Quantum fields close to black hole horizons

Size: px
Start display at page:

Download "Quantum fields close to black hole horizons"

Transcription

1 Quantum fields close to black hole horizons Kinematics Accelerated scalar fields and inertial forces Photons in Rindler space vs thermal photons Interactions Static interactions of scalar, electric and gravitational charges Instability of matter Symmetry breakdown close to horizons? F. Lenz, K. Ohta, K. Yazaki, P. R. D 83, (20)

2 Uniformly accelerated observer in Minkowski space - Kinematics Transformation to observer s rest frame t, x, x τ, ξ,x t(τ, ξ) = a eaξ sinh aτ, x(τ, ξ) = a eaξ cosh aτ 0 II 5 t ξ = τ = ξ = const. τ = const. (H) x2 t 2 = a 2 e2aξ x t t x = tanh aτ III SH x I < τ <, < ξ < 5 0 IV ξ = τ = (H) ds 2 = R r dt 2 dr2 R r r 2 dω 2, R =2MG ds 2 R, e 2aξ = r R R Stretched horizon (SH) close to mathematical horizon (H)

3 Scalar Fields in Rindler Spaces Rindler metric S = 2 ds 2 = dt 2 dx 2 dx 2 = e 2aξ (dτ 2 dξ 2 ) dx 2 Action dτ dξ d 2 x ( τ φ) 2 ( ξ φ) 2 (m 2 φ 2 +( φ) 2 ) e 2aξ Wave equation 2 τ 2 ξ +(m 2 2 ) e 2aξ φ =0, φ = e iωτ e ik x ϕ(ξ) d2 dξ 2 + m2 e 2aξ ω 2 ϕ(ξ) =0, ϕ(ξ) =K iω a m e aξ, m 2 =(m 2 + k 2 )/a 2 The inertial force: Exponentially growing potential K i ω a.5 m 2 e 2aξ d2 dξ 2 + m2 e 2aξ ω 2 K iω m e aξ =0 a ξ m =, 2. ω = ω k m =0.5

4 Hamiltonian H a = d 2 k Degeneracy: consequence of generalized scale invariance 0 dωωa (ω, k )a(ω, k ) τ = a (x t + t x ) Boosts and Dilations commute Distance of two spcace-time points in Rindler and Minkowski coordinates (x x ) 2 = 2ea(ξ+ξ ) 2-point function Transition to imaginary Rindler time Periodic time dependence Unruh Temperature a 2 cosh a(τ τ ) cosh η cosh η =+ i0 M T φ(τ, ξ, x )φ(0, ξ, 0 ) 0M = D (x x ) 2 = D cosh a(τ τ ) cosh η a, 2e a(ξ+ξ ) a 2 β = 2π a = T τ iτ D (x E x E )2 = D Partition function With acceleration temperature T and Hamiltonian change H a 2e a(ξ+ξ ) a 2 e aξ e aξ 2 + a 2 x x 2 2e a(ξ+ξ ) cos a(τ τ ) cosh η Z = tr e βh a β=2π/a

5 Modified Planck s formula Accelerated and thermal photons T = a 2π g(ξ, x ) 0 M : H E (ξ, x )+H B (ξ, x ): 0 M = π 2 e 4aξ ωdω ω2 +4π 2 T 2 e ω T T ξ = e aξ T = π2 5 T 4 ξ Density of states ω T T 3 /ω, T ω ω T ω 2 e ω/t, ω 2 e ω/t thermal acceleration ω/a Energy density varies in space Tolman s law T ξ g00 = const. is satisfied. Temperature T ξ diverges when approaching horizon

6 Free field Propagators Propagator of massless scalar particles Propagators in Rindler space D(x, x )=D(τ, ξ, ξ, x ) = i0 M T φ(τ, ξ, x )φ(0, ξ, 0 ) 0M = D(ξ, ξ, x )= = a2 e a(ξ+ξ ) 8iπ 2 cosh aτ cosh η iδ dτd(τ, ξ, ξ, x )= ae a(ξ+ξ ) 4π 2 ξ + e 2aξ 2 D(ξ, ξ, x )=δ(ξ ξ )δ(x ) 4iπ 2 (x x ) 2 iδ i + sinh η π η D satisfies Poisson equation, imaginary part (homogeneous) Laplace equation Im D = superposition of zero energy modes: ω =0, k 2,k 3 Imaginary part of self-energy of a static charge Bremsstrahlung in Minkowski space Im Σ = κ2 2 Im D(ξ, ξ, 0) = κ2 8π 2 a is given by the total rate of Required by energy conservation in Rindler space, Bremsstrahlungs photons observed in Minkowski space appear as zero energy, transverse photons (with finite transverse momentum) in Rindler space

