Finite volumes schemes preserving the low Mach number limit for the Euler system

Size: px
Start display at page:

Download "Finite volumes schemes preserving the low Mach number limit for the Euler system"

Transcription

1 Finite volumes schemes preserving the low Mach number limit for the Euler system M.-H. Vignal Low Velocity Flows, Paris, Nov. 205 Giacomo Dimarco, Univ. de Ferrara, Italie Raphael Loubere, IMT, CNRS, France Funding : ANR MOONRISE

2 Outline General contet : multi-scale models and principle of s 2 The isentropic Euler system in the low Mach number regime Classical and s in the low Mach number limit 4 Numerical results 5 Works in progress

3 electron density (log scale) : t= General contet Multiscale model : M ε depends on a parameter ε In the (space-time) domain ε can be small compared to the reference scale be of same order as the reference scale take intermediate values ε When ε is small : M 0 = lim ε 0 M ε asympt. model Difficulties : Classical eplicit schemes for M ε : stable and consistent iff the mesh resolved all the scales of ε huge cost Schemes for M 0 with meshes independent of ε But : M 0 not valid everywhere, needs ε location of the interface, moving interface

4 Principle of s A possible solution : s Use the multi-scale model M ε where you want. Discretize it with a scheme preserving the limit ε 0 The mesh is independent of ε : Asymptotic stability. You recover an approimate solution of M 0 when ε 0 : Asymptotic consistency Asymptotically stable and consistent scheme Asymptotic preserving scheme (AP) ([S.Jin] kinetic hydro) You can use the only to reconnect M ε and M 0 M ε class. scheme ε=o() intermediate zone ε M 0 class. scheme M ε

5 Outline General contet : multi-scale models and principle of s 2 The isentropic Euler system in the low Mach number regime Classical and s in the low Mach number limit 4 Numerical results 5 Works in progress

6 The multi-scale model and its asymptotic limit Isentropic Euler system in scaled variables Ω IR d, t 0 { t ρ+ (ρu)= 0, () ε (M ε ) t (ρu)+ (ρu u)+ ε p(ρ)=0, (2) ε Parameter : ε=m 2 = m u 2 /(γp(ρ)/ρ), M =Mach number Boundary and initial conditions : { ρ(,0)=ρ0 + ε ρ 0 (), u n=0, on Ω, and The formal limit ε 0 u(,0)=u 0 ()+εũ 0 (), with u 0 = 0. (2) ε p(ρ)=0, ρ(,t)=ρ(t). () ε Ω ρ (t)+ρ(t) u n=0, ρ(t)=ρ(0)=ρ 0, u= 0 Ω

7 The multi-scale model and its asymptotic limit The asymptotic model : Rigorous limit [Klainerman, Majda, 8] ρ=cste=ρ 0, (M 0 ) ρ 0 u = 0, () 0 ρ 0 t u+ ρ 0 (u u)+ π = 0, (2) 0 where ( ) π = lim p(ρ) p(ρ 0 ). ε 0 ε Eplicit eq. for π t () 0 (2) 0 The pressure wave eq. from M ε : π = ρ 0 2 :(u u). t () ε (2) ε tt ρ ε p(ρ)= 2 :(ρu u) () ε From a numerical point of view Eplicite treatment of () ε conditional stability t ε Implicite treatment of () ε uniform stability with respect to ε

8 Bibliography All speed schemes Preconditioning methods : [Chorin 65], [Choi, Merkle 85], [Turkel, 87], [Van Leer, Lee, Roe, 9], [Li,Gu 08,0], Splitting and pressure correction : [Harlow, Amsden, 68,7], [Karki, Patankar, 89], [Bijl, Wesseling, 98], [Sewall, Tafti, 08], [Klein, Botta, Schneider, Munz, Roller 08], [Guillard, Murrone, Viozat 99, 04, 06] [Herbin, Kheriji, Latché 2,], Asymptotic preserving schemes [Degond, Deluzet, Sangam, V, 09], [Degond, Tang ], [Cordier, Degond, Kumbaro 2], [Grenier, Vila, Villedieu ] [Dellacherie, Omnes, Raviart,], [Noelle, Bispen, Arun, Lukacova, Munz,4], [Chalons, Girardin, Kokh,5] [Dimarco, Loubère, V, in prep.]

