Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Size: px
Start display at page:

Download "Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme"

Transcription

1 Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe EDP Analyse Numérique Nice, 8 juin 25 Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme /39

2 Main motivations Problem and objectives Hyperbolic systems of conservation laws with source term t w + x F (w) = S (w), w Ω. ν Construct Finite Volume schemes with some good properties. Steady states: w Ω such that x F (w) = ν S (w) exact capture of some of them. Preservation of asymptotic diffusive regime: ν. Other properties of the solution (positivity of densities, etc.). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 2/39

3 of chemotaxis,2 where t ρ+ x (ρu) =, () t (ρu)+ x ( ρu 2 + p ) = χρ x φ αρu, (2) - ρ(x,t) : particles density, - u(x,t) R: mean velocity, t φ D xx φ = aρ bφ, (3) - φ(x, t) : concentration of chemoattractant, - p(ρ) = ερ γ : pressure law, with γ > adiabatic exponent and ε > a constant, - χ, α, D >, a > and b > some parameters. Natalini, Ribot, Twarogowska, CMS Twarogowska, PhD Thesis 2. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 3/39

4 Objectives Problem and objectives Preserve equilibrium states (at rest, with u = ), that are given by { ε γ χ γ ργ φ = K, D xx φ = aρ bφ, with a constant K. Exact capture when γ = 2. W-B scheme on the hyperbolic part ()-(2),2, using a suitable extension of the hydrostatic reconstruction 3, and also on the equation (3) for φ. Deal with vacuum regions. Natalini, Ribot, Twarogowska, CMS Twarogowska, PhD Thesis 2. 3 Audusse, Bouchut, Bristeau, Klein, Perthame, SIAM JSC 24. (4) Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 4/39

5 Chosen strategy Problem and objectives Derive a finite volume scheme of Godunov-type. Construct a suitable approximate Riemann solver w: - that verifies the consistency condition introduced by Harten, Lax and van Leer 4, - by imposing the preservation of steady states of interest (with a good approximation of the source term 5 and using their explicit expression), - by using a cut-off procedure 6 when dealing with vanishing densities. 4 Harten, Lax, van Leer, SIAM review Berthon, Chalons, to appear in Math. of Comp. 6 Audusse, Chalons, Ung, CMS 25. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 5/39

6 Outline Problem and objectives Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 6/39

7 Problem and objectives Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity We first look at the two first equations ()-(2), that we rewrite as with ( ρ w = ρu ) (, F (w) = t w + x F (w) = S (w) (5) ρu ρu 2 + p considering φ as a known source term. ) ( and S (w) = χρ x φ αρu ), First study: without friction (α = ). Second study: with friction (α > ). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 7/39

8 Approximate Riemann solver Approximate Riemann solver w( x t,w L,w R ) defined by: velocities λ L < < λ R : Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity λ L = min(,λ L,λ R ) and λ R = max( +,λ + L,λ+ R ), where λ ± L and λ± R denote the eigenvalues of the flux Jacobian matrix: λ ± = u ± c where c = c(ρ) = P (ρ) = εγρ γ, intermediate states wl and w R (will be defined later), t the CFL condition: x max( λ L, λ R ) 2. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 8/39

9 HLL consistency condition Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity Consistency condition from Harten, Lax and van Leer: x 2 w( x x x t,w L,w R )dx = w R ( x x 2 }{{} x t,w L,w R )dx, 2 }{{} Ã x 2 with w R ( x t,w L,w R ) the exact solution of the Riemann problem. Left side: Ã = 2 (w L + w R )+ t x (λ L(w L w L )+λ R (w R w R)). A R Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 9/39

10 t w + x F (w) = S (w) (5) Right side (by integrating on [, t] [ x equation (5)) in the case α = : Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity 2, x 2 ] the exact A R = 2 (w L + w R ) t x (F (w R) F (w L ))+ t Exact source term S R = t x 2 t x χρ x R x φdxdt 2 approximated by S. Four other unknowns: w L = ( ρ L We need 5 equations. ρ L u L ) ( ). S R and w R = ( ρ R ρ R u R ). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme /39

11 Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity Two first equation: Ã = A R λ L (ρ L ρ L )+λ R (ρ R ρ R) = ρ L u L ρ R u R, λ L (ρ L u L ρ L u L )+λ R (ρ R u R ρ Ru R ) = ρ L u 2 L + p L ρ R u 2 R p R + xs. Third equation: ρ L u L = ρ R u R =: q (continuity of momentum). Two last equations: study the steady states at rest. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme /39

12 Steady states at rest Problem and objectives Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity Steady states at rest associated to (5) given by: { u =, e χφ = K, where e(ρ) is defined by x e = ρ xp which is, since P(ρ) = ερ γ : γ e(ρ) = ε γ ργ + e with e an arbitrary constant. In the Riemann problem: { ul = u R =, e L χφ L = e R χφ R = K. Approximated Riemann solver preserves steady states at rest: { u L = u R = ( q = ), e L χφ L = e R χφ R = K. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 2/39

13 Source-term approximation 5 Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity We are at steady state à = A R becomes { λ L (ρ L ρ L )+λ R(ρ R ρ R) =, (λ R λ L )q + p R p L = x S. We want to preserve steady states we have to ensure q = we suggest to put the following consistent expression of S : Fourth equation. S = χ x p R p L e R e L (φ R φ L ). Necessary condition for Well-Balanced property. 5 Berthon, Chalons, to appear in Math. of Comp. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 3/39