7 Interaction of static charges Scalar interaction energy V s (s) = κ 2 e a(ξ+ξ ) D(ξ, ξ, x ) D 00 (τ, ξ, ξ, x )=( τ t τ t τ x τ x ) D(τ, ξ, ξ, x ) Electrostatic interaction energy V v (s) = e 2 D(ξ, ξ, x ) V s = κ2 4π v(η), V v = e2 4π V t = GM M 2 4π v(η) cosh η, v(η)(2 cosh 2 η ) + i π τ max cosh η V s, V v,v t η v(η) = cosh η =+ a sinh η + iη e aξ e aξ 2 + a 2 x x 2 π 2e a(ξ+ξ ) With cosh η, V s,v,t invariant under scale transformations 5 ξ, ξ ξ + ξ 0, ξ + ξ 0, x, x eaξ 0 x,e aξ 0 x

8 The instability of atoms in Rindler space Electron coupled to a static charge located in Rindler space at ξ = ξ 0, x = x 0 Weak acceleration H ξ m a B e 2aξ 0 a = e 2aξ 0 a me 2 + ma(ξ ξ 0 ) e2 4π (ξ ξ0 ) 2 +(x x 0 ) 2 In the weak acceleration limit inertial force acts like an external electric field ξ/a B t H 0 0 y aa B a g Ionization probability of hydrogen d H = a eaξ 0 d H [0 3 m]

9 Spontaneous symmetry breaking close to horizons? H a = dξd 2 x π 2 +( ξ φ) 2 + e 2aξ ( φ) 2 + V (φ) 2 Hamiltonian depends on acceleration a φ 4 - model, discrete symmetry φ φ V (φ) = λ 8 φ2 (φ 2 2φ 2 0) λ 8 φ4 0 + m2 2 ϕ2, m 2 = λφ 2 0 Symmetry restoration if energy density of fluctuations (ξ) = e 2aξ 0 M : π 2 +( ξ ϕ) 2 + e 2aξ ( ϕ) 2 + m 2 ϕ : 0 M 2 of the order of the energy gain by symmetry breakdown (ξ) λ 8 φ4 0 (d H ) 480π 2 d 4 H (md H 0.2) d H 4 60 π 2 λ φ 0 Higgs model parameters d H T Tolman 90 GeV

10 Kinematics Summary On safe grounds - rewriting Minkowski space propagators in terms of Rindler coordinates Rindler particles = Minkowski particles accelerating = heating Dynamics Indications of significant differences in Minkowski and Rindler space dynamics - new type of interactions mediated by zero energy excitations Hints for symmetry restoration by acceleration deconfinement? Influence of the zero-mode radiation field on the structure of stretched horizons? ImD(ξ, ξ, x )

Unruh effect and Holography

Unruh effect and Holography nd Mini Workshop on String Theory @ KEK Unruh effect and Holography Shoichi Kawamoto (National Taiwan Normal University) with Feng-Li Lin(NTNU), Takayuki Hirayama(NCTS) and Pei-Wen Kao (Keio, Dept. of

More information

T H E K M S - C O N D I T I O N

T H E K M S - C O N D I T I O N T H E K M S - C O N D I T I O N martin pauly January 3, 207 Abstract This report develops the relation between periodicity in imaginary time and finite temperature for quantum field theories, given by

More information

κ = f (r 0 ) k µ µ k ν = κk ν (5)

κ = f (r 0 ) k µ µ k ν = κk ν (5) 1. Horizon regularity and surface gravity Consider a static, spherically symmetric metric of the form where f(r) vanishes at r = r 0 linearly, and g(r 0 ) 0. Show that near r = r 0 the metric is approximately

More information

Problem 1, Lorentz transformations of electric and magnetic

Problem 1, Lorentz transformations of electric and magnetic Problem 1, Lorentz transformations of electric and magnetic fields We have that where, F µν = F µ ν = L µ µ Lν ν F µν, 0 B 3 B 2 ie 1 B 3 0 B 1 ie 2 B 2 B 1 0 ie 3 ie 2 ie 2 ie 3 0. Note that we use the

More information

Acceleration and Entanglement: a Deteriorating Relationship

Acceleration and Entanglement: a Deteriorating Relationship Acceleration and Entanglement: a Deteriorating Relationship R.B. Mann Phys. Rev. Lett. 95 120404 (2005) Phys. Rev. A74 032326 (2006) Phys. Rev. A79 042333 (2009) Phys. Rev. A80 02230 (2009) D. Ahn P. Alsing

More information

Wilson and Polyakov loops of gravitational gauge fields in Rindler space

Wilson and Polyakov loops of gravitational gauge fields in Rindler space Wilson and Polyakov loops of gravitational gauge fields in Rindler space E.Koorambas 8A Chatzikosta, 5 Ampelokipi, Athens, Greece E-mail:elias.koor@gmail.com (August 4, 04) Abstract: We will study the

More information

arxiv:gr-qc/ v1 4 Apr 2006

arxiv:gr-qc/ v1 4 Apr 2006 arxiv:gr-qc/0604008v1 4 Apr 2006 A NEW KIND OF UNIFORMLY ACCELERATED REFERENCE FRAMES Chao-Guang HUANG Institute of High Energy Physics, Chinese Academy of Sciences P.O. Box 918-4, Beijing 100049, P. R.

