivation and Basic Properties There are many types

More information

Fundamentals of Fluid Dynamics: Waves in Fluids

Fundamentals of Fluid Dynamics: Waves in Fluids Fundamentals of Fluid Dynamics: Waves in Fluids Introductory Course on Multiphysics Modelling TOMASZ G. ZIELIŃSKI (after: D.J. ACHESON s Elementary Fluid Dynamics ) bluebox.ippt.pan.pl/ tzielins/ Institute

More information

FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES

FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES COMM. MATH. SCI. Vol. 3, No., pp. 89 99 c 5 International Press FAST COMMUNICATION THREE-DIMENSIONAL LOCALIZED SOLITARY GRAVITY-CAPILLARY WAVES PAUL A. MILEWSKI Abstract. In a weakly nonlinear model equation

More information

UNIVERSITY OF EAST ANGLIA

UNIVERSITY OF EAST ANGLIA UNIVERSITY OF EAST ANGLIA School of Mathematics May/June UG Examination 2007 2008 FLUIDS DYNAMICS WITH ADVANCED TOPICS Time allowed: 3 hours Attempt question ONE and FOUR other questions. Candidates must

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Lecture 18: Wave-Mean Flow Interaction, Part I

Lecture 18: Wave-Mean Flow Interaction, Part I Lecture 18: Wave-Mean Flow Interaction, Part I Lecturer: Roger Grimshaw. Write-up: Hiroki Yamamoto June 5, 009 1 Introduction Nonlinearity in water waves can lead to wave breaking. We can observe easily

More information

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem

1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem 1 POTENTIAL FLOW THEORY Formulation of the seakeeping problem Objective of the Chapter: Formulation of the potential flow around the hull of a ship advancing and oscillationg in waves Results of the Chapter:

More information

Stability and Interactions of Transverse Field Structures in Optical Parametric Oscillators

Stability and Interactions of Transverse Field Structures in Optical Parametric Oscillators Stability and Interactions of Transverse Field Structures in Optical Parametric Oscillators 1 Joel Nishimura Department of Mathematics, University of Washington email: joelnish@u.washington.edu, phone:

More information

The instability of periodic surface gravity waves

The instability of periodic surface gravity waves J. Fluid Mech. (211), vol. 675, pp. 141 167. c Cambridge University Press 211 doi:1.117/s221121173 141 The instability of periodic surface gravity waves BERNARD DECONINCK 1 AND KATIE OLIVERAS 2 1 Department

More information

A Kinematic Conservation Law in Free Surface Flow

A Kinematic Conservation Law in Free Surface Flow A Kinematic Conservation Law in Free Surface Flow Sergey Gavrilyuk, Henrik Kalisch, Zahra Khorsand To cite this version: Sergey Gavrilyuk, Henrik Kalisch, Zahra Khorsand. A Kinematic Conservation Law in

More information

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China the 3th GCOE International Symposium, Tohoku University, 17-19

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25

Rogue Waves. Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy. 18 January /25 1/25 Rogue Waves Thama Duba, Colin Please, Graeme Hocking, Kendall Born, Meghan Kennealy 18 January 2019 2/25 What is a rogue wave Mechanisms causing rogue waves Where rogue waves have been reported Modelling

More information

Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth

Stability of gravity-capillary waves generated by a moving pressure disturbance in water of finite depth Stability of gravity-capillary waves generated by a moving disturbance in water of finite depth Roger Grimshaw 1, Montri Maleewong 2, and Jack Asavanant 3 1 Department of Mathematical Sciences, Loughborough

More information

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014

Steady Water Waves. Walter Strauss. Laboratoire Jacques-Louis Lions 7 November 2014 Steady Water Waves Walter Strauss Laboratoire Jacques-Louis Lions 7 November 2014 Joint work with: Adrian Constantin Joy Ko Miles Wheeler Joint work with: Adrian Constantin Joy Ko Miles Wheeler We consider