9 Outline General contet : multi-scale models and principle of s 2 The isentropic Euler system in the low Mach number regime Classical and s in the low Mach number limit 4 Numerical results 5 Works in progress

10 Classical scheme in the low Mach number limit If ρ n and u n are known at time t n ρ n+ ρ n + (ρu) n = 0, t () n (ρu) n+ (ρu) n + (ρu u) n + t ε p(ρn )=0. (2) Reformulation () n+ () n t (2) ρ n+2 2ρ n+ + ρ n t 2 ε p(ρn )= 2 :(ρu u) n Eplicit treatment conditional stability t ε ε 0 gives p(ρ n )=0 consistency lost at the limit

11 in the low Mach number limit Goal : Build an for the multi-scale model M ε Uniform stability in ε t = O() Consistency for all ε 0 : ε 0 scheme for the limit model M 0 Basic ideas : Implicit treatment of the right terms Reformulation to make appear the limit model, Euler-Lorentz, low Mach number and drift limits [P. Degond, F. Deluzet, A. Sangam, MHV, JCP 2009] for Euler, low Mach number limit [P. Degond, M. Tang, Commun. Comput. Phys, 20] Parameter α fied by the user, depends on the considered problem If ε then α small If ε=o() then α sufficiently large Etension to the full Euler and Navier-Stokes systems : [ F. Cordier, P. Degond, A. Kumbaro, JCP 202]

12 in the low Mach number limit Our : If ρ n and u n are known at time t n ρ ρ n + (ρu) n+ = 0, t () n (ρu) n+ (ρu) n + (ρu u) n + t ε p(ρn+ )=0. (2) Reformulation () n () n t (2) ρ n+ 2ρ n + ρ n t 2 ε p(ρn+ )= 2 :(ρu u) n Implicit treatment uniform stability in ε ε 0 gives p(ρ n+ )=0 consistency at the limit

13 Uncoupled formulation of the Take the divergence of the momentum eq. (2) (2) (ρu) n+ = (ρu) n t 2 :(ρu u) n t ε p(ρn+ ) Insert it in the mass eq. () ρ n+ ρ n t + (ρu) n t ε p(ρn+ ) t 2 :(ρu u) n = 0. Uncoupled formulation of the ρ n+ ρ n + (ρu) n t t ε p(ρn+ ) t 2 :(ρu u) n = 0, (ρu) n+ (ρu) n + (ρu u) n + t ε p(ρn+ )=0. Space discretization : Need a correct choice of the numerical viscosity

14 -D space discretization for clarity Splitting : W n+ W n (0,ρu 2 ) n (ρu, p(ρ)/ε) {}}{{}} n+ { + F e (W n )+ F i (W n+ ) = 0 t }Mj j /2 j /2 j+/2 j+/2 W n+ j Wj n + f e(wj n,wj+ n ) f e(w n t j,wn j ) + f i(w n+ j,w n+ j+ ) f i(w n+ j,wn+ j ) = 0

15 -D space discretization for clarity Rusanov flues f e (Wj n,wj+ n )= F e(wj n )+F e (Wj+ n ) De n 2 (W j n Wj+ n ). f i (W n+ j,w n+ j+ )= F i(w n+ j )+F i (W n+ j+ ) D n+ i (W n+ j W n+ j+ 2 ). Jacobian matrices ( 0 0 DF e (W)= u 2 2u ) and DF i (W)= ( 0 c 2 /ε 0 ) Eigen values 0, 2u c/ ε, c/ ε with c 2 = p (ρ)

16 Stability of the linearized system around(ρ 0,u 0 ) Under the CFL Eplicit viscosity t 2 u 0 2D n e = 2 u 0 Implicit viscosity If D n+ i = 0 L 2 stability result If 2D n+ i = c 0 / ε L stability result

17 Uncoupled scheme in the non linear case Reformulation : W n+ W n (0,(ρu 2 ) n ) ((ρu) n, p(ρ n+ )/ε) {}}{{}}{ + F e (W n )+ F i (W n+/2 ) t ( t p(ρ n+ ) ε +(ρu 2 ) n 0 ) = 0 Step Determine ρ n+ j knowing W n =(ρ n,(ρu) n ) ρ n+ j ρ n j t + (ρu)n j +(ρu) n j+ 2 Dn e+ D n i dis (ρ n ) {}}{ (ρ n j+ 2ρn j + ρ n j ) t ε disp(ρ n+ ) t dis (ρu 2 ) n = 0.