More information

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight

PAPER 71 COSMOLOGY. Attempt THREE questions There are seven questions in total The questions carry equal weight MATHEMATICAL TRIPOS Part III Friday 31 May 00 9 to 1 PAPER 71 COSMOLOGY Attempt THREE questions There are seven questions in total The questions carry equal weight You may make free use of the information

More information

8.821/8.871 Holographic duality

8.821/8.871 Holographic duality Lecture 3 8.81/8.871 Holographic duality Fall 014 8.81/8.871 Holographic duality MIT OpenCourseWare Lecture Notes Hong Liu, Fall 014 Lecture 3 Rindler spacetime and causal structure To understand the spacetime

More information

Detector for a massless (1+1) field: Hawking effect without infrared sickness

Detector for a massless (1+1) field: Hawking effect without infrared sickness Detector for a massless (1+1) field: Hawking effect without infrared sickness Benito Juárez-Aubry School of Mathematical Sciences University of Nottingham 5 April 2013 Quantum fields, gravity and information

More information

Entanglement from the vacuum

Entanglement from the vacuum Entanglement from the vacuum arxiv:quant-ph/0212044v2 27 Jan 2003 Benni Reznik School of Physics and Astronomy Tel Aviv University Tel Aviv 69978, Israel. e-mail:reznik@post.tau.ac.il July 23, 2013 We

More information

Hawking-Unruh Temperature. PHYS 612: Advanced Topics in Quantum Field Theory. Spring Taught by George Siopsis. Written by Charles Hughes

Hawking-Unruh Temperature. PHYS 612: Advanced Topics in Quantum Field Theory. Spring Taught by George Siopsis. Written by Charles Hughes Hawking-Unruh Temperature PHYS 612: Advanced Topics in Quantum Field Theory Spring 2018 Taught by George Siopsis Written by Charles Hughes Table of Contents 0) Abstract 1) Introduction to Rindler Coordinates

More information

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes

HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes General Relativity 8.96 (Petters, spring 003) HOMEWORK 10. Applications: special relativity, Newtonian limit, gravitational waves, gravitational lensing, cosmology, 1 black holes 1. Special Relativity

More information

arxiv:hep-th/ v1 4 Nov 2003

arxiv:hep-th/ v1 4 Nov 2003 Thermodynamics and area in Minkowski space: Heat capacity of entanglement. Ram Brustein, Amos Yarom Department of Physics, Ben-Gurion University, Beer-Sheva 8415, Israel E-mail: ramyb@bgumail.bgu.ac.il,

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Einstein Toolkit Workshop. Joshua Faber Apr

Einstein Toolkit Workshop. Joshua Faber Apr Einstein Toolkit Workshop Joshua Faber Apr 05 2012 Outline Space, time, and special relativity The metric tensor and geometry Curvature Geodesics Einstein s equations The Stress-energy tensor 3+1 formalisms

More information

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5

ds/cft Contents Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, Lecture Lecture 2 5 ds/cft Lecturer: Prof. Juan Maldacena Transcriber: Alexander Chen August 7, 2011 Contents 1 Lecture 1 2 2 Lecture 2 5 1 ds/cft Lecture 1 1 Lecture 1 We will first review calculation of quantum field theory

More information

Coupled Dark Energy and Dark Matter from dilatation symmetry

Coupled Dark Energy and Dark Matter from dilatation symmetry Coupled Dark Energy and Dark Matter from dilatation symmetry Cosmological Constant - Einstein - Constant λ compatible with all symmetries Constant λ compatible with all observations No time variation in

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.82 String Theory Fall 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.82 F2008 Lecture 24 Blackhole Thermodynamics

More information

arxiv: v1 [hep-ph] 7 Dec 2017

arxiv: v1 [hep-ph] 7 Dec 2017 Unruh effect and Schwinger pair creation under extreme acceleration by ultraintense lasers arxiv:1712.02477v1 [hep-ph] 7 Dec 2017 Chul Min Kim Center for Relativistic Laser Science, Institute for Basic

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY

MATHEMATICAL TRIPOS PAPER 67 COSMOLOGY MATHEMATICA TRIPOS Part III Wednesday 6 June 2001 9 to 11 PAPER 67 COSMOOGY Attempt THREE questions. The questions are of equal weight. Candidates may make free use of the information given on the accompanying

More information

Dilaton: Saving Conformal Symmetry

Dilaton: Saving Conformal Symmetry Dilaton: Saving Conformal Symmetry Alexander Monin Ecole Polytechnique Fédérale de Lausanne December 2, 2013 lexander Monin (Ecole Polytechnique Fédérale de Dilaton: Lausanne) Saving Conformal Symmetry

More information

Quantum Field Theory Notes. Ryan D. Reece

Quantum Field Theory Notes. Ryan D. Reece Quantum Field Theory Notes Ryan D. Reece November 27, 2007 Chapter 1 Preliminaries 1.1 Overview of Special Relativity 1.1.1 Lorentz Boosts Searches in the later part 19th century for the coordinate transformation