14 Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity For the last equation, we choose to impose e L ρ L ρ L χφ L = e R ρ R ρ R χφ R, which is consistent with e R e L = φ R φ L and gives a linearization of the equation x e = χ x φ. Sufficient condition for Well-Balanced property. Solving the system of five equations expressions for ρ L, ρ R, q and S. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 4/39

15 Case with friction: α > Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity What changes? The second equation: t (ρu)+ x ( ρu 2 + p ) = χρ x φ αρu. Integrating on [, t] [ x 2, x ] 2 gives F ( t) = 2 (ρ Lu L +ρ R u R ) t ( ρr ur 2 x +p R ρ L ul 2 p ) t L + tsr α F (t)dt, where Equation in F ( t): F (t) = x/2 (ρu) x R (x,t)dx. x/2 F ( t) = ( ρr ur 2 x + p R ρ L ul 2 p ) L + SR αf ( t). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 5/39

16 Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity Solution: F ( t) = Ke α t + α with K = 2 (ρ Lu L +ρ R u R ) α [ ] ( ρr ur 2 x + p R ρ L ul 2 p ) L + SR, [ ] ( ρr ur 2 x + p R ρ L ul 2 p ) L + SR. HLL consistency condition: Ã2 = F ( t). Approximation of S R in order to preserve equilibrium (u = ): S defined previously suits. ρ L and ρ R not changed. q is the only quantity that has to be modified when taking α >. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 6/39

17 Correction for the positivity Construction of the approx. Riemann solver without friction Construction of the approx. Riemann solver with friction Correction for the positivity Min-Max procedure 6 in order to ensure ρ L and ρ R, where ρ L = ρ λ R R ρ L u L ρ R u R L + δ R, δ R λ L δ L λ R δ R λ L δ L λ R ρ R = ρ R + λ L R δ R λ L δ L λ R δ L ρ L u L ρ R u R δ R λ L δ L λ R, with δ R := e R ρr, δ L := e L ρ L and R := χ(φ R φ L ) e R. For simplicity reasons: λ R = λ L. Consistency gives now: Ã = A R, ρ L +ρ R = ρ L +ρ R ρ Ru R ρ L u L λ R =: 2ρ HLL. We take: ρ R = min(max(,ρ R ),2ρ HLL), ρ L = min(max(,ρ L ),2ρ HLL). 6 Audusse, Chalons, Ung, CMS 25. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 7/39

18 Problem and objectives Construction of the approx. Riemann solver Full numerical scheme W-B property AP property We now look at the equation (3) on φ, that we rewrite as: t φ D x ψ = aρ bφ, where ρ is assumed to be known (since computed previously) and ψ := x φ. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 8/39

19 HLL consistency condition Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Consistency condition from Harten, Lax and van Leer: x/2 ( x ) φ x x/2 t,φ L,φ R dx }{{} Ã = x x/2 x/2 ( x φ R t,φ L,φ R )dx, } {{ } A R with φ R the exact Riemann solver and φ the approximated one. Left side: Ã = 2 (φ L +φ R )+ t x (λ L(φ L φ L )+λ R (φ R φ R)). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 9/39

20 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property t φ D x ψ = aρ bφ (3) Right side (by integrating on [, t] [ x equation (3)): A R = 2 (φ L +φ R )+ D t x (ψ R ψ L )+ t x First part of the model: x We get: x/2 x/2 2, x 2 x/2 x/2 ] the exact aρ R bφ R dxdt. ρ R (x,t) dx = 2 (ρ L +ρ R ) t x (ρ Ru R ρ L u L ). G( t) := A R = 2 (φ L +φ R )+ D t x (ψ R ψ L ) ( ) t +a 2 (ρ L +ρ R ) t2 2 x (ρ Ru R ρ L u L ) t b G(t)dt. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 2/39

21 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Equation on G( t): G ( t)+bg( t) = D x (ψ R ψ L )+a Solution: ( 2 (ρ L +ρ R ) t ) x (ρ Ru R ρ L u L ). G( t) = 2 (φ L +φ R ) e b t +β t +β 2 ( e b t) with β = a b x (ρ Ru R ρ L u L ) and β 2 = D b x (ψ R ψ L )+ a 2b (ρ L +ρ R )+ a b 2 x (ρ Ru R ρ L u L ). Consistency condition: Ã = A R = G( t). + Choice: φ L φ L = φ R φ R. Expressions for φ L and φ R. And what about ψ L and ψ R? Answer later... Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 2/39

22 Finite Volumes scheme Construction of the approx. Riemann solver Full numerical scheme W-B property AP property D domain [,L] discretized by N + points: x i = i x, i =,...,N, x = L N. Evolution in time of w n i x w n+ i φ n i x t n = n t for a time step t. xi+/2 x w (x,t n ) dx and i /2 xi+/2 x φ(x,t n )dx, where i /2 Scheme coming from the previously defined Riemann solvers: ( ( ) ( )) = wi n t x λ i 2,R wi n w i 2,R λ i+ 2,L wi n w i+ 2,L, ( )) = φ n i t x φ n i φ ) λ i 2,R i+ φ n i φ i+ 2,L. φ n+ i λ i 2,R ( 2,L ( Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 22/39