More information

A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension

A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension Erik Wahlén, Lund University, Sweden Joint with Mark Groves, Saarland University and Shu-Ming Sun, Virginia Tech Nonlinear

More information

ARTICLE IN PRESS. Available online at Mathematics and Computers in Simulation xxx (2011) xxx xxx

ARTICLE IN PRESS. Available online at  Mathematics and Computers in Simulation xxx (2011) xxx xxx Available online at www.sciencedirect.com Mathematics and Computers in Simulation xxx (0) xxx xxx Suppression of Rayleigh Taylor instability using electric fields Lyudmyla L. Barannyk a,, Demetrios T.

More information

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS

BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS BOUSSINESQ-TYPE EQUATIONS WITH VARIABLE COEFFICIENTS FOR NARROW-BANDED WAVE PROPAGATION FROM ARBITRARY DEPTHS TO SHALLOW WATERS Gonzalo Simarro 1, Alvaro Galan, Alejandro Orfila 3 A fully nonlinear Boussinessq-type

More information

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING

RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING RELAXED VARIATIONAL PRINCIPLE FOR WATER WAVE MODELING DENYS DUTYKH 1 Senior Research Fellow UCD & Chargé de Recherche CNRS 1 University College Dublin School of Mathematical Sciences Workshop on Ocean

More information

Freak waves over nonuniform depth with different slopes. Shirin Fallahi Master s Thesis, Spring 2016

Freak waves over nonuniform depth with different slopes. Shirin Fallahi Master s Thesis, Spring 2016 Freak waves over nonuniform depth with different slopes Shirin Fallahi Master s Thesis, Spring 206 Cover design by Martin Helsø The front page depicts a section of the root system of the exceptional Lie

More information

Compacton-like solutions in some nonlocal hydrodynamic-type models

Compacton-like solutions in some nonlocal hydrodynamic-type models Compacton-like solutions in some nonlocal hydrodynamic-type models Vsevolod Vladimirov AGH University of Science and technology, Faculty of Applied Mathematics Protaras, October 26, 2008 WMS AGH Compactons

More information

Are Solitary Waves Color Blind to Noise?

Are Solitary Waves Color Blind to Noise? Are Solitary Waves Color Blind to Noise? Dr. Russell Herman Department of Mathematics & Statistics, UNCW March 29, 2008 Outline of Talk 1 Solitary Waves and Solitons 2 White Noise and Colored Noise? 3

More information

Linear Hyperbolic Systems

Linear Hyperbolic Systems Linear Hyperbolic Systems Professor Dr E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro October 8, 2014 1 / 56 We study some basic

More information

Thin airfoil theory. Chapter Compressible potential flow The full potential equation

Thin airfoil theory. Chapter Compressible potential flow The full potential equation hapter 4 Thin airfoil theory 4. ompressible potential flow 4.. The full potential equation In compressible flow, both the lift and drag of a thin airfoil can be determined to a reasonable level of accuracy

More information

Numerical Study of Oscillatory Regimes in the KP equation

Numerical Study of Oscillatory Regimes in the KP equation Numerical Study of Oscillatory Regimes in the KP equation C. Klein, MPI for Mathematics in the Sciences, Leipzig, with C. Sparber, P. Markowich, Vienna, math-ph/"#"$"%& C. Sparber (generalized KP), personal-homepages.mis.mpg.de/klein/

More information

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows

Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Integrodifferential Hyperbolic Equations and its Application for 2-D Rotational Fluid Flows Alexander Chesnokov Lavrentyev Institute of Hydrodynamics Novosibirsk, Russia chesnokov@hydro.nsc.ru July 14,

More information

Fission of a longitudinal strain solitary wave in a delaminated bar

Fission of a longitudinal strain solitary wave in a delaminated bar Fission of a longitudinal strain solitary wave in a delaminated bar Karima Khusnutdinova Department of Mathematical Sciences, Loughborough University, UK K.Khusnutdinova@lboro.ac.uk and G.V. Dreiden, A.M.

