Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II

Size: px
Start display at page:

Download "Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II"

Transcription

1 Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II Michail Todorov Department of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria Work done in collaboration with V. Gerdjikov and A. Kyuldjiev from INRNE-BAS, Sofia 6th International Conference AMiTaNS, Albena, Bulgaria, June 26-July 1, 2014

2 Outline NLS Adiabatic Approximation Vector NLS/Manakov System Variational Approach Perturbed CTC Effects of Polarization Vectors Lax Representation GCTC RTC CTC Asymptotic Regimes Conservative Numerical Method vs Variational Approach Results and Discussion References

3 NLS Soliton Trains The idea of the adiabatic approximation to the soliton interactions (Karpman&Solov ev (1981)) led to effective modeling of the N-soliton trains of the perturbed scalar NLS eq.: iu t u xx + u 2 u(x, t) = ir[u]. (1) By N-soliton train we mean a solution of the NLSE (1) with initial condition N u(x, t = 0) = u k (x, t = 0), (2) k=1 u k (x, t)=2ν k e iφ k sechz k, z k =2ν k (x ξ k (t)), ξ k (t)=2µ k t+ξ k,0, φ k = µ k ν k z k + δ k (t), δ k (t)=2(µ 2 k + ν2 k )t + δ k,0. Here µ k are the amplitudes, ν k the velocities, δ k the phase shifts, ξ k - the centers of solitons.

4 NLS Adiabatic Approximation The adiabatic approximation holds if the soliton parameters satisfy the restrictions ν k ν 0 ν 0, µ k µ 0 µ 0, ν k ν 0 ξ k+1,0 ξ k,0 1, (3) where ν 0 and µ 0 are the average amplitude and velocity respectively. In fact we have two different scales: ν k ν 0 ε 1/2 0, µ k µ 0 ε 1/2 0, ξ k+1,0 ξ k,0 ε 1 0. In this approximation the dynamics of the N-soliton train is described by a dynamical system for the 4N soliton parameters. In our previous works we investigate it in presence of periodic and polynomial potentials. Now, we are interested in what follow perturbation(s) by external sech-potentials: ir[u] V (x)u(x, t), V (x) = s c s sech 2 (2ν 0 x y s ). (4) The latter allows us to realize the idea about localized potential wells(depressions) and humps.

5 Potentials Figure: 1. Single sech-potential vs. composite potential well V (x) = 32 s=0 c ssech 2 (x x s ), c s = 10 1, x s = 16 + sh, h = 1, s = 0,..., 32.

6 Perturbed Vector NLS Here we generalize to the perturbed vector NLS i u t u xx + ( u, u) u(x, t) = ir[ u]. (5) The corresponding vector N-soliton train is determined by the initial condition u(x, t = 0) = N u k (x, t = 0), u k (x, t) = 2ν k e iφ k sechz k n k, (6) k=1 and the amplitudes, the velocities, the phase shifts, and the centers of solitons are as in Eq.(2). The phenomenology, however, is enriched by introducing a constant polarization vectors n k that are normalized by the conditions ( n k, n k) = 1, n arg n k;s = 0. s=1

7 Variational approach and evolution We use the variational approach (Anderson and Lisak (1986)) and derive the GCTC model. Like the (unperturbed) CTC, GCTC is a finite dimensional completely integrable model allowing Lax representation. The Lagrangian of the vector NLS perturbed by external potential is: L[ u] = dt i [ ] ( u, u t ) ( u t, u) H, 2 [ H[ u] = dx 1 2 ( u x, u x ) + 1 ] (7) 2 ( u, u) 2 ( u, u)v (x). Then the Lagrange equations of motion: d dt δl δ u t δl = 0, (8) δ u coincide with the vector NLS with external potential V (x).

8 Variational approach and evolution Next we insert u(x, t) = N k=1 u k(x, t) (see eq. (6)) and integrate over x neglecting all terms of order ɛ and higher. Thus after long calculations we obtain: L = N L k + k=1 N k=1 n=k±1 L k,n, L k,n = 16ν 3 0e k,n (R k,n + R k,n ), R k,n = e i( δ n δ k ) ( n k n n), δk = δ k 2µ 0 ξ k, k,n = 2s k,n ν 0 (ξ k ξ n ) 1, s k,k+1 = 1, s k,k 1 = 1. (9) where ) L k = 2iν k (( n k,t, n k) ( n k, n dξ k k,t) + 8µ k ν k dt dδ k 4ν k dt +... (10)

9 Variational approach and evolution The equations of motion are given by: d δl δl = 0, (11) dt δp k,t δp k where p k = {δ k, ξ k, µ k, ν k, n k }. Let λ k = µ k + iν k, X k = 2µ k Ξ k + D k and Q k = 2ν 0 ξ k + k ln 4ν 2 0 i(δ k + δ 0 + kπ 2µ 0 ξ k ). (12)

10 Then: dλ ) k = 4ν 0 (e Q k+1 Q k ( n dt k+1, n k) e Q k Q k 1 ( n k, n k 1) + M k + in k, dq k = 4ν 0 λ k + 2i(µ 0 + iν 0 )Ξ k ix k, dt (13)

11 Potential s impact where N k [u]= 1 2 Re R[u k ] sech z k e iφ k dz k, M k [u]= 1 2 Im R[u k ] tanh z k sech z k e iφ k dz k, Ξ k [u]= 1 4 Re R[u k ]z k sech z k e iφ k dz k, D k [u]= 1 2ν k Im R[u k ](1 z k tanh z k ) sech z k e iφ k dz k,

12 Connection with PCTC So, we have a generalization of CTC: dλ ( ) k dt = 4ν 0 e Q k+1 Q k ( n k+1, n k) e Q k Q k 1 ( n k, n k 1) +M k +in k, dq k dt = 4ν d n k 0λ k + 2i(µ 0 + iν 0 )Ξ k ix k, = O(ɛ), dt (14) The explicit form of M k, N k, Ξ k and D k for the potential chosen is given by M k = s 2c s ν k P( k,s ), N k = 0, Ξ k = 0, D k = s c s R( k,s ). (15) where k,s = 2ν 0 ξ k y s and the functions P( ) and R( ) are known explicitly.