More information

Accelerated Observers

Accelerated Observers Accelerated Observers In the last few lectures, we ve been discussing the implications that the postulates of special relativity have on the physics of our universe. We ve seen how to compute proper times

More information

Lecture: Lorentz Invariant Dynamics

Lecture: Lorentz Invariant Dynamics Chapter 5 Lecture: Lorentz Invariant Dynamics In the preceding chapter we introduced the Minkowski metric and covariance with respect to Lorentz transformations between inertial systems. This was shown

More information

Finite-temperature Field Theory

Finite-temperature Field Theory Finite-temperature Field Theory Aleksi Vuorinen CERN Initial Conditions in Heavy Ion Collisions Goa, India, September 2008 Outline Further tools for equilibrium thermodynamics Gauge symmetry Faddeev-Popov

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented.

July 2, SISSA Entrance Examination. PhD in Theoretical Particle Physics Academic Year 2018/2019. olve two among the three problems presented. July, 018 SISSA Entrance Examination PhD in Theoretical Particle Physics Academic Year 018/019 S olve two among the three problems presented. Problem I Consider a theory described by the Lagrangian density

More information

Hawking Radiation with the WKB and Graviational WKB approximations

Hawking Radiation with the WKB and Graviational WKB approximations University of Colorado, Boulder CU Scholar Undergraduate Honors Theses Honors Program Spring 217 Hawking Radiation with the WKB and Graviational WKB approximations Tristan Dobrian Tristan.Dobrian@Colorado.EDU

More information

The Apparent Universe

The Apparent Universe The Apparent Universe Alexis HELOU APC - AstroParticule et Cosmologie, Paris, France alexis.helou@apc.univ-paris7.fr 11 th June 2014 Reference This presentation is based on a work by P. Binétruy & A. Helou:

More information

Inflationary Trajectories

Inflationary Trajectories Inflationary Trajectories Pascal M. Vaudrevange 19.09.2007 Scanning Inflaton Goals: Reconstruction of Primordial Power Spectra Reconstruction of Inflaton Potential Inflation driven by a scalar field -

More information

Quark Gluon Plasma thermodynamics

Quark Gluon Plasma thermodynamics Quark Gluon Plasma thermodynamics Andrea Beraudo INFN - Sezione di Torino Ph.D. Lectures, AA 2015-16 Torino 1 / 32 Heavy-ion collisions: exploring the QCD phase-diagram QCD phases identified through the

More information

Lecture A2. conformal field theory

Lecture A2. conformal field theory Lecture A conformal field theory Killing vector fields The sphere S n is invariant under the group SO(n + 1). The Minkowski space is invariant under the Poincaré group, which includes translations, rotations,

More information

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s

Astr 2320 Tues. May 2, 2017 Today s Topics Chapter 23: Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Astr 0 Tues. May, 07 Today s Topics Chapter : Cosmology: The Big Bang and Beyond Introduction Newtonian Cosmology Solutions to Einstein s Field Equations The Primeval Fireball Standard Big Bang Model Chapter

More information

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently.

Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework. Every exercise counts 10 points unless stated differently. 1 Special and General Relativity (PHZ 4601/5606) Fall 2018 Classwork and Homework Every exercise counts 10 points unless stated differently. Set 1: (1) Homework, due ( F ) 8/31/2018 before ( ) class. Consider

More information

PROBLEM SET 10 (The Last!)

PROBLEM SET 10 (The Last!) MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.286: The Early Universe December 5, 2013 Prof. Alan Guth PROBLEM SET 10 (The Last!) DUE DATE: Tuesday, December 10, 2013, at 5:00 pm.

More information

On the Hawking Wormhole Horizon Entropy

On the Hawking Wormhole Horizon Entropy ESI The Erwin Schrödinger International Boltzmanngasse 9 Institute for Mathematical Physics A-1090 Wien, Austria On the Hawking Wormhole Horizon Entropy Hristu Culetu Vienna, Preprint ESI 1760 (2005) December

More information

Curved Spacetime III Einstein's field equations

Curved Spacetime III Einstein's field equations Curved Spacetime III Einstein's field equations Dr. Naylor Note that in this lecture we will work in SI units: namely c 1 Last Week s class: Curved spacetime II Riemann curvature tensor: This is a tensor

More information

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole

Quantum Black Hole and Information. Lecture (1): Acceleration, Horizon, Black Hole Quantum Black Hole and Information Soo-Jong Rey @ copyright Lecture (1): Acceleration, Horizon, Black Hole [Convention: c = 1. This can always be reinstated from dimensional analysis.] Today, we shall

More information

arxiv: v2 [gr-qc] 27 Apr 2013

arxiv: v2 [gr-qc] 27 Apr 2013 Free of centrifugal acceleration spacetime - Geodesics arxiv:1303.7376v2 [gr-qc] 27 Apr 2013 Hristu Culetu Ovidius University, Dept.of Physics and Electronics, B-dul Mamaia 124, 900527 Constanta, Romania