More information

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water

Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water Dynamics of Strongly Nonlinear Internal Solitary Waves in Shallow Water By Tae-Chang Jo and Wooyoung Choi We study the dynamics of large amplitude internal solitary waves in shallow water by using a strongly

More information

1. Comparison of stability analysis to previous work

1. Comparison of stability analysis to previous work . Comparison of stability analysis to previous work The stability problem (6.4) can be understood in the context of previous work. Benjamin (957) and Yih (963) have studied the stability of fluid flowing

More information

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden

Stochastic excitation of streaky boundary layers. Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Stochastic excitation of streaky boundary layers Jérôme Hœpffner Luca Brandt, Dan Henningson Department of Mechanics, KTH, Sweden Boundary layer excited by free-stream turbulence Fully turbulent inflow

More information

Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory

Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory Asymptotic description of solitary wave trains in fully nonlinear shallow-water theory arxiv:0710.3379v [nlin.ps] 18 Oct 007 G.A. El 1, R.H.J. Grimshaw Department of Mathematical Sciences, Loughborough

More information

7 EQUATIONS OF MOTION FOR AN INVISCID FLUID

7 EQUATIONS OF MOTION FOR AN INVISCID FLUID 7 EQUATIONS OF MOTION FOR AN INISCID FLUID iscosity is a measure of the thickness of a fluid, and its resistance to shearing motions. Honey is difficult to stir because of its high viscosity, whereas water

More information

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion

Notes: Outline. Diffusive flux. Notes: Notes: Advection-diffusion Outline This lecture Diffusion and advection-diffusion Riemann problem for advection Diagonalization of hyperbolic system, reduction to advection equations Characteristics and Riemann problem for acoustics

More information

Numerical Methods 2: Hill s Method

Numerical Methods 2: Hill s Method Numerical Methods 2: Hill s Method Bernard Deconinck Department of Applied Mathematics University of Washington bernard@amath.washington.edu http://www.amath.washington.edu/ bernard Stability and Instability

More information

The Euler Equation of Gas-Dynamics

The Euler Equation of Gas-Dynamics The Euler Equation of Gas-Dynamics A. Mignone October 24, 217 In this lecture we study some properties of the Euler equations of gasdynamics, + (u) = ( ) u + u u + p = a p + u p + γp u = where, p and u

More information

Flows Induced by 1D, 2D and 3D Internal Gravity Wavepackets

Flows Induced by 1D, 2D and 3D Internal Gravity Wavepackets Abstract Flows Induced by 1D, 2D and 3D Internal Gravity Wavepackets Bruce R. Sutherland 1 and Ton S. van den Bremer 2 1 Departments of Physics and of Earth & Atmospheric Sciences, University of Alberta

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Numerical computations of solitary waves in a two-layer fluid

Numerical computations of solitary waves in a two-layer fluid Numerical computations of solitary waves in a two-layer fluid Emilian Pǎrǎu, Hugh Woolfenden School of Mathematics University of East Anglia Outline Background Internal/interfacial waves (observation and

More information

arxiv: v1 [physics.flu-dyn] 20 Aug 2015

arxiv: v1 [physics.flu-dyn] 20 Aug 2015 arxiv:1508.05365v1 [physics.flu-dyn] 0 Aug 015 MECHANICAL BALANCE LAWS FOR FULLY NONLINEAR AND WEAKLY DISPERSIVE WATER WAVES HENRIK KALISCH, ZAHRA KHORSAND, AND DIMITRIOS MITSOTAKIS Abstract. The Serre-Green-Naghdi

More information

A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system

A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system A modified Galerkin/finite element method for the numerical solution of the Serre-Green-Naghdi system Dimitrios Mitsotakis, Costas Synolakis, Mark Mcguinness To cite this version: Dimitrios Mitsotakis,