23 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Definition of ψ n i ψi n such that good approximation of ( x φ) n i, for example of the form ψi n = ( φ n 2 x i+ φ n ) i ( x) where ( x) has to be consistent with when x tends to. ( x): correction term such that φ n+ i = φ n i at equilibrium in the particular case γ = 2. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 23/39

24 Equilibrium for γ = 2 Problem and objectives Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Equilibrium given by: u =, φ = 2ε χ ρ+k, D xx φ bφ = aρ, { u =, xx ρ χ 2εD ( 2εb χ a ) ρ = Kb χ 2εD. Solutions,2 : ( if ρ = : φ(x) = Acosh x ) ( b/d + B sinh x ) b/d, ( if ρ >, C < : φ(x) = Acos x ) ( C + B sin x ) C φ p, ρ(x) = χ (φ(x) K), 2ε ( if ρ >, C > : φ(x) = Acosh x ) ( C + B sinh x ) C φ p, ρ(x) = χ (φ(x) K), 2ε where A and B are some constants, C = ( D b aχ) 2ε and φp = Kaχ 2εb aχ. Natalini, Ribot, Twarogowska, CMS Twarogowska, PhD Thesis 2. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 24/39

25 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Injecting these solutions in the Finite Volumes scheme and imposing φ n+ i = φ n i gives the appropriate expression of ( x): if ρ = : ( x) = x2 2 if ρ >, C < : ( x) = x2 2 if ρ >, C > : ( x) = x2 2 Expression of ψ n i b/d ( b/d x ), cosh ( C cos C x ), C cosh( C x). ψi n = ( φ n 2 x i+ φ n ) i ( x) with this ( x) steady states exactly preserved for γ = 2 and approximated for γ > 2. Min-Max procedure in order to ensure φ. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 25/39

26 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Asymptotic regime: t, α, u Rescaling u = νu ν, t = tν ν, α = αν ν, with ν > parameter devoted to tend to zero. Rescalled system given by ν t νρ ν +ν x (ρ ν u ν ) =, ν 2 t ν (ρ ν u ν ( )+ x ν 2 ρ ν (u ν ) 2 + p(ρ ν ) ) = χρ ν x φ ν α ν ρ ν u ν, ν t νφ ν D xx φ ν = aρ ν bφ ν. Chapman-Enskog expansion: ρ ν = ρ +O(ν), ρ ν u ν = ρ u +O(ν), φ ν = φ +O(ν). Zero-order governed by t νρ ( + x χ/α ν ρ x φ /α ν x p(ρ ) ) =, D xx φ = bφ aρ, ρ u = /α ν x p(ρ )+χ/α ν ρ x φ. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 26/39

27 Numerical framework Problem and objectives Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Scheme: w n+ i φ n+ i = w n i t x = φ n i t x Rescalling: ( ( Simplification: ( λ i 2,R ( λ i 2,R w n i w i 2,R ) φ n i φ i 2,R ) λ i+ ( )) λ i+ 2,L wi n w i+ 2,L, )) φ n i φ i+ 2,L. 2,L ( (u n ) = ν(u n i ) ν, t = t ν /ν, α = α ν /ν. λ R = λ L = λ, λ u + p (ρ) = O(). CFL restriction: t ν x max ( ) λi+/2 i Z 2, notation: t = C CFLν x. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 27/39

28 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property (ρu) n+ i Scheme on ρu: ( = (ρu) n i e α t/ν2 (ν 2 (ρu 2 ) n i+ 2α x + p(ρn i+ )) (ν2 (ρu 2 ) n i ( ) + p(ρ n i )) χ x {ρ x φ} n i /2 +{ρ xφ} n i+/2 ) + α x 2 ((ρu)n i+ + 2(ρu)n i +(ρu) n i ) + λc CFL 2 ( (ρu) n i+ 2(ρu) n i +(ρu) n ) i. Formal Chapman-Enskog expansion of the approximate solution: (ρu) n i = (ρ u ) n i + O(ν). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 28/39

29 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Limit ν : (ρ u ) n i = ( p(ρn i+ ) p(ρn i ) + χ ) α 2 x 2 ({ρ xφ} n i /2 +{ρ xφ} n i+/2 ) + ( λc CFL ) ((ρ u ) n i (ρ u ) n i +(ρ u ) n ) i }{{} + ( (ρ u ) n i (ρ u ) n+ ) i, }{{} =O( t) Consistent with the analytical limit =O( x 2 ) ρ u = α xp(ρ )+ χ α ρ x φ. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 29/39

30 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Equation on ρ at the limit ν : =(ρ ) n i t e ( (ρ ) n ) i x (ρ ) n i (ρ ) n+ i ( l i /2 ( (ρ u ) n i (ρ u ) n i +l i+/2 ((ρ u ) n i+ (ρ u ) n i ( ( +λc CFL (l i+/2 e (ρ ) n ( i+) e (ρ ) n )) i ( ( l i /2 e (ρ ) n ) ( i e (ρ ) n i )) ) }{{} =O( x 2 ) ) +λc CFL χ (l i+/2 (φ n i+ φn i ) l i /2(φ n i φ n i ), }{{} =O( x) where we have set l i+/2 = e ( ) (ρ ) n i /(ρ ) n i + e ( ) (ρ ) n i+ /(ρ ) n. i+ ) )) Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 3/39