More information

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in

PRINCIPLES OF PHYSICS. \Hp. Ni Jun TSINGHUA. Physics. From Quantum Field Theory. to Classical Mechanics. World Scientific. Vol.2. Report and Review in LONDON BEIJING HONG TSINGHUA Report and Review in Physics Vol2 PRINCIPLES OF PHYSICS From Quantum Field Theory to Classical Mechanics Ni Jun Tsinghua University, China NEW JERSEY \Hp SINGAPORE World Scientific

More information

Physics 325: General Relativity Spring Final Review Problem Set

Physics 325: General Relativity Spring Final Review Problem Set Physics 325: General Relativity Spring 2012 Final Review Problem Set Date: Friday 4 May 2012 Instructions: This is the third of three review problem sets in Physics 325. It will count for twice as much

More information

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3

Review of Fundamental Equations Supplementary notes on Section 1.2 and 1.3 Review of Fundamental Equations Supplementary notes on Section. and.3 Introduction of the velocity potential: irrotational motion: ω = u = identity in the vector analysis: ϕ u = ϕ Basic conservation principles:

More information

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016

Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 Zhong-Zhi Xianyu (CMSA Harvard) Tsinghua June 30, 2016 We are directly observing the history of the universe as we look deeply into the sky. JUN 30, 2016 ZZXianyu (CMSA) 2 At ~10 4 yrs the universe becomes

More information

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution

Bachelor Thesis. General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Bachelor Thesis General Relativity: An alternative derivation of the Kruskal-Schwarzschild solution Author: Samo Jordan Supervisor: Prof. Markus Heusler Institute of Theoretical Physics, University of

More information

QCD on the lattice - an introduction

QCD on the lattice - an introduction QCD on the lattice - an introduction Mike Peardon School of Mathematics, Trinity College Dublin Currently on sabbatical leave at JLab HUGS 2008 - Jefferson Lab, June 3, 2008 Mike Peardon (TCD) QCD on the

More information

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity.

Minkowski spacetime. Pham A. Quang. Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Minkowski spacetime Pham A. Quang Abstract: In this talk we review the Minkowski spacetime which is the spacetime of Special Relativity. Contents 1 Introduction 1 2 Minkowski spacetime 2 3 Lorentz transformations

More information

Quantum Radiation of a Uniformly Accelerated Refractive Body

Quantum Radiation of a Uniformly Accelerated Refractive Body Alberta-Thy-04-00 Quantum Radiation of a Uniformly Accelerated Refractive Body V. Frolov and D. Singh March 31, 2000 Theoretical Physics Institute, Department of Physics, University of Alberta, Edmonton,

More information

Inflation with a stringy minimal length (reworked)

Inflation with a stringy minimal length (reworked) Humboldt Universität zu Berlin Nordic String Meeting, Bremen, March 27 th 2009 Acknowledgements Part of an ongoing collaboration with Gonzalo A. Palma. This work reported on in arxiv : 0810.5532, to appear

More information

ATOMS OF SPACETIME. Fourth Abdus Salaam Memorial Lecture ( ) T. Padmanabhan (IUCAA, Pune, India) Feb. 28, 2006

ATOMS OF SPACETIME. Fourth Abdus Salaam Memorial Lecture ( ) T. Padmanabhan (IUCAA, Pune, India) Feb. 28, 2006 ATOMS OF SPACETIME T. Padmanabhan (IUCAA, Pune, India) Feb. 28, 2006 Fourth Abdus Salaam Memorial Lecture (2005-2006) WHAT WILL BE THE VIEW REGARDING GRAVITY AND SPACETIME IN THE YEAR 2206? CLASSICAL GRAVITY

More information

Bianchi I Space-times and Loop Quantum Cosmology

Bianchi I Space-times and Loop Quantum Cosmology Bianchi I Space-times and Loop Quantum Cosmology Edward Wilson-Ewing Institute for Gravitation and the Cosmos The Pennsylvania State University Work with Abhay Ashtekar October 23, 2008 E. Wilson-Ewing

More information

Effects of Hawking radiation and Wigner rotation on fermion entanglement

Effects of Hawking radiation and Wigner rotation on fermion entanglement Effects of Hawking radiation and Wigner rotation on fermion entanglement Doyeol Ahn* nstitute of Quantum nformation Processing and Systems, University of Seoul, Seoul 30-743, Republic of Korea -Abstract:

More information

Accelerated Quantum Dynamics

Accelerated Quantum Dynamics University of Wisconsin Milwaukee UWM Digital Commons Theses and Dissertations May 07 Accelerated Quantum Dynamics Morgan Henry Lynch University of Wisconsin-Milwaukee Follow this and additional works

More information

String Corrections To Gravitational Instantons

String Corrections To Gravitational Instantons String Corrections To Gravitational Instantons Arash Khatami Supervisor Dr. Jan Pieter van der Schaar String Corrections To Gravitational Instantons Master Thesis Arash Khatami student id: 0614890 a.khatami@student.uva.nl