More information

Nonlinear Modulational Instability of Dispersive PDE Models

Nonlinear Modulational Instability of Dispersive PDE Models Nonlinear Modulational Instability of Dispersive PDE Models Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech ICERM workshop on water waves, 4/28/2017 Jiayin Jin, Shasha Liao, and Zhiwu Lin Georgia Tech

More information

Introduction LECTURE 1

Introduction LECTURE 1 LECTURE 1 Introduction The source of all great mathematics is the special case, the concrete example. It is frequent in mathematics that every instance of a concept of seemingly great generality is in

More information

Lecture 10: Whitham Modulation Theory

Lecture 10: Whitham Modulation Theory Lecture 10: Whitham Modulation Theory Lecturer: Roger Grimshaw. Write-up: Andong He June 19, 2009 1 Introduction The Whitham modulation theory provides an asymptotic method for studying slowly varying

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

Travelling waves. Chapter 8. 1 Introduction

Travelling waves. Chapter 8. 1 Introduction Chapter 8 Travelling waves 1 Introduction One of the cornerstones in the study of both linear and nonlinear PDEs is the wave propagation. A wave is a recognizable signal which is transferred from one part

More information

On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds

On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds On the linear stability of one- and two-layer Boussinesq-type Equations for wave propagation over uneven beds Gonzalo Simarro Marine Sciences Institute (ICM, CSIC), 83 Barcelona, Spain Alejandro Orfila

More information

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation

New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation AMERICAN CONFERENCE ON APPLIED MATHEMATICS (MATH '8) Harvard Massachusetts USA March -6 8 New solutions for a generalized Benjamin-Bona-Mahony-Burgers equation MARIA S. BRUZÓN University of Cádiz Department

More information

PAPER 331 HYDRODYNAMIC STABILITY

PAPER 331 HYDRODYNAMIC STABILITY MATHEMATICAL TRIPOS Part III Thursday, 6 May, 016 1:30 pm to 4:30 pm PAPER 331 HYDRODYNAMIC STABILITY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal

More information

arxiv: v1 [math.ds] 11 Aug 2016

arxiv: v1 [math.ds] 11 Aug 2016 Travelling wave solutions of the perturbed mkdv equation that represent traffic congestion Laura Hattam arxiv:8.03488v [math.ds] Aug 6 Abstract A well-known optimal velocity OV model describes vehicle

More information

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton

Advances and perspectives in numerical modelling using Serre-Green Naghdi equations. Philippe Bonneton Long wave & run-up workshop Santander 2012 Advances and perspectives in numerical modelling using Serre-Green Naghdi equations Philippe Bonneton EPOC, METHYS team, Bordeaux Univ., CNRS d0 µ = λ 0 2 small

More information

ORBITAL STABILITY OF SOLITARY WAVES FOR A 2D-BOUSSINESQ SYSTEM

ORBITAL STABILITY OF SOLITARY WAVES FOR A 2D-BOUSSINESQ SYSTEM Electronic Journal of Differential Equations, Vol. 05 05, No. 76, pp. 7. ISSN: 07-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu ORBITAL STABILITY OF SOLITARY

More information

Computing Spectra of Linear Operators Using Finite Differences

Computing Spectra of Linear Operators Using Finite Differences Computing Spectra of Linear Operators Using Finite Differences J. Nathan Kutz Department of Applied Mathematics University of Washington Seattle, WA 98195-2420 Email: (kutz@amath.washington.edu) Stability

More information

Kelvin-Helmholtz instabilities in shallow water

Kelvin-Helmholtz instabilities in shallow water Kelvin-Helmholtz instabilities in shallow water Propagation of large amplitude, long wavelength, internal waves Vincent Duchêne 1 Samer Israwi 2 Raafat Talhouk 2 1 IRMAR, Univ. Rennes 1 UMR 6625 2 Faculté