18 Uncoupled scheme in the non linear case Step 2 Determine(ρu) n+ j knowing V n+/2 =(W n,ρ n+ ) (ρu) n+ j (ρu) n j t Flues given by + n+/2 g(vj,v n+/2 j+ ) g(v n+/2 j,v n j ) = 0 g(v n+/2 j,v n+/2 j+ )= (ρu2 ) n j + p(ρ n+ j )/ε+(ρu 2 ) n j+ + p(ρn+ j+ )/ε 2 C.F.L Condition : (D n e + Dn i )((ρu) n j (ρu) n j+ ). stable if t ma( 2u n j ) = O()

19 Outline General contet : multi-scale models and principle of s 2 The isentropic Euler system in the low Mach number regime Classical and s in the low Mach number limit 4 Numerical results 5 Works in progress

20 -D test case Domain[0, ], = /500 or /00 Final time : T = 0.05, Pressure law p(ρ)=ρ γ, γ=2.00 +ε ε Initial density +ε/2 ε/ Initial momentum

21 Non linear case γ=2 and ε=o(), = /500 ε=0.99, D i = 0 Class : 27 loops CPU time 0.07 AP : 50 loops CPU time.46 Time steps Time Density Momentum

22 Non linear case γ=2 and ε=0.99, = / AP D i = AP D i 0 Density.2 Density Momentum AP D i = 0 Momentum AP D i D i = 0 centered implicit scheme D i 0 upwind implicit scheme

23 Non linear case γ=2 and ε ε=0 4 0 Class : 406 loops CPU time 0.82 AP : 57 loops CPU time 0.4 Time steps Time Density Momentum

24 Non linear caseγ=2 and ε ε=0 4 Underlying of the viscosity Time steps Time Density Momentum

25 Same test case γ=2, ε=ε(t), = / Class : 6906 loops CPU time 6.62 AP : 4 loops > 60 CPU time 2. > 55 ε(t) Time plot Time steps Density at t = Time If T final = : Class : 400 loops, CPU time 22.9 AP : 4 loops, CPU time 2.47 > 0

26 ε=ε(t), = / plot ε(t) plot plot Density at t = Time Density at t = Density at t = T final = : Class : 4087 loops, CPU time 95.8 AP : 448 loops, CPU time > 9.

27 Non linear case γ=2, zero velocity ε=0.99 Same initial density But zero initial momentum Time steps Time Momentum Momentum

28 Outline General contet : multi-scale models and principle of s 2 The isentropic Euler system in the low Mach number regime Classical and s in the low Mach number limit 4 Numerical results 5 Works in progress

29 Full Euler system Domain[0,], = /500 Final time : T = 0.05, γ=.4, ρ(t = 0)=, p(t = 0)= ε/2 ε/ Initial momentum Initial total energy

30 Full Euler system, ε=0.99 Class : 75 loops, CPU 0.02 AP : 67 loops, CPU Time steps Density Time Momentum Total energy

31 Full Euler system, ε=0 4 Class : 629 loops, CPU 0.86 AP : 45 loops, CPU Time steps Time Density Momentum Total energy

32 Full Euler system, ε=0 4 Underlying of the viscosity, 000 cells 0 5 Time steps Density Time Momentum Total energy

33 2D results in progress, γ= vnu_0.gnu vnu_00.gnu Initial density and zero velocity Classical density ε=0.99 vnu_00.gnu AP density ε= For ε=0.0, Class. 80 loops, CPU AP 89 loops, CPU 29. >.5

34 Works in progress Analysis of the, convergence in the low-mach number regime, staggered grids [Herbin, Latché, Saleh, V, in preparation] High order space and time algorithms preserving the AP properties, multi-dimensional test cases in physical variables (ε=ε()) Initial and boundary conditions not well prepared to the low Mach number regime, [Métivier, Schochet, 200], [Alazard, 2005] Use the only in the intermediate zones Domain decomposition

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal 1 An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal IMT: Institut de Mathématiques de Toulouse 1. Introduction.