More information

Curved Spacetime... A brief introduction

Curved Spacetime... A brief introduction Curved Spacetime... A brief introduction May 5, 2009 Inertial Frames and Gravity In establishing GR, Einstein was influenced by Ernst Mach. Mach s ideas about the absolute space and time: Space is simply

More information

Number-Flux Vector and Stress-Energy Tensor

Number-Flux Vector and Stress-Energy Tensor Massachusetts Institute of Technology Department of Physics Physics 8.962 Spring 2002 Number-Flux Vector and Stress-Energy Tensor c 2000, 2002 Edmund Bertschinger. All rights reserved. 1 Introduction These

More information

Synchrotron radiation

Synchrotron radiation Synchrotron radiation When a particle with velocity v is deflected it emits radiation : the synchrotron radiation. Relativistic particles emits in a characteristic cone 1/g The emitted power is strongly

More information

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field.

Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 1: Grad, Div, Curl, Laplacian in Cartesian, cylindrical, and spherical coordinates. Here ψ is a scalar function and A is a vector field. Figure 2: Vector and integral identities. Here ψ is a scalar

More information

arxiv:physics/ v2 [physics.class-ph] 30 Aug 1999

arxiv:physics/ v2 [physics.class-ph] 30 Aug 1999 arxiv:physics/9907037v2 [physics.class-ph] 30 Aug 999 Accelerated motion and special relativity transformations. Introduction A A Ketsaris 9--83, ul. Krasniy Kazanetz, Moscow 395, Russian Federation Abstract.

More information

A5682: Introduction to Cosmology Course Notes. 2. General Relativity

A5682: Introduction to Cosmology Course Notes. 2. General Relativity 2. General Relativity Reading: Chapter 3 (sections 3.1 and 3.2) Special Relativity Postulates of theory: 1. There is no state of absolute rest. 2. The speed of light in vacuum is constant, independent

More information

Mathematical Methods for Physics

Mathematical Methods for Physics Mathematical Methods for Physics Peter S. Riseborough June 8, 8 Contents Mathematics and Physics 5 Vector Analysis 6. Vectors................................ 6. Scalar Products............................

More information

Stability in and of de Sitter space

Stability in and of de Sitter space Stability in and of de Sitter space arxiv : 0911.3142 (hep-th) Benjamin Shlaer Tufts Institute of Cosmology Outline Review of instantons and exponential decay The asymmetric double well Field theory in

More information

Cosmological Issues. Consider the stress tensor of a fluid in the local orthonormal frame where the metric is η ab

Cosmological Issues. Consider the stress tensor of a fluid in the local orthonormal frame where the metric is η ab Cosmological Issues 1 Radiation dominated Universe Consider the stress tensor of a fluid in the local orthonormal frame where the metric is η ab ρ 0 0 0 T ab = 0 p 0 0 0 0 p 0 (1) 0 0 0 p We do not often

More information

Horizontal Charge Excitation of Supertranslation and Superrotation

Horizontal Charge Excitation of Supertranslation and Superrotation Horizontal Charge Excitation of Supertranslation and Superrotation Masahiro Hotta Tohoku University Based on M. Hotta, J. Trevison and K. Yamaguchi arxiv:1606.02443. M. Hotta, K. Sasaki and T. Sasaki,

More information

Thermality of Spherical Causal Domains & the Entanglement Spectrum

Thermality of Spherical Causal Domains & the Entanglement Spectrum Thermality of Spherical Causal Domains & the Entanglement Spectrum Hal Haggard in collaboration with Eugenio Bianchi September 17th, 2013 International Loop Quantum Gravity Seminar relativity.phys.lsu.edu/ilqgs/

More information

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève

ACOUSTIC BLACK HOLES. MASSIMILIANO RINALDI Université de Genève ACOUSTIC BLACK HOLES MASSIMILIANO RINALDI Université de Genève OUTLINE Prelude: GR vs QM Hawking Radiation: a primer Acoustic Black Holes Hawking Radiation in Acoustic Black Holes Acoustic Black Holes

More information

UNRUH EFFECT IN STORAGE RINGS a

UNRUH EFFECT IN STORAGE RINGS a UNRUH EFFECT IN STORAGE RINGS a JON MAGNE LEINAAS Department of Physics University of Oslo P.O. Box 1048, Blindern N-0316 Oslo Norway A uniformly accelerated system will get thermally excited due to interactions

More information

Ultrarelativistic Heavy-Ions

Ultrarelativistic Heavy-Ions Kinematics November 11, 2010 / GSI Outline Introduction 1 Introduction 2 3 3 Notation Introduction A parallel to z-axis (beam): A A = A A transverse to z-axis: A = A A A = A Transverse mass: m = m 2 +

More information

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are;

Lecture 4 - Relativistic wave equations. Relativistic wave equations must satisfy several general postulates. These are; Lecture 4 - Relativistic wave equations Postulates Relativistic wave equations must satisfy several general postulates. These are;. The equation is developed for a field amplitude function, ψ 2. The normal