13 Integrals Figure: 2. P and R functions: for a single sech-potential and for the composite potential.

14 Integrals For the potential well V (x, y s ) = c s [tanh(2ν 0 x y i ) tanh(2ν 0 x y f )] functions and P( ) = sinh cosh sinh 3 R( ) = exp ( 3 ) + (4 2 1) cosh + (3 8 ) sinh 8 sinh 3.

15 Polarization Vectors Now we have additional equations describing the evolution of the polarization vectors. But note, that their evolution is slow, and in addition the products ( n k+1, n k) multiply the exponents e Q k+1 Q k which are also of the order of ɛ. Since we are keeping only terms of the order of ɛ we can replace ( n k+1, n k) by their initial values ( n k+1, n k) = m0k 2 e2iφ 0k, k = 1,..., N 1 (16) t=0

16 Lax representation of CTC The CTC is completely integrable model; it allows Lax representation L t = [A.L], where: L = A = N (b s E ss + a s (E s,s+1 + E s+1,s )), s=1 N (a s (E s,s+1 E s+1,s )), s=1 (17) where a s = exp((q s+1 Q s )/2), b s = 1 2 (µ s,t + iν s,t ) and the matrices E ks are determined by (E ks ) pj = δ kp δ sj. The eigenvalues of L are integrals of motion and determine the asymptotic velocities.

17 Lax representation of GCTC The GCTC is also a completely integrable model because it allows Lax representation L t = [Ã. L], where: L = Ã = N (b s E ss + ã s (E s,s+1 + E s+1,s )), s=1 N (ã s (E s,s+1 E s+1,s )), s=1 (18) where ã s = m 0k e iφ 0k a s, b s = µ s,t + iν s,t. Like for the scalar case, the eigenvalues of L are integrals of motion. If we denote by ζ s = κ s + iη s (resp. ζ s = κ + i η s ) the set of eigenvalues of L (resp. L) then their real parts κ s (resp. κ s ) determine the asymptotic velocities for the soliton train described by CTC (resp. GCTC).

18 RTC and CTC. Asymptotic regimes While for the RTC the set of eigenvalues ζ s of the Lax matrix are all real, for the CTC they generically take complex values, e.g., ζ s = κ s + iη s. Hence, the only possible asymptotic behavior in the RTC is an asymptotically separating, free motion of the solitons. In opposite, for the CTC the real parts κ s Reζ s of eigenvalues of the Lax matrix ζ s determines the asymptotic velocity of the sth soliton.

19 Effects of the polarization vectors on the soliton interaction Thus, starting from the set of initial soliton parameters we can calculate L t=0 (resp. L t=0 ), evaluate the real parts of their eigenvalues and thus determine the asymptotic regime of the soliton train. Regime (i) κ k κ j ( κ k κ j ) for k j asymptotically separating, free solitons; Regime (ii) κ 1 = κ 2 = = κ N = 0 ( κ 1 = κ 2 = = κ N = 0) a bound state; Regime (iii) group of particles move with the same mean asymptotic velocity and the rest of the particles will have free asymptotic motion. Varying only the polarization vectors one can change the asymptotic regime of the soliton train.

20 Problem Formulation: Conservation Laws Define mass, M, (pseudo)momentum, P, and energy, E: M def = 1 L2 ( ψ 2 + φ 2) dx, 2β L 1 E def = L2 P def L2 = I(ψ ψ x + φ φ x )dx, L 1 L 1 Hdx, where (19) H def = β ( ψ x 2 + φ x 2) 1 2 α 1( ψ 4 + φ 4 ) (α 1 + 2α 2 ) ( φ 2 ψ 2) 2Γ[R( ψ φ)] is the Hamiltonian density of the system. Here L 1 and L 2 are the left end and the right end of the interval under consideration. The following conservation/balance laws hold, namely dm dt = 0, dp dt = H x=l2 H x= L1, de dt = 0, (20)

21 Numerical Method To solve the main problem numerically, we use an implicit conservative scheme in complex arithmetic. i ψn+1 i + ψn+1 i i 1 2ψn+1 i + ψ n+1 i+1 + ψn i 1 2ψi n + ψi+1 n ) [ ( α 1 ψ n+1 i 2 + ψi n 2) + (α 1 + 2α 2 ) ( φ n+1 i 2 + φ n i 2)] ψi n = β ( ψ n+1 τ 2h 2 + ψi n Γ ( φ n+1 i + φ n ) i, i φn+1 i + φn+1 i i 1 2φn+1 i + φ n+1 i+1 + φn i 1 2φ n i + φ n ) i+1 [ ( α 1 φ n+1 i 2 + φ n i 2) + (α 1 + 2α 2 ) ( ψ n+1 i 2 + ψi n 2)] φ n i = β ( φ n+1 τ 2h 2 + φ n i Γ ( ψ n+1 i + ψi n ).

22 Numerical Method: Internal Iterations i ψn+1,k+1 i τ + ψn+1,k i i φn+1,k+1 i + φn+1,k i ψ n i + ψi n [ 4 = β ( 2h 2 ψ n+1,k+1 i 1 2ψ n+1,k+1 i ) + ψ n i 1 2ψ n i + ψ n i+1 α 1 ( ψ n+1,k+1 i ψ n+1,k i + ψ n i 2) + ψ n+1,k+1 i+1 +(α 1 + 2α 2 ) ( φ n+1,k+1 i φ n+1,k i + φ n i 2)] φ n i = β ( φ n+1,k+1 τ 2h 2 i 1 2φ n+1,k+1 i + φ n i 1 2φ n i + φ n ) i+1 + φ n [ ( i α 1 φ n+1,k+1 i φ n+1,k i + φ n i 2) 4 +(α 1 + 2α 2 ) ( ψ n+1,k+1 i ψ n+1,k i + ψi n 2)]. + φ n+1,k+1 i+1

23 Numerical Method: Conservation Properties It is not only convergent (consistent and stable), but also conserves mass and energy, i.e., there exist discrete analogs for (20), which arise from the scheme. M n = E n = N 1 i=2 N 1 i=2 ( ψ n i 2 + φ n i 2) = const, β ( ψ n 2h 2 i+1 ψi n 2 + φi+1 n φi n 2) + α 1 ( ψ n 4 i 4 + φ n i 4) (α 1 + 2α 2 ) ( ψ n i 2 φ n i 2) ΓR[ φ n i ψ n i ] = const, for all n 0. These values are kept constant during the time stepping. The above scheme is of Crank-Nicolson type for the linear terms and we employ internal iterations to achieve implicit approximation of the nonlinear terms, i.e., we use its linearized implementation.