More information

An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics

An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics An Asymptotic Preserving all Mach Number Scheme for the Euler Equations of Gas Dynamics Sebastian Noelle, Georgij Bispen, Koottungal Revi Arun, Maria Lukáčová Medvid ová, and Claus Dieter Munz revised

More information

SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS. Min Tang. (Communicated by the associate editor name)

SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS. Min Tang. (Communicated by the associate editor name) Manuscript submitted to AIMS Journals Volume X, Number X, XX 2X Website: http://aimsciences.org pp. X XX SECOND ORDER ALL SPEED METHOD FOR THE ISENTROPIC EULER EQUATIONS Min Tang Department of Mathematics

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

All speed scheme for the low mach number limit of the Isentropic Euler equation

All speed scheme for the low mach number limit of the Isentropic Euler equation arxiv:98.99v [math-ph] 3 Aug 9 All speed scheme for the low mach number limit of the Isentropic Euler equation Pierre Degond,, Min Tang, -Université de Toulouse; UPS, INSA, UT, UTM ; Institut de Mathématiques

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field

An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field An Asymptotic Preserving Scheme for the Euler equations in a strong magnetic field P. Degond 1, F. Deluzet 1, A. Sangam 1, M-H. Vignal 1 July 3, 008 1 Institut de Mathématiques de Toulouse UMR 519 CNRS-UPS-INSA-UT1-UT

More information

Model adaptation in hierarchies of hyperbolic systems

Model adaptation in hierarchies of hyperbolic systems Model adaptation in hierarchies of hyperbolic systems Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France February 15th, 2012 DFG-CNRS Workshop Nicolas Seguin (LJLL, UPMC) 1 / 29 Outline of the

More information

On a class of numerical schemes. for compressible flows

On a class of numerical schemes. for compressible flows On a class of numerical schemes for compressible flows R. Herbin, with T. Gallouët, J.-C. Latché L. Gastaldo, D. Grapsas, W. Kheriji, T.T. N Guyen, N. Therme, C. Zaza. Aix-Marseille Université I.R.S.N.

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

All Mach number second order Semi-Implicit scheme for the Euler Equations of Gas Dynamics

All Mach number second order Semi-Implicit scheme for the Euler Equations of Gas Dynamics All Mach number second order Semi-Implicit scheme for the Euler Equations of Gas Dynamics Sebastiano Boscarino Dipartimento di Matematica e Informatica Convegno GNCS-208, Montecatini Terme 4-6 Febbraio

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Convergence of the MAC scheme for incompressible flows

Convergence of the MAC scheme for incompressible flows Convergence of the MAC scheme for incompressible flows T. Galloue t?, R. Herbin?, J.-C. Latche??, K. Mallem????????? Aix-Marseille Universite I.R.S.N. Cadarache Universite d Annaba Calanque de Cortiou

More information

Modeling and simulation of bedload transport with viscous effects

Modeling and simulation of bedload transport with viscous effects Introduction Modeling and simulation of bedload transport with viscous effects E. Audusse, L. Boittin, M. Parisot, J. Sainte-Marie Project-team ANGE, Inria; CEREMA; LJLL, UPMC Université Paris VI; UMR

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

Angular momentum preserving CFD on general grids

Angular momentum preserving CFD on general grids B. Després LJLL-Paris VI Thanks CEA and ANR Chrome Angular momentum preserving CFD on general grids collaboration Emmanuel Labourasse (CEA) B. Després LJLL-Paris VI Thanks CEA and ANR Chrome collaboration

More information

An adaptive projection scheme for all-mach flows applied to shock diffraction

An adaptive projection scheme for all-mach flows applied to shock diffraction An adaptive projection scheme for all-mach flows applied to shock diffraction CEA DEN/DM2S/STMF/LMEC AMU I2M UMR 7373/AA Group January 20, 2015 All-Mach solver? Approximate Riemann solvers for M 1 (Guillard-Viozat,

More information

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Jian-Guo Liu Department of Physics and Department of Mathematics, Duke University Collaborators: Pierre

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. Workshop Asymptotic-Preserving schemes, Porquerolles.