More information

Solutions for the FINAL EXAM

Solutions for the FINAL EXAM Ludwig Maximilian University of Munich LMU General Relativity TC1 Prof. Dr. V. Mukhanov WS 014/15 Instructors: Dr. Ted Erler Dr. Paul Hunt Dr. Alex Vikman https://www.physik.uni-muenchen.de/lehre/vorlesungen/wise_14_15/tc1_-general-relativity/index.html

More information

Inflationary Massive Gravity

Inflationary Massive Gravity New perspectives on cosmology APCTP, 15 Feb., 017 Inflationary Massive Gravity Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University C. Lin & MS, PLB 75, 84 (016) [arxiv:1504.01373 ]

More information

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012

Time dependent perturbation theory 1 D. E. Soper 2 University of Oregon 11 May 2012 Time dependent perturbation theory D. E. Soper University of Oregon May 0 offer here some background for Chapter 5 of J. J. Sakurai, Modern Quantum Mechanics. The problem Let the hamiltonian for a system

More information

1 Tensors and relativity

1 Tensors and relativity Physics 705 1 Tensors and relativity 1.1 History Physical laws should not depend on the reference frame used to describe them. This idea dates back to Galileo, who recognized projectile motion as free

More information

Warming Up to Finite-Temperature Field Theory

Warming Up to Finite-Temperature Field Theory Warming Up to Finite-Temperature Field Theory Michael Shamma UC Santa Cruz March 2016 Overview Motivations Quantum statistical mechanics (quick!) Path integral representation of partition function in quantum

More information

(a p (t)e i p x +a (t)e ip x p

(a p (t)e i p x +a (t)e ip x p 5/29/3 Lecture outline Reading: Zwiebach chapters and. Last time: quantize KG field, φ(t, x) = (a (t)e i x +a (t)e ip x V ). 2Ep H = ( ȧ ȧ(t)+ 2E 2 E pa a) = p > E p a a. P = a a. [a p,a k ] = δ p,k, [a

More information

Black holes in the 1/D expansion

Black holes in the 1/D expansion Black holes in the 1/D expansion Roberto Emparan ICREA & UBarcelona w/ Tetsuya Shiromizu, Ryotaku Suzuki, Kentaro Tanabe, Takahiro Tanaka R μν = 0 R μν = Λg μν Black holes are very important objects in

More information

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline

8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 8.20 MIT Introduction to Special Relativity IAP 2005 Tentative Outline 1 Main Headings I Introduction and relativity pre Einstein II Einstein s principle of relativity and a new concept of spacetime III

More information

3 Rindler Space and Hawking Radiation

3 Rindler Space and Hawking Radiation 3 Rindler Space and Hawking Radiation The next couple of lectures are on Hawking radiation. There are many good references to learn this subject, for example: Carroll s GR book Chapter 9; Townsend gr-qc/970702;

More information

Accelerated Detector Response Function in Squeezed Vacuum

Accelerated Detector Response Function in Squeezed Vacuum technologies Article Accelerated Detector Response Function in Squeezed Vacuum Salwa Alsaleh Department of Physics and Astronomy, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; salwams@ksu.edu.sa

More information

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight.

PAPER 310 COSMOLOGY. Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. MATHEMATICAL TRIPOS Part III Wednesday, 1 June, 2016 9:00 am to 12:00 pm PAPER 310 COSMOLOGY Attempt no more than THREE questions. There are FOUR questions in total. The questions carry equal weight. STATIONERY

More information

Longitudinal Waves in Scalar, Three-Vector Gravity

Longitudinal Waves in Scalar, Three-Vector Gravity Longitudinal Waves in Scalar, Three-Vector Gravity Kenneth Dalton email: kxdalton@yahoo.com Abstract The linear field equations are solved for the metrical component g 00. The solution is applied to the

More information

Introduction to Inflation

Introduction to Inflation Introduction to Inflation Miguel Campos MPI für Kernphysik & Heidelberg Universität September 23, 2014 Index (Brief) historic background The Cosmological Principle Big-bang puzzles Flatness Horizons Monopoles

More information

Aspects of Spontaneous Lorentz Violation

Aspects of Spontaneous Lorentz Violation Aspects of Spontaneous Lorentz Violation Robert Bluhm Colby College IUCSS School on CPT & Lorentz Violating SME, Indiana University, June 2012 Outline: I. Review & Motivations II. Spontaneous Lorentz Violation

More information

AdS/CFT and Second Order Viscous Hydrodynamics

AdS/CFT and Second Order Viscous Hydrodynamics AdS/CFT and Second Order Viscous Hydrodynamics Micha l P. Heller Institute of Physics Jagiellonian University, Cracow Cracow School of Theoretical Physics XLVII Course Zakopane, 20.06.2007 Based on [hep-th/0703243]

More information

Lecture 20: Effective field theory for the Bose- Hubbard model

Lecture 20: Effective field theory for the Bose- Hubbard model Lecture 20: Effective field theory for the Bose- Hubbard model In the previous lecture, we have sketched the expected phase diagram of the Bose-Hubbard model, and introduced a mean-field treatment that