24 Effects of the external potentials. Numeric checks vs Variational approach The predictions and validity of the CTC and GCTC are compared and verified with the numerical solutions of the corresponding CNSE using fully implicit difference scheme of Crank-Nicolson type, which conserves the energy, the mass, and the pseudomomentum. The scheme is implemented in a complex arithmetics. Such comparison is conducted for all dynamical regimes considered. First we study the soliton interaction of the pure Manakov model (without perturbations, V (x) 0) and with vanishing cross-modulation α 2 = 0; 2- and 3-soliton configurations and transitions between different asymptotic regimes under the effect of well- and hump-like external potential.

25 Three-soliton configuration in free asymptotic regime corresponding to real parts of eigenvalues of the Lax pair Reζ 1 = , Reζ 2 = 0, Reζ 3 = Figure: 3. Free potential behavior (left); External potential well V (x) = 32 s=0 c ssech 2 (x x s ), c s = 10 1, x s = 16 + sh, h = 1, s = 0,..., 32(right).

26 Three-soliton configuration in bound state regime corresponding to real parts of eigenvalues of the Lax pair Reζ 1 = Reζ 2 = Reζ 3 = 0 Figure: 4. Free potential behavior (left); External potential hump V (x) = 12 s=0 c ssech 2 (x x s ), c s = 10 2, x s = 10 + sh, h = 5/3, s = 0,..., 12 (right).

27 Three-soliton configuration in mixed asymptotic regime corresponding to real parts of eigenvalues of the Lax pair Reζ 1 = Reζ 2 = , Reζ 3 = Figure: 5. Free potential behavior (left); External potential well V (x) = 32 s=0 c ssech 2 (x x s ), c s = 10 2, x s = 16 + sh, h = 1, s = 0,..., 32.

28 Nine-soliton asymptotic regime: ξ k = k, ν k = (k 1), µ k = 0, δ k = kπ, k = 1,..., 9, θ k+1 = θ k π 10, k = 1,..., 8, θ 1 = 9π 10 Calculated eigenvalues of the potentialfree Lax pair are ζ 1 = i ζ 2 = i ζ 3 = i ζ 4 = i ζ 5 = i ζ 6 = i ζ 7 = i ζ 8 = i ζ 9 = i

29 Nine-soliton configuration Figure: 6. Free potential behavior (left); External potential well V (x) = cs [tanh(2ν0 x yi ) tanh(2ν0 x yf )], cs = 0.004, yi = 69.5, yf = (right). M. Todorov Multisoliton Interactions for the Manakov System

30 Nine-soliton asymptotic regime: ξ k = k, ν k = (k 1), µ k = 0, δ k = kπ, k = 1,..., 9, θ k+1 = θ k π 10, k = 1,..., 8, θ 1 = 9π 10 Calculated eigenvalues of the potentialfree Lax pair are ζ 1 = i ζ 2 = i ζ 3 = i ζ 4 = i ζ 5 = i ζ 6 = i ζ 7 = i ζ 8 = i ζ 9 = i

31 Nine-soliton configuration Figure: 7. Free potential behavior (left); External potential well V (x) = cs [tanh(2ν0 x yi ) tanh(2ν0 x yf )], cs = 0.004, yi = 40.5, yf = (right). M. Todorov Multisoliton Interactions for the Manakov System

32 Nine-soliton configuration Figure: 8. External potential well V (x) = cs [tanh(2ν0 x yi ) tanh(2ν0 x yf )], cs = 0.004: yi = 40.5, yf = (left); yi = 40.5, yf = (right). M. Todorov Multisoliton Interactions for the Manakov System

33 Nine-soliton configuration Figure: 9. External potential well V (x) = c s [tanh(2ν 0 x y i ) tanh(2ν 0 x y f )], c s = 0.004: y i = 40.5, y f =

34 Bibliography J. Moser. Finitely many mass points on the line under the influence of an exponential potential an integrable system. in Dynamical Systems, Theory and Applications. Lecture Notes in Physics, vol. 38, Springer, 1975, p V.I. Karpman, V.V. Solov ev. A perturbational approach to the two-soliton systems. Physica D 3: , T. R. Taha and M. J. Ablowitz. Analytical and numerical aspects of certain nonlinear evolution equations. ii. numerical, Schrödinger equation. J. Comp. Phys., 55: , C. I. Christov, S. Dost, and G. A. Maugin. Inelasticity of soliton collisions in system of coupled NLS equations. Physica Scripta, 50: , V.S. Gerdjikov, E.G. Dyankov, D.J. Kaup, G.L. Diankov, I.M. Uzunov. Stability and quasi-equidistant propagation of NLS soliton trains. Physics Letters A 241: , 1998.

35 Bibliography V. S. Gerdjikov. N-soliton interactions, the Complex Toda Chain and stability of NLS soliton trains. In E. Kriezis (Ed), Proceedings of the International Symposium on Electromagnetic Theory, vol. 1, pp , Aristotle University of Thessaloniki, Greece, V.S. Gerdjikov, E.V. Doktorov, N.P. Matsuka. N-soliton train and Generalized Complex Toda Chain for Manakov System. Theor. Math. Phys. 151: , M. D. Todorov and C. I. Christov. Conservative scheme in complex arithmetic for coupled nonlinear Schrödinger equations. Discrete and Continuous Dynamical Systems, Supplement: , 2007 M. D. Todorov and C. I. Christov. Impact of the Large Cross-Modulation Parameter on the Collision Dynamics of Quasi-Particles Governed by Vector NLSE. Journal of Mathematics and Computers in Simulation, 80: 46 55, 2009.