More information

Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013

Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013 Green-Naghdi type solutions to the Pressure Poisson equation with Boussinesq Scaling ADCIRC Workshop 2013 Aaron S. Donahue*, Joannes J. Westerink, Andrew B. Kennedy Environmental Fluid Dynamics Group Department

More information

INTERNAL SOLITARY WAVES IN THE ATMOSPHERE AND OCEAN

INTERNAL SOLITARY WAVES IN THE ATMOSPHERE AND OCEAN INTERNAL SOLITARY WAVES IN THE ATMOSPHERE AND OCEAN ROGER GRIMSHAW LOUGHBOROUGH UNIVERSITY In collaboration with: Efim Pelinovsky (Nizhny Novgorod) Tatiana Talipova (Nizhny Novgorod) Outline: 1. Observations

More information

COMPLEX SOLUTIONS FOR TSUNAMI-ASCENDING INTO A RIVER AS A BORE

COMPLEX SOLUTIONS FOR TSUNAMI-ASCENDING INTO A RIVER AS A BORE Volume 114 No. 6 2017, 99-107 ISSN: 1311-8080 (printed version); ISSN: 1314-3395 (on-line version) url: http://www.ijpam.eu ijpam.eu COMPLEX SOLUTIONS FOR TSUNAMI-ASCENDING INTO A RIVER AS A BORE V. Yuvaraj

More information

Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation

Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation Physica D 214 26) 42 54 www.elsevier.com/locate/physd Instabilities of one-dimensional trivial-phase solutions of the two-dimensional cubic nonlinear Schrödinger equation John D. Carter a,, Bernard Deconinck

More information

Resonant excitation of trapped coastal waves by free inertia-gravity waves

Resonant excitation of trapped coastal waves by free inertia-gravity waves Resonant excitation of trapped coastal waves by free inertia-gravity waves V. Zeitlin 1 Institut Universitaire de France 2 Laboratory of Dynamical Meteorology, University P. and M. Curie, Paris, France

More information

Weakly Nonlinear Non-Boussinesq Internal Gravity Wavepackets

Weakly Nonlinear Non-Boussinesq Internal Gravity Wavepackets Weakly Nonlinear Non-Boussinesq Internal Gravity Wavepackets H. V. Dosser & B. R. Sutherland Dept. of Physics, University of Alberta, Edmonton, AB, Canada T6G 2G7 Abstract Internal gravity wavepackets

More information

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS

PAPER 345 ENVIRONMENTAL FLUID DYNAMICS MATHEMATICAL TRIPOS Part III Monday, 11 June, 2018 9:00 am to 12:00 pm PAPER 345 ENVIRONMENTAL FLUID DYNAMICS Attempt no more than THREE questions. There are FOUR questions in total. The questions carry

More information

AST242 LECTURE NOTES PART 5

AST242 LECTURE NOTES PART 5 AST242 LECTURE NOTES PART 5 Contents 1. Waves and instabilities 1 1.1. Sound waves compressive waves in 1D 1 2. Jeans Instability 5 3. Stratified Fluid Flows Waves or Instabilities on a Fluid Boundary

More information

Intermittent onset of turbulence and control of extreme events

Intermittent onset of turbulence and control of extreme events Intermittent onset of turbulence and control of extreme events Sergio Roberto Lopes, Paulo P. Galúzio Departamento de Física UFPR São Paulo 03 de Abril 2014 Lopes, S. R. (Física UFPR) Intermittent onset

More information

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities

Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Nonlinear convective stability of travelling fronts near Turing and Hopf instabilities Margaret Beck Joint work with Anna Ghazaryan, University of Kansas and Björn Sandstede, Brown University September

More information

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves

Mechanical Balance Laws for Boussinesq Models of Surface Water Waves J Nonlinear Sci 1) :371 398 DOI 1.17/s33-11-911- Mechanical Balance Laws for Boussinesq Models of Surface Water Waves Alfatih Ali Henrik Kalisch Received: 8 March 11 / Accepted: 11 December 11 / Published