More information

Spacetime and 4 vectors

Spacetime and 4 vectors Spacetime and 4 vectors 1 Minkowski space = 4 dimensional spacetime Euclidean 4 space Each point in Minkowski space is an event. In SR, Minkowski space is an absolute structure (like space in Newtonian

More information

Particles and Deep Inelastic Scattering

Particles and Deep Inelastic Scattering Particles and Deep Inelastic Scattering Heidi Schellman University HUGS - JLab - June 2010 June 2010 HUGS 1 Course Outline 1. Really basic stuff 2. How we detect particles 3. Basics of 2 2 scattering 4.

More information

TOPIC V BLACK HOLES IN STRING THEORY

TOPIC V BLACK HOLES IN STRING THEORY TOPIC V BLACK HOLES IN STRING THEORY Lecture notes Making black holes How should we make a black hole in string theory? A black hole forms when a large amount of mass is collected together. In classical

More information

The Underlying Mechanisms of Time Dilation and Doppler Effect in Curved Space-Time

The Underlying Mechanisms of Time Dilation and Doppler Effect in Curved Space-Time The Underlying Mechanisms of Time Dilation and Doppler Effect in Curved Space-Time enliang Li,,*, Hailiang Zhang 3, Perry Ping Shum 3, Qi Jie Wang,4 School of Electrical & Electronic Engineering, Nanyang

More information

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October

MIT Course 8.033, Fall 2006, Relativistic Kinematics Max Tegmark Last revised October MIT Course 8.33, Fall 6, Relativistic Kinematics Max Tegmark Last revised October 17 6 Topics Lorentz transformations toolbox formula summary inverse composition (v addition) boosts as rotations the invariant

More information

9 Fluid Instabilities

9 Fluid Instabilities 9. Stability of a shear flow In many situations, gaseous flows can be subject to fluid instabilities in which small perturbations can rapidly flow, thereby tapping a source of free energy. An important

More information

Unruh effect & Schwinger mechanism in strong lasers?

Unruh effect & Schwinger mechanism in strong lasers? Unruh effect & Schwinger mechanism in strong lasers? Ralf Schützhold Fachbereich Physik Universität Duisburg-Essen Unruh effect & Schwinger mechanism in strong lasers? p.1/14 Unruh Effect Uniformly accelerated

More information

(Quantum) Fields on Causal Sets

(Quantum) Fields on Causal Sets (Quantum) Fields on Causal Sets Michel Buck Imperial College London July 31, 2013 1 / 32 Outline 1. Causal Sets: discrete gravity 2. Continuum-Discrete correspondence: sprinklings 3. Relativistic fields

More information

E.T. Akhmedov, T. Pilling, D. Singleton, JMPD 17. (2008)

E.T. Akhmedov, T. Pilling, D. Singleton, JMPD 17. (2008) L. Parker, S. A. Fulling, PD 9, (1974) L.H. Ford, PD 11, (1975) J. S. Dowker,. Critchley, PD 13, (1976) D. Hochberg,T. W.Kephart, PD 49, (1994) J. G. Demers,.Lafrance,.C.Myers, CM PD 5, (1995) E.T. Akhmedov,

More information

arxiv: v1 [gr-qc] 12 Sep 2018

arxiv: v1 [gr-qc] 12 Sep 2018 The gravity of light-waves arxiv:1809.04309v1 [gr-qc] 1 Sep 018 J.W. van Holten Nikhef, Amsterdam and Leiden University Netherlands Abstract Light waves carry along their own gravitational field; for simple

More information

Cosmic Strings and Topological Defects

Cosmic Strings and Topological Defects Cosmic Strings and Topological Defects Jiawen Liu December 9, 2012 Abstract In this review article, we point out spontaneous symmetry breaking is closely related to the emergence of the topological defects.

More information

Chapter 10 Operators of the scalar Klein Gordon field. from my book: Understanding Relativistic Quantum Field Theory.

Chapter 10 Operators of the scalar Klein Gordon field. from my book: Understanding Relativistic Quantum Field Theory. Chapter 10 Operators of the scalar Klein Gordon field from my book: Understanding Relativistic Quantum Field Theory Hans de Vries November 11, 2008 2 Chapter Contents 10 Operators of the scalar Klein Gordon

More information

2.1 Calculation of the ground state energy via path integral

2.1 Calculation of the ground state energy via path integral Chapter 2 Instantons in Quantum Mechanics Before describing the instantons and their effects in non-abelian gauge theories, it is instructive to become familiar with the relevant ideas in the context of

More information

General boundary field theory, thermality, and entanglement

General boundary field theory, thermality, and entanglement General boundary field theory, thermality, and entanglement Hal Haggard In collaboration with: Eugenio Bianchi and Carlo Rovelli July 23rd, 2013 Loops 13, Perimeter Institute gr-qc/1306.5206 Questions

More information