31 Construction of the approx. Riemann solver Full numerical scheme W-B property AP property Consistent with the analytical limit ( χ t ρ + x α ρ x φ ) α xp(ρ ) =. Equation on φ at the limit ν : (φ ) n+ i =(φ ) n i + D ( x φ ) n i+ ( xφ ) n i b 2 x + a (ρ ) n i + 2(ρ ) n i +(ρ ) n i+. b 4 (φ ) n i + 2(φ ) n i +(φ ) n i+ 4 Consistent with the analytical limit D xx φ = bφ aρ. The scheme is AP. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 3/39

32 Testcase Testcase 2 Testcase : perturbation of an equilibrium solution Exact equilibrium solution,2 : φ(x) = 2εbK cos( τx) τχd cos( τx) ak ( 2εK χ τd, ) b cosh D (x L) ( b cosh for x [,x], D (x L) ), for x ]x,l], { χ 2ε ρ(x) = φ(x)+ D Mτ 3/2 b tan( τx), for x [,x], τx, for x ]x,l], u(x) =, where τ = ( aχ D 2ε b) and x s.t. Natalini, Ribot, Twarogowska, CMS Twarogowska, PhD Thesis 2. b τd tan( τx) = tanh ( b D (x L) ). Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 32/39

33 φ φ Problem and objectives Testcase Testcase 2 ρ and φ with a = b = D = ε =, γ = 2, χ = 5, L =, x = T= Steady state ρ 3 ρ x.6 T= x.6 Steady state x x Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 33/39

34 Testcase Testcase 2 Testcase 2: influence of parameters on the steady state Initial conditions: ρ(x,) = +sin ( 4π x L 4 ), u(x,) =, φ(x,) =. Study Density ρ as a function of x at steady state. Influence of L and χ with a = b = D = ε =. Influence of γ with a = 2, b =, D =., ε =. Validation? No analytical solution. But results similar to those of Twarogowska,2. Natalini, Ribot, Twarogowska, CMS Twarogowska, PhD Thesis 2. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 34/39

35 Testcase Testcase Influence of L at γ = 2, χ = 3, x =...7 L=, χ=3.6 L=5, χ=3.5 ρ.8 ρ x.7 L=7, χ= x.3 L=3, χ= ρ ρ x x Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 35/39

36 Testcase Testcase 2.7 Influence of χ at γ = 2, L = 7, x =.. L=7, χ=3.8 L=7, χ= ρ ρ x 3.5 L=7, χ= x 8 L=7, χ= ρ ρ x x Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 36/39

37 Testcase Testcase 2 3 Influence of γ at χ =, L = 3, x =.. γ=2 8 γ= ρ 5 ρ x 3.5 γ= x.8 γ= ρ ρ x x Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 37/39

38 Conclusions... Problem and objectives Testcase Testcase 2 HLL consistent Riemann solver. Equilibrium states exactly preserved when γ = 2 and well approached when γ > 2. Positivity of ρ and φ. No problem with vacuum ρ =. AP scheme in the case α >.... and perspectives Understand the behaviour of the asymptotic-parabolic model. Extension of the model to the 2D. Application of this technique to a kinetic system. Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 38/39

39 References Problem and objectives Testcase Testcase 2 [] R. Natalini, M. Ribot and M. Twarogowska, A Well-Balanced Numerical Scheme for a One Dimensional Quasilinear Hyperbolic Model of Chemotaxis, Commun. Math. Sci. 2 (), pp. 3-38, 24. [2] M. Twarogowska, Numerical Approximation and Analysis of Mathematical Models Arising in Cells Movement, PhD Thesis, Università degli studi dell Aquila, 2. [3] E. Audusse, F. Bouchut, M.-O. Bristeau, R. Klein, and B. Perthame, A fast and stable well-balanced scheme with hydrostatic reconstruction for shallow water flows, SIAM J. on Sci. Comp. 25 (6), pp , 24. [4] A. Harten, P.D. Lax, and B. Van Leer, On upstream differencing and Godunov-type schemes for hyperbolic conservation laws, SIAM review 25, pp. 35-6, 983. [5] C. Berthon, C. Chalons, A Fully Well-Balanced, Positive and Entropy-satisfying Godunov-type method for the shallow-water equations, to appear in Math. of Comp., HAL: hal [6] E. Audusse, C. Chalons, and P. Ung, A very simple well-balanced positive and entropy-satisfying scheme for the shallow-water equations, Commun. Math. Sci. 3 (5), pp , 25. Thank you for your attention! Nice, 8 juin 25 Schéma W-B pour un modèle de chimiotactisme 39/39

Admissibility and asymptotic-preserving scheme

Admissibility and asymptotic-preserving scheme Admissibility and asymptotic-preserving scheme F. Blachère 1, R. Turpault 2 1 Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes, 2 Institut de Mathématiques de Bordeaux (IMB), Bordeaux-INP

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

Key words. Hyperbolic system, Euler equations with gravity, source terms, steady states, relaxation schemes, well-balanced schemes.

Key words. Hyperbolic system, Euler equations with gravity, source terms, steady states, relaxation schemes, well-balanced schemes. WELL-BALANCED SCHEMES TO CAPTURE NON-EXPLICIT STEADY STATES IN THE EULER EQUATIONS WITH GRAVITY V. DESVEAUX, M. ZENK, C. BERTHON, AND C. KLINGENBERG AMS subject classifications. 65M60, 65M12 Key words.