More information

Numerical methods for kinetic equations

Numerical methods for kinetic equations Numerical methods for kinetic equations Lecture 6: fluid-kinetic coupling and hybrid methods Lorenzo Pareschi Department of Mathematics and Computer Science University of Ferrara, Italy http://www.lorenzopareschi.com

More information

Admissibility and asymptotic-preserving scheme

Admissibility and asymptotic-preserving scheme Admissibility and asymptotic-preserving scheme F. Blachère 1, R. Turpault 2 1 Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes, 2 Institut de Mathématiques de Bordeaux (IMB), Bordeaux-INP

More information

Direct numerical simulation of compressible multi-phase ow with a pressure-based method

Direct numerical simulation of compressible multi-phase ow with a pressure-based method Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-2902 Direct numerical simulation of compressible multi-phase ow with a pressure-based

More information

Vector and scalar penalty-projection methods

Vector and scalar penalty-projection methods Numerical Flow Models for Controlled Fusion - April 2007 Vector and scalar penalty-projection methods for incompressible and variable density flows Philippe Angot Université de Provence, LATP - Marseille

More information

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES

INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES INSTITUTE OF MATHEMATICS THE CZECH ACADEMY OF SCIENCES Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime Eduard Feireisl

More information

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, Wilberforce Road Cambridge, CB3

More information

Multiscale Hydrodynamic Phenomena

Multiscale Hydrodynamic Phenomena M2, Fluid mechanics 2014/2015 Friday, December 5th, 2014 Multiscale Hydrodynamic Phenomena Part I. : 90 minutes, NO documents 1. Quick Questions In few words : 1.1 What is dominant balance? 1.2 What is

More information

Exponential methods for kinetic equations

Exponential methods for kinetic equations Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research

More information

Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime

Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime Asymptotic preserving error estimates for numerical solutions of compressible Navier-Stokes equations in the low Mach number regime Eduard Feireisl Mária Lukáčová-Medviďová Šárka Nečasová Antonín Novotný

More information

Low Mach number limit of the full Navier-Stokes equations

Low Mach number limit of the full Navier-Stokes equations Low Mach number limit of the full NavierStokes equations Thomas Alazard Mathématiques Appliquées de Bordeaux Université Bordeaux 1 351 cours de la Libération 33405 Talence FRANCE thomas.alazard@math.ubordeaux.fr

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

A successive penalty based Asymptotic-Preserving scheme for kinetic equations A successive penalty based Asymptotic-Preserving scheme for kinetic equations Bokai Yan Shi Jin September 30, 202 Abstract We propose an asymptotic-preserving AP) scheme for kinetic equations that is efficient

More information

Hervé Guillard, INRIA Projet Smash, B.P. 93, Sophia-Antipolis Cedex, France,

Hervé Guillard, INRIA Projet Smash, B.P. 93, Sophia-Antipolis Cedex, France, TRAVELING WAVE ANALYSIS OF TWO-PHASE DISSIPATIVE MODELS Hervé Guillard, INRIA Projet Smash, B.P. 93, 06902 Sophia-Antipolis Cedex, France, Herve.Guillard@sophia.inria.fr Joint work with : Mathieu Labois,

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

A Godunov-type method for the diphasic Baer-Nunziato model

A Godunov-type method for the diphasic Baer-Nunziato model A Godunov-type method for the diphasic Baer-Nunziato model C. Chalons Joint work with : A. Ambroso, P.-A. Raviart with benefit from discussions with F. Coquel (CNRS, Ecole Polytechnique/CMAP) N. Seguin

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Modèles hybrides préservant l asymptotique pour les plasmas

Modèles hybrides préservant l asymptotique pour les plasmas Modèles hybrides préservant l asymptotique pour les plasmas Anaïs Crestetto 1, Nicolas Crouseilles 2, Fabrice Deluzet 1, Mohammed Lemou 3, Jacek Narski 1 et Claudia Negulescu 1. Groupe de Travail Méthodes

More information

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models F Berthelin 1,3, T Goudon 1,3, and S Mineaud,3 1 Inria, Sophia Antipolis Méditerranée Research Centre, Proect COFFEE Inria,

More information

Mathematical analysis of low Mach number limit of some two phase flow models

Mathematical analysis of low Mach number limit of some two phase flow models Mathematical analysis of low Mach number limit of some two phase flow models B. DESJARDINS Fondation Mathématique Jacques Hadamard FMJH CMLA ENS Cachan 61, avenue du Président Wilson 94235 Cachan cedex