36 Bibliography R. Goodman. Hamiltonian Hopf bifurcations and dynamics of NLS/GP standing-wave modes. J. Phys. A: Math. Theor., 44: (28pp), V.S. Gerdjikov and M.D. Todorov. On the Effects of sech-like Potentials on Manakov Solitons. AIP Conf. Proc. 1561, pp , 2013, Melville, NY, V.S. Gerdjikov and M.D. Todorov. N-soliton interactions for the Manakov system. Effects of external potentials. In: R. Carretero-Gonzalez et al. (eds.), Localized Excitations in Nonlinear Complex Systems, Nonlinear Systems and Complexity 7, , DOI / , Springer International Publishing Switzerland.

37 Bibliography V.S. Gerdjikov, M.D. Todorov,and A.V. Kyuldjiev. Asymptotic Behavior of Manakov Solitons: Effects of Potential Wells and Humps. submitted to Math. Comp. Simul., MATCOM-D , 2014.

38 Thanks Thank you for your attention!

Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials

Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials Multisoliton Interaction of Perturbed Manakov System: Effects of External Potentials Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria (Work

More information

On N-soliton Interactions of Gross-Pitaevsky Equation in Two Space-time Dimensions

On N-soliton Interactions of Gross-Pitaevsky Equation in Two Space-time Dimensions On N-soliton Interactions of Gross-Pitaevsky Equation in Two Space-time Dimensions Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria (Work done

More information

Modeling Soliton Interactions of the Perturbed Vector Nonlinear Schrödinger Equation

Modeling Soliton Interactions of the Perturbed Vector Nonlinear Schrödinger Equation Bulg. J. Phys. 38 (2011) 274 283 Modeling Soliton Interactions of the Perturbed Vector Nonlinear Schrödinger Equation V.S. Gerdjikov Institute of Nuclear Research and Nuclear Energy, Bulgarian Academy

More information

Michail D. Todorov. Faculty of Applied Mathematics and Informatics Technical University of Sofia, Bulgaria

Michail D. Todorov. Faculty of Applied Mathematics and Informatics Technical University of Sofia, Bulgaria Wave Equations and Quasi-Particle Concept of Dynamics of Solitary Waves: Integrability vs. Consistency, Nonlinearity vs. Dispersion, Adiabatic Approximation Michail D. Todorov Faculty of Applied Mathematics

More information

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria SS25

More information

Michail D. Todorov. Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria

Michail D. Todorov. Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria The Effect of the Initial Polarization on the Quasi-Particle Dynamics of Linearly and Nonlinearly Coupled Systems of Nonlinear Schroedinger Schroedinger Equations Michail D. Todorov Faculty of Applied

More information

Vector Schroedinger Equation. Generalized Wave Equation. Boussinesq Paradigm. Nonintegrability and Conservativity of Soliton Solutions

Vector Schroedinger Equation. Generalized Wave Equation. Boussinesq Paradigm. Nonintegrability and Conservativity of Soliton Solutions Vector Schroedinger Equation. Generalized Wave Equation. Boussinesq Paradigm. Nonintegrability and Conservativity of Soliton Solutions Michail D. Todorov Faculty of Applied Mathematics and Informatics

More information

Relation between Periodic Soliton Resonance and Instability

Relation between Periodic Soliton Resonance and Instability Proceedings of Institute of Mathematics of NAS of Ukraine 004 Vol. 50 Part 1 486 49 Relation between Periodic Soliton Resonance and Instability Masayoshi TAJIRI Graduate School of Engineering Osaka Prefecture

More information

Perturbation theory for the defocusing nonlinear Schrödinger equation

Perturbation theory for the defocusing nonlinear Schrödinger equation Perturbation theory for the defocusing nonlinear Schrödinger equation Theodoros P. Horikis University of Ioannina In collaboration with: M. J. Ablowitz, S. D. Nixon and D. J. Frantzeskakis Outline What

More information

Systems of MKdV equations related to the affine Lie algebras

Systems of MKdV equations related to the affine Lie algebras Integrability and nonlinearity in field theory XVII International conference on Geometry, Integrability and Quantization 5 10 June 2015, Varna, Bulgaria Systems of MKdV equations related to the affine

More information

Diagonalization of the Coupled-Mode System.

Diagonalization of the Coupled-Mode System. Diagonalization of the Coupled-Mode System. Marina Chugunova joint work with Dmitry Pelinovsky Department of Mathematics, McMaster University, Canada Collaborators: Mason A. Porter, California Institute

More information

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China

Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China Continuous limits and integrability for a semidiscrete system Zuo-nong Zhu Department of Mathematics, Shanghai Jiao Tong University, P R China the 3th GCOE International Symposium, Tohoku University, 17-19

More information

2 Soliton Perturbation Theory

2 Soliton Perturbation Theory Revisiting Quasistationary Perturbation Theory for Equations in 1+1 Dimensions Russell L. Herman University of North Carolina at Wilmington, Wilmington, NC Abstract We revisit quasistationary perturbation

More information

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas

Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Moving Weakly Relativistic Electromagnetic Solitons in Laser-Plasmas Lj. Hadžievski, A. Mančić and M.M. Škorić Department of Physics, Faculty of Sciences and Mathematics, University of Niš, P.O. Box 4,

More information

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel

Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion, Israel PERTURBED NONLINEAR EVOLUTION EQUATIONS AND ASYMPTOTIC INTEGRABILITY Yair Zarmi Physics Department & Jacob Blaustein Institutes for Desert Research Ben-Gurion University of the Negev Midreshet Ben-Gurion,

More information

Exact analytical Helmholtz bright and dark solitons

Exact analytical Helmholtz bright and dark solitons Exact analytical Helmholtz bright and dark solitons P. CHAMORRO POSADA Dpto. Teoría de la Señal y Comunicaciones e Ingeniería Telemática ETSI Telecomunicación Universidad de Valladolid, Spain G. S. McDONALD

More information

Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation

Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation Exact Solutions to the Focusing Discrete Nonlinear Schrödinger Equation Francesco Demontis (based on a joint work with C. van der Mee) Università degli Studi di Cagliari Dipartimento di Matematica e Informatica

More information

Numerical Implementation of Fourier Integral-Transform Method for the Wave Equations

Numerical Implementation of Fourier Integral-Transform Method for the Wave Equations Numerical Implementation of Fourier Integral-Transform Method for the Wave Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria (Work

More information

Vortex knots dynamics and momenta of a tangle:

Vortex knots dynamics and momenta of a tangle: Lecture 2 Vortex knots dynamics and momenta of a tangle: - Localized Induction Approximation (LIA) and Non-Linear Schrödinger (NLS) equation - Integrable vortex dynamics and LIA hierarchy - Torus knot

More information

Internal Oscillations and Radiation Damping of Vector Solitons

Internal Oscillations and Radiation Damping of Vector Solitons Internal Oscillations and Radiation Damping of Vector Solitons By Dmitry E. Pelinovsky and Jianke Yang Internal modes of vector solitons and their radiation-induced damping are studied analytically and

More information

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION

A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (1+2)-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION A NEW APPROACH FOR SOLITON SOLUTIONS OF RLW EQUATION AND (+2-DIMENSIONAL NONLINEAR SCHRÖDINGER S EQUATION ALI FILIZ ABDULLAH SONMEZOGLU MEHMET EKICI and DURGUN DURAN Communicated by Horia Cornean In this

More information

Generalized Burgers equations and Miura Map in nonabelian ring. nonabelian rings as integrable systems.

Generalized Burgers equations and Miura Map in nonabelian ring. nonabelian rings as integrable systems. Generalized Burgers equations and Miura Map in nonabelian rings as integrable systems. Sergey Leble Gdansk University of Technology 05.07.2015 Table of contents 1 Introduction: general remarks 2 Remainders

More information

Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence

Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence Sergei Kuksin Weakly non-linear completely resonant hamiltonian PDEs and the problem of weak turbulence (Toronto, 10 January, 2014 ) 1 1 Introduction: weak turbulence (WT) (One of) origines: Rudolf Peierls,

More information

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method

Exact Solutions for the Nonlinear (2+1)-Dimensional Davey-Stewartson Equation Using the Generalized ( G. )-Expansion Method Journal of Mathematics Research; Vol. 6, No. ; 04 ISSN 96-9795 E-ISSN 96-9809 Published by Canadian Center of Science and Education Exact Solutions for the Nonlinear +-Dimensional Davey-Stewartson Equation

More information

Semiclassical spin coherent state method in the weak spin-orbit coupling limit

Semiclassical spin coherent state method in the weak spin-orbit coupling limit arxiv:nlin/847v1 [nlin.cd] 9 Aug Semiclassical spin coherent state method in the weak spin-orbit coupling limit Oleg Zaitsev Institut für Theoretische Physik, Universität Regensburg, D-934 Regensburg,

More information

Soliton solutions to the ABS list

Soliton solutions to the ABS list to the ABS list Department of Physics, University of Turku, FIN-20014 Turku, Finland in collaboration with James Atkinson, Frank Nijhoff and Da-jun Zhang DIS-INI, February 2009 The setting CAC The setting

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning

A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning Int. J. Contemp. Math. Sciences, Vol. 2, 2007, no. 22, 1097-1106 A Numerical Solution of the Lax s 7 th -order KdV Equation by Pseudospectral Method and Darvishi s Preconditioning M. T. Darvishi a,, S.

More information

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations

Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Lecture II Search Method for Lax Pairs of Nonlinear Partial Differential Equations Usama Al Khawaja, Department of Physics, UAE University, 24 Jan. 2012 First International Winter School on Quantum Gases

More information

Connection Formula for Heine s Hypergeometric Function with q = 1

Connection Formula for Heine s Hypergeometric Function with q = 1 Connection Formula for Heine s Hypergeometric Function with q = 1 Ryu SASAKI Department of Physics, Shinshu University based on arxiv:1411.307[math-ph], J. Phys. A in 48 (015) 11504, with S. Odake nd Numazu

More information

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN

Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN . Symbolic Computation of Conserved Densities and Symmetries of Nonlinear Evolution and Differential-Difference Equations WILLY HEREMAN Joint work with ÜNAL GÖKTAŞ and Grant Erdmann Graduate Seminar Department

More information

Energy-preserving Pseudo-spectral Methods for Klein-Gordon-Schrödinger Equations

Energy-preserving Pseudo-spectral Methods for Klein-Gordon-Schrödinger Equations .. Energy-preserving Pseudo-spectral Methods for Klein-Gordon-Schrödinger Equations Jingjing Zhang Henan Polytechnic University December 9, 211 Outline.1 Background.2 Aim, Methodology And Motivation.3

More information

Stable solitons of the cubic-quintic NLS with a delta-function potential

Stable solitons of the cubic-quintic NLS with a delta-function potential Stable solitons of the cubic-quintic NLS with a delta-function potential François Genoud TU Delft Besançon, 7 January 015 The cubic-quintic NLS with a δ-potential We consider the nonlinear Schrödinger

More information

Intermittent onset of turbulence and control of extreme events

Intermittent onset of turbulence and control of extreme events Intermittent onset of turbulence and control of extreme events Sergio Roberto Lopes, Paulo P. Galúzio Departamento de Física UFPR São Paulo 03 de Abril 2014 Lopes, S. R. (Física UFPR) Intermittent onset

More information

Polarization switching of light interacting with a degenerate two-level optical medium

Polarization switching of light interacting with a degenerate two-level optical medium Physica D 186 (2003) 69 92 Polarization switching of light interacting with a degenerate two-level optical medium Julie A. Byrne a, Ildar R. Gabitov b, Gregor Kovačič c, a Mathematics Department, Siena

More information

The Perturbed NLS Equation and Asymptotic Integrability

The Perturbed NLS Equation and Asymptotic Integrability The Perturbed NLS Equation and Asymptotic Integrability Yair Zarmi 1,2 Ben-Gurion University of the Negev, Israel 1 Department of Energy & Environmental Physics Jacob Blaustein Institutes for Desert Research,

More information

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation

Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Freedom in the Expansion and Obstacles to Integrability in Multiple-Soliton Solutions of the Perturbed KdV Equation Alex Veksler 1 and Yair Zarmi 1, Ben-Gurion University of the Negev, Israel 1 Department

More information

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion

Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Singularity Formation in Nonlinear Schrödinger Equations with Fourth-Order Dispersion Boaz Ilan, University of Colorado at Boulder Gadi Fibich (Tel Aviv) George Papanicolaou (Stanford) Steve Schochet (Tel