More information

A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis

A well-balanced numerical scheme for a one dimensional quasilinear hyperbolic model of chemotaxis A well-alanced numerical scheme for a one dimensional quasilinear hyperolic model of chemotaxis Roerto Natalini, Magali Riot, Monika Twarogowska To cite this version: Roerto Natalini, Magali Riot, Monika

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

Model adaptation in hierarchies of hyperbolic systems

Model adaptation in hierarchies of hyperbolic systems Model adaptation in hierarchies of hyperbolic systems Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France February 15th, 2012 DFG-CNRS Workshop Nicolas Seguin (LJLL, UPMC) 1 / 29 Outline of the

More information

Traffic Flow Problems

Traffic Flow Problems Traffic Flow Problems Nicodemus Banagaaya Supervisor : Dr. J.H.M. ten Thije Boonkkamp October 15, 2009 Outline Introduction Mathematical model derivation Godunov Scheme for the Greenberg Traffic model.

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

A Godunov-type method for the diphasic Baer-Nunziato model

A Godunov-type method for the diphasic Baer-Nunziato model A Godunov-type method for the diphasic Baer-Nunziato model C. Chalons Joint work with : A. Ambroso, P.-A. Raviart with benefit from discussions with F. Coquel (CNRS, Ecole Polytechnique/CMAP) N. Seguin

More information

WELL-BALANCED SCHEMES TO CAPTURE NON-EXPLICIT STEADY STATES. PART 1: RIPA MODEL

WELL-BALANCED SCHEMES TO CAPTURE NON-EXPLICIT STEADY STATES. PART 1: RIPA MODEL WELL-BALANCED SCHEMES TO CAPTURE NON-EXPLICIT STEADY STATES. PART 1: RIPA MODEL VIVIEN DESVEAUX, MARKUS ZENK, CHRISTOPHE BERTHON, AND CHRISTIAN KLINGENBERG Abstract. The present paper concerns the derivation

More information

A well-balanced scheme for the shallow-water equations with topography or Manning friction.

A well-balanced scheme for the shallow-water equations with topography or Manning friction. A well-balanced scheme for the shallow-water equations with topography or Manning friction. Victor Michel-Dansac a,, Christophe Berthon a, Stéphane Clain b, Françoise Foucher a,c a Laboratoire de Mathématiques

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum

Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping and Vacuum Arch. Rational Mech. Anal. 176 (5 1 4 Digital Object Identifier (DOI 1.17/s5-4-349-y Convergence to the Barenblatt Solution for the Compressible Euler Equations with Damping Vacuum Feimin Huang, Pierangelo

More information

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche

Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Scuola di Dottorato THE WAVE EQUATION Lucio Demeio Dipartimento di Ingegneria Industriale e delle Scienze Matematiche Lucio Demeio - DIISM wave equation 1 / 44 1 The Vibrating String Equation 2 Second

More information

A simple numerical scheme for the 2D shallow-water system

A simple numerical scheme for the 2D shallow-water system A simple numerical scheme for the D shallow-water system Jie Hu, Graduate Research Student, The National Hydraulics and Environmental Laboratory LNHE (Laboratoire National d Hydraulique et Environnement),

More information

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation W.L. Jin and H.M. Zhang August 3 Abstract: In this paper we study the Payne-Whitham (PW) model as

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

A relaxation scheme for the approximation of the pressureless Euler equations

A relaxation scheme for the approximation of the pressureless Euler equations A relaxation scheme for the approximation of the pressureless Euler equations Christophe Berthon MAB UMR 5466 CNRS, Université Bordeaux I, 5 cours de la libération, 4 Talence, France. INRIA Futurs, projet

More information

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows:

The one-dimensional equations for the fluid dynamics of a gas can be written in conservation form as follows: Topic 7 Fluid Dynamics Lecture The Riemann Problem and Shock Tube Problem A simple one dimensional model of a gas was introduced by G.A. Sod, J. Computational Physics 7, 1 (1978), to test various algorithms

More information

Comparison of Approximate Riemann Solvers

Comparison of Approximate Riemann Solvers Comparison of Approximate Riemann Solvers Charlotte Kong May 0 Department of Mathematics University of Reading Supervisor: Dr P Sweby A dissertation submitted in partial fulfilment of the requirement for

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms

Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms Future Generation Computer Systems () 65 7 Application of the Kurganov Levy semi-discrete numerical scheme to hyperbolic problems with nonlinear source terms R. Naidoo a,b, S. Baboolal b, a Department

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

arxiv: v3 [math.ap] 26 May 2015

arxiv: v3 [math.ap] 26 May 2015 Delta shock wave for a 3 3 hyperbolic system of conservation laws arxiv:153.6693v3 [math.ap] 26 May 215 Richard De la cruz Juan Galvis Juan Carlos Juajibioy Leonardo Rendón August 27, 218 XV International

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

A Finite Volume Code for 1D Gas Dynamics

A Finite Volume Code for 1D Gas Dynamics A Finite Volume Code for 1D Gas Dynamics Michael Lavell Department of Applied Mathematics and Statistics 1 Introduction A finite volume code is constructed to solve conservative systems, such as Euler