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 9 Finite Volume method II 9.1. Outline of Lecture Conservation property of Finite Volume method Apply FVM to

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

Block-Structured Adaptive Mesh Refinement

Block-Structured Adaptive Mesh Refinement Block-Structured Adaptive Mesh Refinement Lecture 2 Incompressible Navier-Stokes Equations Fractional Step Scheme 1-D AMR for classical PDE s hyperbolic elliptic parabolic Accuracy considerations Bell

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk

Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk Investigation of an implicit solver for the simulation of bubble oscillations using Basilisk D. Fuster, and S. Popinet Sorbonne Universités, UPMC Univ Paris 6, CNRS, UMR 79 Institut Jean Le Rond d Alembert,

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Implementation of a symmetry-preserving discretization in Gerris

Implementation of a symmetry-preserving discretization in Gerris Implementation of a symmetry-preserving discretization in Gerris Daniel Fuster Cols: Pierre Sagaut, Stephane Popinet Université Pierre et Marie Curie, Institut Jean Le Rond D Alembert Introduction 10/11:

More information

QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES

QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES 1 QUELQUES APPLICATIONS D UN SCHEMA SCHEMA MIXTE-ELEMENT-VOLUME A LA LES, A L ACOUSTIQUE, AUX INTERFACES O. ALLAIN(*), A. DERVIEUX(**), I. ABALAKIN(***), S. CAMARRI(****), H. GUILLARD(**), B. KOOBUS(*****),

More information

Commissariat à l Energie Atomique - Saclay Department of Nuclear Energy Fluid Modeling and Simulation. MIT, November 3rd, 2008

Commissariat à l Energie Atomique - Saclay Department of Nuclear Energy Fluid Modeling and Simulation. MIT, November 3rd, 2008 ON THE NUMERICAL SIMULATION OF GENERAL MULTI-FIELD TWO-PHASE FLOW MODELS Anela KUMBARO Commissariat à l Energie Atomique - Saclay Department of Nuclear Energy Fluid Modeling and Simulation MIT, November

More information

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation Wei Ren a, Hong Liu a,, Shi Jin b,c a J C Wu Center for Aerodynamics, School of Aeronautics and Aerospace, Shanghai Jiao Tong University,

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

arxiv: v1 [math.na] 16 Oct 2007

arxiv: v1 [math.na] 16 Oct 2007 Mathematical Modelling and Numerical Analysis Modélisation Mathématique et Analyse Numérique Will be set by the publisher arxiv:070.2987v [math.na] 6 Oct 2007 AN UNCONDITIONNALLY STABLE PRESSURE CORRECTION

More information

THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS. Steven Schochet 1

THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS. Steven Schochet 1 ESAIM: M2AN Vol. 39, N o 3, 25, pp. 44 458 DOI:.5/m2an:257 ESAIM: Mathematical Modelling and Numerical Analysis THE MATHEMATICAL THEORY OF LOW MACH NUMBER FLOWS Steven Schochet Abstract. The mathematical

More information

NUMERICAL METHOD FOR THREE DIMENSIONAL STEADY-STATE TWO-PHASE FLOW CALCULATIONS

NUMERICAL METHOD FOR THREE DIMENSIONAL STEADY-STATE TWO-PHASE FLOW CALCULATIONS ' ( '- /A NUMERCAL METHOD FOR THREE DMENSONAL STEADY-STATE TWO-PHASE FLOW CALCULATONS P. Raymond,. Toumi (CEA) CE-Saclay DMT/SERMA 91191 Gif sur Yvette, FRANCE Tel: (331) 69 08 26 21 / Fax: 69 08 23 81

More information

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows K. Xu and J.C. Huang Mathematics Department, Hong Kong University of Science and Technology, Hong Kong Department of Merchant Marine, National

More information

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer

SIMPLE Algorithm for Two-Dimensional Channel Flow. Fluid Flow and Heat Transfer SIMPLE Algorithm for Two-Dimensional Channel Flow Fluid Flow and Heat Transfer by Professor Jung-Yang San Mechanical Engineering Department National Chung Hsing University Two-dimensional, transient, incompressible