More information

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation

Stable One-Dimensional Dissipative Solitons in Complex Cubic-Quintic Ginzburg Landau Equation Vol. 112 (2007) ACTA PHYSICA POLONICA A No. 5 Proceedings of the International School and Conference on Optics and Optical Materials, ISCOM07, Belgrade, Serbia, September 3 7, 2007 Stable One-Dimensional

More information

Applicable Analysis. Dark-dark and dark-bright soliton interactions in the twocomponent

Applicable Analysis. Dark-dark and dark-bright soliton interactions in the twocomponent Dark-dark and dark-bright soliton interactions in the twocomponent defocusing nonlinear Schr ödinger equation Journal: Manuscript ID: GAPA-0-0 Manuscript Type: Original Paper Date Submitted by the Author:

More information

EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION

EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION CANADIAN APPLIED MATHEMATICS QUARTERLY Volume 17, Number 1, Spring 9 EXACT DARK SOLITON, PERIODIC SOLUTIONS AND CHAOTIC DYNAMICS IN A PERTURBED GENERALIZED NONLINEAR SCHRODINGER EQUATION JIBIN LI ABSTRACT.

More information

Quantum fields close to black hole horizons

Quantum fields close to black hole horizons Quantum fields close to black hole horizons Kinematics Accelerated scalar fields and inertial forces Photons in Rindler space vs thermal photons Interactions Static interactions of scalar, electric and

More information

IBVPs for linear and integrable nonlinear evolution PDEs

IBVPs for linear and integrable nonlinear evolution PDEs IBVPs for linear and integrable nonlinear evolution PDEs Dionyssis Mantzavinos Department of Applied Mathematics and Theoretical Physics, University of Cambridge. Edinburgh, May 31, 212. Dionyssis Mantzavinos

More information

The Sommerfeld Polynomial Method: Harmonic Oscillator Example

The Sommerfeld Polynomial Method: Harmonic Oscillator Example Chemistry 460 Fall 2017 Dr. Jean M. Standard October 2, 2017 The Sommerfeld Polynomial Method: Harmonic Oscillator Example Scaling the Harmonic Oscillator Equation Recall the basic definitions of the harmonic

More information

Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation

Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation Loughborough University Institutional Repository Solitary wave solution for a non-integrable, variable coefficient nonlinear Schrodinger equation This item was submitted to Loughborough University's Institutional

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

Lecture 11: Internal solitary waves in the ocean

Lecture 11: Internal solitary waves in the ocean Lecture 11: Internal solitary waves in the ocean Lecturer: Roger Grimshaw. Write-up: Yiping Ma. June 19, 2009 1 Introduction In Lecture 6, we sketched a derivation of the KdV equation applicable to internal

More information

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements

2. The Schrödinger equation for one-particle problems. 5. Atoms and the periodic table of chemical elements 1 Historical introduction The Schrödinger equation for one-particle problems 3 Mathematical tools for quantum chemistry 4 The postulates of quantum mechanics 5 Atoms and the periodic table of chemical

More information

Integrable dynamics of soliton gases

Integrable dynamics of soliton gases Integrable dynamics of soliton gases Gennady EL II Porto Meeting on Nonlinear Waves 2-22 June 213 Outline INTRODUCTION KINETIC EQUATION HYDRODYNAMIC REDUCTIONS CONCLUSIONS Motivation & Background Main

More information

Reductions and New types of Integrable models in two and more dimensions

Reductions and New types of Integrable models in two and more dimensions 0-0 XIV International conference Geometry Integrabiliy and Quantization Varna, 8-13 June 2012, Bulgaria Reductions and New types of Integrable models in two and more dimensions V. S. Gerdjikov Institute

More information

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups

A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups PROC. ITB Eng. Science Vol. 35 B, No., 3, 39-53 39 A Low-Dimensional Model for the Maximal Amplification Factor of Bichromatic Wave Groups W. N. Tan,* & Andonowati Fakulti Sains, Universiti Teknologi Malaysia

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents The 6th TIMS-OCAMI-WASEDA Joint International Workshop on Integrable Systems and Mathematical Physics March 22-26, 2014 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN

More information

Math 575-Lecture 26. KdV equation. Derivation of KdV

Math 575-Lecture 26. KdV equation. Derivation of KdV Math 575-Lecture 26 KdV equation We look at the KdV equations and the so-called integrable systems. The KdV equation can be written as u t + 3 2 uu x + 1 6 u xxx = 0. The constants 3/2 and 1/6 are not

More information

The elliptic sinh-gordon equation in the half plane

The elliptic sinh-gordon equation in the half plane Available online at www.tjnsa.com J. Nonlinear Sci. Appl. 8 25), 63 73 Research Article The elliptic sinh-gordon equation in the half plane Guenbo Hwang Department of Mathematics, Daegu University, Gyeongsan

More information

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS

HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Surveys in Mathematics and its Applications ISSN 1842-6298 (electronic), 1843-7265 (print) Volume 5 (21), 89 98 HOMOTOPY ANALYSIS METHOD FOR SOLVING KDV EQUATIONS Hossein Jafari and M. A. Firoozjaee Abstract.

More information

A Short historical review Our goal The hierarchy and Lax... The Hamiltonian... The Dubrovin-type... Algebro-geometric... Home Page.

A Short historical review Our goal The hierarchy and Lax... The Hamiltonian... The Dubrovin-type... Algebro-geometric... Home Page. Page 1 of 46 Department of Mathematics,Shanghai The Hamiltonian Structure and Algebro-geometric Solution of a 1 + 1-Dimensional Coupled Equations Xia Tiecheng and Pan Hongfei Page 2 of 46 Section One A

More information

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6

Strauss PDEs 2e: Section Exercise 4 Page 1 of 6 Strauss PDEs 2e: Section 5.3 - Exercise 4 Page of 6 Exercise 4 Consider the problem u t = ku xx for < x < l, with the boundary conditions u(, t) = U, u x (l, t) =, and the initial condition u(x, ) =, where

More information

Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation

Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation Progress In Electromagnetics Research Symposium 006, Cambridge, USA, March 6-9 59 Some Elliptic Traveling Wave Solutions to the Novikov-Veselov Equation J. Nickel, V. S. Serov, and H. W. Schürmann University

More information

A Novel Nonlinear Evolution Equation Integrable by the Inverse Scattering Method

A Novel Nonlinear Evolution Equation Integrable by the Inverse Scattering Method Proceedings of Institute of Mathematics of NAS of Ukraine 2002, Vol. 43, Part, 384 39 A Novel Nonlinear Evolution Equation Integrable by the Inverse Scattering Method Vyacheslav VAKHNENKO and John PARKES

More information

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons.