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

Two-waves PVM-WAF method for non-conservative systems

Two-waves PVM-WAF method for non-conservative systems Two-waves PVM-WAF method for non-conservative systems Manuel J. Castro Díaz 1, E.D Fernández Nieto, Gladys Narbona Reina and Marc de la Asunción 1 1 Departamento de Análisis Matemático University of Málaga

More information

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra

Finite volumes for complex applications In this paper, we study finite-volume methods for balance laws. In particular, we focus on Godunov-type centra Semi-discrete central schemes for balance laws. Application to the Broadwell model. Alexander Kurganov * *Department of Mathematics, Tulane University, 683 St. Charles Ave., New Orleans, LA 708, USA kurganov@math.tulane.edu

More information

Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms

Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms Large time step and asymptotic preserving numerical schemes for the gas dynamics equations with source terms Christophe Chalons, Samuel Kokh, Mathieu Girardin To cite this version: Christophe Chalons,

More information

From the Newton equation to the wave equation in some simple cases

From the Newton equation to the wave equation in some simple cases From the ewton equation to the wave equation in some simple cases Xavier Blanc joint work with C. Le Bris (EPC) and P.-L. Lions (Collège de France) Université Paris Diderot, FRACE http://www.ann.jussieu.fr/

More information

On a simple model of isothermal phase transition

On a simple model of isothermal phase transition On a simple model of isothermal phase transition Nicolas Seguin Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 6 France Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

More information

HIGH ORDER FINITE VOLUME SCHEMES BASED ON RECONSTRUCTION OF STATES FOR SOLVING HYPERBOLIC SYSTEMS WITH NONCONSERVATIVE PRODUCTS

HIGH ORDER FINITE VOLUME SCHEMES BASED ON RECONSTRUCTION OF STATES FOR SOLVING HYPERBOLIC SYSTEMS WITH NONCONSERVATIVE PRODUCTS MATHEMATICS OF COMPUTATION Volume 75, Number 255, July 26, Pages 113 1134 S 25-5718(6)1851-5 Article electronically published on March 21, 26 HIGH ORDER FINITE VOLUME SCHEMES BASED ON RECONSTRUCTION OF

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

Riemann Solvers and Numerical Methods for Fluid Dynamics

Riemann Solvers and Numerical Methods for Fluid Dynamics Eleuterio R Toro Riemann Solvers and Numerical Methods for Fluid Dynamics A Practical Introduction With 223 Figures Springer Table of Contents Preface V 1. The Equations of Fluid Dynamics 1 1.1 The Euler

More information

Lecture 12: Detailed balance and Eigenfunction methods

Lecture 12: Detailed balance and Eigenfunction methods Miranda Holmes-Cerfon Applied Stochastic Analysis, Spring 2015 Lecture 12: Detailed balance and Eigenfunction methods Readings Recommended: Pavliotis [2014] 4.5-4.7 (eigenfunction methods and reversibility),

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

Numerical Methods for Hyperbolic Conservation Laws Lecture 4

Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Wen Shen Department of Mathematics, Penn State University Email: wxs7@psu.edu Oxford, Spring, 018 Lecture Notes online: http://personal.psu.edu/wxs7/notesnumcons/

More information

The RAMSES code and related techniques I. Hydro solvers

The RAMSES code and related techniques I. Hydro solvers The RAMSES code and related techniques I. Hydro solvers Outline - The Euler equations - Systems of conservation laws - The Riemann problem - The Godunov Method - Riemann solvers - 2D Godunov schemes -

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models F Berthelin 1,3, T Goudon 1,3, and S Mineaud,3 1 Inria, Sophia Antipolis Méditerranée Research Centre, Proect COFFEE Inria,

More information

A 5-wave relaxation solver for the shallow water MHD system

A 5-wave relaxation solver for the shallow water MHD system A 5-wave relaxation solver for the shallow water MHD system François Bouchut, Xavier Lhébrard Abstract The shallow water magnetohydrodynamic system describes the thin layer evolution of the solar tachocline.

More information

Existence Theory for the Isentropic Euler Equations

Existence Theory for the Isentropic Euler Equations Arch. Rational Mech. Anal. 166 23 81 98 Digital Object Identifier DOI 1.17/s25-2-229-2 Existence Theory for the Isentropic Euler Equations Gui-Qiang Chen & Philippe G. LeFloch Communicated by C. M. Dafermos

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

On some singular limits for an atmosphere flow

On some singular limits for an atmosphere flow On some singular limits for an atmosphere flow Donatella Donatelli Dipartimento di Ingegneria e Scienze dell Informazione e Matematica Università degli Studi dell Aquila 67100 L Aquila, Italy donatella.donatelli@univaq.it

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models

Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models 0-0 Applying Asymptotic Approximations to the Full Two-Fluid Plasma System to Study Reduced Fluid Models B. Srinivasan, U. Shumlak Aerospace and Energetics Research Program, University of Washington, Seattle,

More information

K. Ambika and R. Radha

K. Ambika and R. Radha Indian J. Pure Appl. Math., 473: 501-521, September 2016 c Indian National Science Academy DOI: 10.1007/s13226-016-0200-9 RIEMANN PROBLEM IN NON-IDEAL GAS DYNAMICS K. Ambika and R. Radha School of Mathematics