More information

A review of stability and dynamical behaviors of differential equations:

A review of stability and dynamical behaviors of differential equations: A review of stability and dynamical behaviors of differential equations: scalar ODE: u t = f(u), system of ODEs: u t = f(u, v), v t = g(u, v), reaction-diffusion equation: u t = D u + f(u), x Ω, with boundary

More information

MAE210C: Fluid Mechanics III Spring Quarter sgls/mae210c 2013/ Solution II

MAE210C: Fluid Mechanics III Spring Quarter sgls/mae210c 2013/ Solution II MAE210C: Fluid Mechanics III Spring Quarter 2013 http://web.eng.ucsd.edu/ sgls/mae210c 2013/ Solution II D 4.1 The equations are exactly the same as before, with the difference that the pressure in the

More information

1 Introduction. A. M. Abourabia 1, K. M. Hassan 2, E. S. Selima 3

1 Introduction. A. M. Abourabia 1, K. M. Hassan 2, E. S. Selima 3 ISSN 1749-3889 (print), 1749-3897 (online) International Journal of Nonlinear Science Vol.9(2010) No.4,pp.430-443 The Derivation and Study of the Nonlinear Schrödinger Equation for Long Waves in Shallow

More information

ROUTES TO TRANSITION IN SHEAR FLOWS

ROUTES TO TRANSITION IN SHEAR FLOWS ROUTES TO TRANSITION IN SHEAR FLOWS Alessandro Bottaro with contributions from: D. Biau, B. Galletti, I. Gavarini and F.T.M. Nieuwstadt ROUTES TO TRANSITION IN SHEAR FLOWS Osborne Reynolds, 1842-1912 An

More information

Fourier Series. Spectral Analysis of Periodic Signals

Fourier Series. Spectral Analysis of Periodic Signals Fourier Series. Spectral Analysis of Periodic Signals he response of continuous-time linear invariant systems to the complex exponential with unitary magnitude response of a continuous-time LI system at

More information

Stability of Shear Flow

Stability of Shear Flow Stability of Shear Flow notes by Zhan Wang and Sam Potter Revised by FW WHOI GFD Lecture 3 June, 011 A look at energy stability, valid for all amplitudes, and linear stability for shear flows. 1 Nonlinear

More information

2 A: The Shallow Water Equations

2 A: The Shallow Water Equations 2 A: The Shallow Water Equations 2.1 Surface motions on shallow water Consider two-dimensional (x-z) motions on a nonrotating, shallow body of water, of uniform density, as shown in Fig. 1 below. The ow

More information

Shock Waves & Solitons

Shock Waves & Solitons 1 / 1 Shock Waves & Solitons PDE Waves; Oft-Left-Out; CFD to Follow Rubin H Landau Sally Haerer, Producer-Director Based on A Survey of Computational Physics by Landau, Páez, & Bordeianu with Support from

More information

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension

Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Mechanics and Mechanical Engineering Vol. 2, No. (2008) 69 78 c Technical University of Lodz Higher Orders Instability of a Hollow Jet Endowed with Surface Tension Ahmed E. Radwan Mathematics Department,

More information

Waves on deep water, II Lecture 14

Waves on deep water, II Lecture 14 Waves on deep water, II Lecture 14 Main question: Are there stable wave patterns that propagate with permanent form (or nearly so) on deep water? Main approximate model: i" # A + $" % 2 A + &" ' 2 A +

More information

Experiments on extreme wave generation using the Soliton on Finite Background

Experiments on extreme wave generation using the Soliton on Finite Background Experiments on extreme wave generation using the Soliton on Finite Background René H.M. Huijsmans 1, Gert Klopman 2,3, Natanael Karjanto 3, and Andonawati 4 1 Maritime Research Institute Netherlands, Wageningen,

More information