Chapter 3. Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. Chapter 3 Head-on collision of ion acoustic solitary waves in electron-positron-ion plasma with superthermal electrons and positrons. 73 3.1 Introduction The study of linear and nonlinear wave propagation

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents Winter School on PDEs St Etienne de Tinée February 2-6, 2015 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN SISSA, Trieste Cauchy problem for evolutionary PDEs with

More information

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach

Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach Commun. Theor. Phys. 58 1 617 6 Vol. 58, No. 5, November 15, 1 Exact Solutions of Supersymmetric KdV-a System via Bosonization Approach GAO Xiao-Nan Ô é, 1 YANG Xu-Dong Êü, and LOU Sen-Yue 1,, 1 Department

More information

arxiv: v1 [quant-ph] 25 Apr 2008

arxiv: v1 [quant-ph] 25 Apr 2008 Generalized Geometrical Phase in the Case of Continuous Spectra M. Maamache and Y. Saadi Laboratoire de Physique Quantique et Systèmes Dynamiques, Faculté des Sciences,Université Ferhat Abbas de Sétif,

More information

On quasiperiodic boundary condition problem

On quasiperiodic boundary condition problem JOURNAL OF MATHEMATICAL PHYSICS 46, 03503 (005) On quasiperiodic boundary condition problem Y. Charles Li a) Department of Mathematics, University of Missouri, Columbia, Missouri 65 (Received 8 April 004;

More information

On Decompositions of KdV 2-Solitons

On Decompositions of KdV 2-Solitons On Decompositions of KdV 2-Solitons Alex Kasman College of Charleston Joint work with Nick Benes and Kevin Young Journal of Nonlinear Science, Volume 16 Number 2 (2006) pages 179-200 -5-2.50 2.5 0 2.5

More information

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres

Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Radiative transfer equation in spherically symmetric NLTE model stellar atmospheres Jiří Kubát Astronomický ústav AV ČR Ondřejov Zářivě (magneto)hydrodynamický seminář Ondřejov 20.03.2008 p. Outline 1.

More information

New Homoclinic and Heteroclinic Solutions for Zakharov System

New Homoclinic and Heteroclinic Solutions for Zakharov System Commun. Theor. Phys. 58 (2012) 749 753 Vol. 58, No. 5, November 15, 2012 New Homoclinic and Heteroclinic Solutions for Zakharov System WANG Chuan-Jian ( ), 1 DAI Zheng-De (à ), 2, and MU Gui (½ ) 3 1 Department

More information

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas

Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Energy-Conserving Numerical Simulations of Electron Holes in Two-Species Plasmas Yingda Cheng Andrew J. Christlieb Xinghui Zhong March 18, 2014 Abstract In this paper, we apply our recently developed energy-conserving

More information

On Hamiltonian perturbations of hyperbolic PDEs

On Hamiltonian perturbations of hyperbolic PDEs Bologna, September 24, 2004 On Hamiltonian perturbations of hyperbolic PDEs Boris DUBROVIN SISSA (Trieste) Class of 1+1 evolutionary systems w i t +Ai j (w)wj x +ε (B i j (w)wj xx + 1 2 Ci jk (w)wj x wk

More information

Numerical methods for a fractional diffusion/anti-diffusion equation

Numerical methods for a fractional diffusion/anti-diffusion equation Numerical methods for a fractional diffusion/anti-diffusion equation Afaf Bouharguane Institut de Mathématiques de Bordeaux (IMB), Université Bordeaux 1, France Berlin, November 2012 Afaf Bouharguane Numerical

More information

A new integrable system: The interacting soliton of the BO

A new integrable system: The interacting soliton of the BO Phys. Lett., A 204, p.336-342, 1995 A new integrable system: The interacting soliton of the BO Benno Fuchssteiner and Thorsten Schulze Automath Institute University of Paderborn Paderborn & Germany Abstract

More information

Numerical Study of Oscillatory Regimes in the KP equation

Numerical Study of Oscillatory Regimes in the KP equation Numerical Study of Oscillatory Regimes in the KP equation C. Klein, MPI for Mathematics in the Sciences, Leipzig, with C. Sparber, P. Markowich, Vienna, math-ph/"#"$"%& C. Sparber (generalized KP), personal-homepages.mis.mpg.de/klein/

More information

Soliton solutions of Hirota equation and Hirota-Maccari system

Soliton solutions of Hirota equation and Hirota-Maccari system NTMSCI 4, No. 3, 231-238 (2016) 231 New Trends in Mathematical Sciences http://dx.doi.org/10.20852/ntmsci.2016115853 Soliton solutions of Hirota equation and Hirota-Maccari system M. M. El-Borai 1, H.

More information

Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems

Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems Numerical computation of the finite-genus solutions of the Korteweg-de Vries equation via Riemann Hilbert problems Thomas Trogdon 1 and Bernard Deconinck Department of Applied Mathematics University of

More information

Geometry and Exact Soliton Solutions of the Integrable su(3)-

Geometry and Exact Soliton Solutions of the Integrable su(3)- Geometry and Exact Soliton Solutions of the Integrable su(3)-spin Systems Eurasian national university, Astana, Kazakhstan Varna, Bulgaria 2018 Introduction The vector nonlinear Schrödinger equation is

More information

On the Whitham Equation

On the Whitham Equation On the Whitham Equation Henrik Kalisch Department of Mathematics University of Bergen, Norway Joint work with: Handan Borluk, Denys Dutykh, Mats Ehrnström, Daulet Moldabayev, David Nicholls Research partially

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

About Integrable Non-Abelian Laurent ODEs

About Integrable Non-Abelian Laurent ODEs About Integrable Non-Abelian Laurent ODEs T. Wolf, Brock University September 12, 2013 Outline Non-commutative ODEs First Integrals and Lax Pairs Symmetries Pre-Hamiltonian Operators Recursion Operators