More information

A general well-balanced finite volume scheme for Euler equations with gravity

A general well-balanced finite volume scheme for Euler equations with gravity A general well-balanced finite volume scheme for Euler equations with gravity Jonas P. Berberich, Praveen Chandrashekar, Christian Klingenberg Abstract We present a second order well-balanced Godunov-type

More information

Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions

Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions Entropy-based moment closure for kinetic equations: Riemann problem and invariant regions Jean-François Coulombel and Thierry Goudon CNRS & Université Lille, Laboratoire Paul Painlevé, UMR CNRS 854 Cité

More information

Well-balanced and Asymptotic Schemes for Friedrichs systems

Well-balanced and Asymptotic Schemes for Friedrichs systems B. Després (LJLL- University Paris VI) C. Buet (CEA) Well-balanced and Asymptotic Schemes for Friedrichs systems thanks to T. Leroy (PhD CEA), X. Valentin (PhD CEA), C. Enaux (CEA), P. Lafitte (Centrale

More information

Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II

Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II Modeling Interactions of Soliton Trains. Effects of External Potentials. Part II Michail Todorov Department of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria Work done

More information

Scalar conservation laws with moving density constraints arising in traffic flow modeling

Scalar conservation laws with moving density constraints arising in traffic flow modeling Scalar conservation laws with moving density constraints arising in traffic flow modeling Maria Laura Delle Monache Email: maria-laura.delle monache@inria.fr. Joint work with Paola Goatin 14th International

More information

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Sandra Pieraccini, Gabriella Puppo July 25, 2 Abstract In this work a new class of numerical methods for the BGK model of

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS. Cheng Wang. Jian-Guo Liu

POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS. Cheng Wang. Jian-Guo Liu DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS SERIES B Volume 3 Number May003 pp. 0 8 POSITIVITY PROPERTY OF SECOND-ORDER FLUX-SPLITTING SCHEMES FOR THE COMPRESSIBLE EULER EQUATIONS

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

On weak solution approach to problems in fluid dynamics

On weak solution approach to problems in fluid dynamics On weak solution approach to problems in fluid dynamics Eduard Feireisl based on joint work with J.Březina (Tokio), C.Klingenberg, and S.Markfelder (Wuerzburg), O.Kreml (Praha), M. Lukáčová (Mainz), H.Mizerová

More information

Coupling conditions for transport problems on networks governed by conservation laws

Coupling conditions for transport problems on networks governed by conservation laws Coupling conditions for transport problems on networks governed by conservation laws Michael Herty IPAM, LA, April 2009 (RWTH 2009) Transport Eq s on Networks 1 / 41 Outline of the Talk Scope: Boundary

More information

Numerical approximation and analysis of mathematical models arising in cells movement

Numerical approximation and analysis of mathematical models arising in cells movement Numerical approximation and analysis of mathematical models arising in cells movement Monika Twarogowska To cite this version: Monika Twarogowska. Numerical approximation and analysis of mathematical models

More information

On the construction of discrete gradients

On the construction of discrete gradients On the construction of discrete gradients Elizabeth L. Mansfield School of Mathematics, Statistics and Actuarial Science, University of Kent, Canterbury, CT2 7NF, U.K. G. Reinout W. Quispel Department

More information

Modeling and Numerical Approximation of Traffic Flow Problems

Modeling and Numerical Approximation of Traffic Flow Problems Modeling and Numerical Approximation of Traffic Flow Problems Prof. Dr. Ansgar Jüngel Universität Mainz Lecture Notes (preliminary version) Winter Contents Introduction Mathematical theory for scalar conservation

More information

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations

A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations A Space-Time Expansion Discontinuous Galerkin Scheme with Local Time-Stepping for the Ideal and Viscous MHD Equations Ch. Altmann, G. Gassner, F. Lörcher, C.-D. Munz Numerical Flow Models for Controlled

More information

COMPUTATIONAL METHODS AND ALGORITHMS Vol II - Computational Methods for Compressible Flow Problems - Remi Abgrall

COMPUTATIONAL METHODS AND ALGORITHMS Vol II - Computational Methods for Compressible Flow Problems - Remi Abgrall COMPUTATIONAL METHODS FOR COMPRESSIBLE FLOW PROBLEMS Rémi Abgrall Université Bordeaux I, Talence Cedex, France Keywords: computational methods, numerical schemes, 1- D problems, multidimensional problems,

More information

Some Aspects of First Principle Models for Production Systems and Supply Chains. Christian Ringhofer (Arizona State University)

Some Aspects of First Principle Models for Production Systems and Supply Chains. Christian Ringhofer (Arizona State University) Some Aspects of First Principle Models for Production Systems and Supply Chains Christian Ringhofer (Arizona State University) Some Aspects of First Principle Models for Production Systems and Supply Chains

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

Stability and consistency of kinetic upwinding for advection diffusion equations

Stability and consistency of kinetic upwinding for advection diffusion equations IMA Journal of Numerical Analysis (006 6, 686 7 doi:0.093/imanum/drl005 Advance Access publication on March, 006 Stability and consistency of kinetic upwinding for advection diffusion equations MANUEL

More information

Finite difference MAC scheme for compressible Navier-Stokes equations

Finite difference MAC scheme for compressible Navier-Stokes equations Finite difference MAC scheme for compressible Navier-Stokes equations Bangwei She with R. Hošek, H. Mizerova Workshop on Mathematical Fluid Dynamics, Bad Boll May. 07 May. 11, 2018 Compressible barotropic