More information

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Alberto Imparato Institut for Fysik og Astronomi Aarhus Universitet Denmark Workshop Advances in Nonequilibrium

More information

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation

Research Article Application of the Cole-Hopf Transformation for Finding Exact Solutions to Several Forms of the Seventh-Order KdV Equation Hindawi Publishing Corporation Mathematical Problems in Engineering Volume 21, Article ID 194329, 14 pages doi:1.1155/21/194329 Research Article Application of the Cole-Hopf Transformation for Finding

More information

Wave interactions and the analysis of the perturbed. Burgers equation

Wave interactions and the analysis of the perturbed. Burgers equation Wave interactions and the analysis of the perturbed Burgers equation Alex Veksler 1 and Yair Zarmi 1,2 Ben-Gurion University of the Negev, Israel 1 Department of Physics, Beer-Sheva, 84105 2 Department

More information

Influence of an Electric Field on the Propagation of a Photon in a Magnetic field

Influence of an Electric Field on the Propagation of a Photon in a Magnetic field Journal of Physics: Conference Series PAPER OPEN ACCESS Influence of an Electric Field on the Propagation of a Photon in a Magnetic field To cite this article: V M Katkov 06 J. Phys.: Conf. Ser. 73 0003

More information

Hamiltonian partial differential equations and Painlevé transcendents

Hamiltonian partial differential equations and Painlevé transcendents Winter School on PDEs St Etienne de Tinée February 2-6, 2015 Hamiltonian partial differential equations and Painlevé transcendents Boris DUBROVIN SISSA, Trieste Lecture 2 Recall: the main goal is to compare

More information

A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension

A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension A Dimension-Breaking Phenomenon for Steady Water Waves with Weak Surface Tension Erik Wahlén, Lund University, Sweden Joint with Mark Groves, Saarland University and Shu-Ming Sun, Virginia Tech Nonlinear

More information

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1

( r) = 1 Z. e Zr/a 0. + n +1δ n', n+1 ). dt ' e i ( ε n ε i )t'/! a n ( t) = n ψ t = 1 i! e iε n t/! n' x n = Physics 624, Quantum II -- Exam 1 Physics 624, Quantum II -- Exam 1 Please show all your work on the separate sheets provided (and be sure to include your name) You are graded on your work on those pages, with partial credit where it is

More information

Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves

Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves Separatrix Map Analysis for Fractal Scatterings in Weak Interactions of Solitary Waves By Yi Zhu, Richard Haberman, and Jianke Yang Previous studies have shown that fractal scatterings in weak interactions

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS

DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS DRIFT OF SPECTRALLY STABLE SHIFTED STATES ON STAR GRAPHS ADILBEK KAIRZHAN, DMITRY E. PELINOVSKY, AND ROY H. GOODMAN Abstract. When the coefficients of the cubic terms match the coefficients in the boundary

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing

Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing 1 Exact Solution of the Linear, 4D-Discrete, Implicit, Semi-Lagrangian Dynamic Equations with Orographic Forcing Marko Zirk, Rein Rõõm Tartu University, Estonia Marko.Zirk@ut.ee, Rein.Room@ut.ee 1 1 Introduction

More information

Travelling waves. Chapter 8. 1 Introduction

Travelling waves. Chapter 8. 1 Introduction Chapter 8 Travelling waves 1 Introduction One of the cornerstones in the study of both linear and nonlinear PDEs is the wave propagation. A wave is a recognizable signal which is transferred from one part

More information

Computational Solutions for the Korteweg devries Equation in Warm Plasma

Computational Solutions for the Korteweg devries Equation in Warm Plasma COMPUTATIONAL METHODS IN SCIENCE AND TECHNOLOGY 16(1, 13-18 (1 Computational Solutions for the Korteweg devries Equation in Warm Plasma E.K. El-Shewy*, H.G. Abdelwahed, H.M. Abd-El-Hamid. Theoretical Physics

More information

Long-wave Instability in Anisotropic Double-Diffusion

Long-wave Instability in Anisotropic Double-Diffusion Long-wave Instability in Anisotropic Double-Diffusion Jean-Luc Thiffeault Institute for Fusion Studies and Department of Physics University of Texas at Austin and Neil J. Balmforth Department of Theoretical

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Determinant of the Schrödinger Operator on a Metric Graph

Determinant of the Schrödinger Operator on a Metric Graph Contemporary Mathematics Volume 00, XXXX Determinant of the Schrödinger Operator on a Metric Graph Leonid Friedlander Abstract. In the paper, we derive a formula for computing the determinant of a Schrödinger

More information

On Certain Aspects of the Theory of Polynomial Bundle Lax Operators Related to Symmetric Spaces. Tihomir Valchev

On Certain Aspects of the Theory of Polynomial Bundle Lax Operators Related to Symmetric Spaces. Tihomir Valchev 0-0 XIII th International Conference Geometry, Integrability and Quantization June 3 8, 2011, St. Constantin and Elena, Varna On Certain Aspects of the Theory of Polynomial Bundle Lax Operators Related

More information

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential

Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Periodic oscillations in the Gross-Pitaevskii equation with a parabolic potential Dmitry Pelinovsky 1 and Panos Kevrekidis 2 1 Department of Mathematics, McMaster University, Hamilton, Ontario, Canada

More information

On Differential Equations Describing 3-Dimensional Hyperbolic Spaces

On Differential Equations Describing 3-Dimensional Hyperbolic Spaces Commun. Theor. Phys. Beijing, China 45 26 pp. 135 142 c International Academic Publishers Vol. 45, No. 1, January 15, 26 On Differential Equations Describing 3-Dimensional Hyperbolic Spaces WU Jun-Yi,

More information

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation

Evolution of solitary waves for a perturbed nonlinear Schrödinger equation University of Wollongong Research Online Faculty of Informatics - Papers (Archive) Faculty of Engineering and Information Sciences 2010 Evolution of solitary waves for a perturbed nonlinear Schrödinger

More information

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations

Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially Integrable Equations Thai Journal of Mathematics Volume 5(2007) Number 2 : 273 279 www.math.science.cmu.ac.th/thaijournal Exact Solutions of The Regularized Long-Wave Equation: The Hirota Direct Method Approach to Partially

More information