More information

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov

Numerical Methods for Modern Traffic Flow Models. Alexander Kurganov Numerical Methods for Modern Traffic Flow Models Alexander Kurganov Tulane University Mathematics Department www.math.tulane.edu/ kurganov joint work with Pierre Degond, Université Paul Sabatier, Toulouse

More information

Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems

Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems Numerical Modeling of Stratified Shallow Flows: Applications to Aquatic Ecosystems Marica Pelanti 1,2, Marie-Odile Bristeau 1 and Jacques Sainte-Marie 1,2 1 INRIA Paris-Rocquencourt, 2 EDF R&D Joint work

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS

8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS 8.821 F2008 Lecture 12: Boundary of AdS; Poincaré patch; wave equation in AdS Lecturer: McGreevy Scribe: Francesco D Eramo October 16, 2008 Today: 1. the boundary of AdS 2. Poincaré patch 3. motivate boundary

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Numerical methods for FCI Part IV Multi-temperature fluid models Hele-Shaw models

Numerical methods for FCI Part IV Multi-temperature fluid models Hele-Shaw models B. Després+ X. Blanc LJLL-Paris VI+CEA Thanks to same collegues as before plus C. Buet, H. Egly and R. Sentis methods for FCI Part IV Multi-temperature fluid s s B. Després+ X. Blanc LJLL-Paris VI+CEA

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Allen Cahn Equation in Two Spatial Dimension

Allen Cahn Equation in Two Spatial Dimension Allen Cahn Equation in Two Spatial Dimension Yoichiro Mori April 25, 216 Consider the Allen Cahn equation in two spatial dimension: ɛ u = ɛ2 u + fu) 1) where ɛ > is a small parameter and fu) is of cubic

More information

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3 ESAIM: PROCEEDINGS AND SURVEYS, September 014, Vol. 45, p. 379-389 J.-S. Dhersin, Editor HYPERBOLIC APPROXIMATION OF THE FOURIER TRANSFORMED VLASOV EQUATION Nhung Pham 1, Philippe Helluy and Laurent Navoret

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. ) :545 563 DOI.7/s--443-7 Numerische Mathematik A minimum entropy principle of high order schemes for gas dynamics equations iangxiong Zhang Chi-Wang Shu Received: 7 July / Revised: 5 September

More information

8.821 String Theory Fall 2008

8.821 String Theory Fall 2008 MIT OpenCourseWare http://ocw.mit.edu 8.81 String Theory Fall 008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.81 F008 Lecture 1: Boundary of AdS;

More information

L 1 stability of conservation laws for a traffic flow model

L 1 stability of conservation laws for a traffic flow model Electronic Journal of Differential Equations, Vol. 2001(2001), No. 14, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

Finite volumes schemes preserving the low Mach number limit for the Euler system

Finite volumes schemes preserving the low Mach number limit for the Euler system Finite volumes schemes preserving the low Mach number limit for the Euler system M.-H. Vignal Low Velocity Flows, Paris, Nov. 205 Giacomo Dimarco, Univ. de Ferrara, Italie Raphael Loubere, IMT, CNRS, France

More information

A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms

A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with Source Terms Journal of Computational Physics 178, 533 562 (2002) doi:10.1006/jcph.2002.7040, available online at http://www.idealibrary.com on A Well-Balanced Gas-Kinetic Scheme for the Shallow-Water Equations with

More information

Palindromic Discontinuous Galerkin Method

Palindromic Discontinuous Galerkin Method Palindromic Discontinuous Galerkin Method David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret To cite this version: David Coulette, Emmanuel Franck, Philippe Helluy,

More information

y =ρw, w=v+p(ρ). (1.2)

y =ρw, w=v+p(ρ). (1.2) TRANSPORT-EQUILIBRIUM SCHEMES FOR COMPUTING CONTACT DISCONTINUITIES IN TRAFFIC FLOW MODELING CHRISTOPHE CHALONS AND PAOLA GOATIN Abstract. We present a very efficient numerical strategy for computing contact

More information

Nonlinear Diffusion in Irregular Domains

Nonlinear Diffusion in Irregular Domains Nonlinear Diffusion in Irregular Domains Ugur G. Abdulla Max-Planck Institute for Mathematics in the Sciences, Leipzig 0403, Germany We investigate the Dirichlet problem for the parablic equation u t =

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Research Article A New Flux Splitting Scheme Based on Toro-Vazquez and HLL Schemes for the Euler Equations

Research Article A New Flux Splitting Scheme Based on Toro-Vazquez and HLL Schemes for the Euler Equations Computational Methods in Physics Volume 4, Article ID 8734, 3 pages http://dx.doi.org/.55/4/8734 Research Article A New Flux Splitting Scheme Based on Toro-Vazquez and HLL Schemes for the Euler Equations

More information

hal , version 1-18 Nov 2010

hal , version 1-18 Nov 2010 A GENEAL PHASE TANSITION MODEL FO VEHICULA TAFFIC S. BLANDIN, D. WOK, P. GOATIN, B. PICCOLI, AND A. BAYEN Abstract. An extension of the Colombo phase transition model is proposed. The congestion phase

More information