More information

Wave propagation methods for hyperbolic problems on mapped grids

Wave propagation methods for hyperbolic problems on mapped grids Wave propagation methods for hyperbolic problems on mapped grids A France-Taiwan Orchid Project Progress Report 2008-2009 Keh-Ming Shyue Department of Mathematics National Taiwan University Taiwan ISCM

More information

Bericht des Instituts für Aerodynamik und Strömungstechnik Report of the Institute of Aerodynamics and Flow Technology IB /1

Bericht des Instituts für Aerodynamik und Strömungstechnik Report of the Institute of Aerodynamics and Flow Technology IB /1 Bericht des Instituts für Aerodynamik und Strömungstechnik Report of the Institute of Aerodynamics and Flow Technology IB Discontinuous Galerkin Methods for inviscid low Mach number flows A. Nigro Herausgeber:

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

On a simple model of isothermal phase transition

On a simple model of isothermal phase transition On a simple model of isothermal phase transition Nicolas Seguin Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 6 France Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

More information

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Applied Mathematics Volume 2012, Article ID 957185, 8 pages doi:10.1155/2012/957185 Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Jianwei Yang and Zhitao Zhuang

More information

Projection Dynamics in Godunov-Type Schemes

Projection Dynamics in Godunov-Type Schemes JOURNAL OF COMPUTATIONAL PHYSICS 142, 412 427 (1998) ARTICLE NO. CP985923 Projection Dynamics in Godunov-Type Schemes Kun Xu and Jishan Hu Department of Mathematics, Hong Kong University of Science and

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

AN EXACT RESCALING VELOCITY METHOD FOR SOME KINETIC FLOCKING MODELS

AN EXACT RESCALING VELOCITY METHOD FOR SOME KINETIC FLOCKING MODELS AN EXACT RESCALING VELOCITY METHOD FOR SOME KINETIC FLOCKING MODELS THOMAS REY AND CHANGHUI TAN Abstract. In this work, we discuss kinetic descriptions of flocking models, of the so-called Cucker- Smale

More information

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Giacomo Dimarco Institut des Mathématiques de Toulouse Université de Toulouse France http://perso.math.univ-toulouse.fr/dimarco giacomo.dimarco@math.univ-toulouse.fr

More information

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows

Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows Interaction and Multiscale Mechanics, Vol. 5, No. 1 (2012) 27-40 27 Multiscale method and pseudospectral simulations for linear viscoelastic incompressible flows Ling Zhang and Jie Ouyang* Department of

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

A second order scheme on staggered grids for detonation in gases

A second order scheme on staggered grids for detonation in gases A second order scheme on staggered grids for detonation in gases Chady Zaza IRSN PSN-RES/SA2I/LIE August 1, 2016 HYP 2016, RWTH Aachen Joint work with Raphaèle Herbin, Jean-Claude Latché and Nicolas Therme

More information

Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system

Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system Relative entropies, suitable weak solutions, and weak-strong uniqueness for the compressible Navier-Stokes system Institute of Mathematics, Academy of Sciences of the Czech Republic, Prague joint work

More information

Using the sound-proof limit for balanced data initialization

Using the sound-proof limit for balanced data initialization Using the sound-proof limit for balanced data initialiation Rupert Klein, Tommaso Benacchio, Warren O Neill FB Mathematik & Informatik, Freie Universität Berlin Arnimallee 6, 14195 Berlin, Germany rupert.klein@math.fu-berlin.de

More information

A WIMF Scheme for the Drift-Flux Two-Phase Flow Model

A WIMF Scheme for the Drift-Flux Two-Phase Flow Model A WIMF Scheme for the Drift-Flux Two-Phase Flow Model Steinar Eve A,B,D, Tore Flåtten B,A and Svend Tollak Munkeord C A Centre of Mathematics for Applications (CMA), 153 Blindern, NO-316 Oslo, Norway B

More information

Two-waves PVM-WAF method for non-conservative systems

Two-waves PVM-WAF method for non-conservative systems Two-waves PVM-WAF method for non-conservative systems Manuel J. Castro Díaz 1, E.D Fernández Nieto, Gladys Narbona Reina and Marc de la Asunción 1 1 Departamento de Análisis Matemático University of Málaga

More information

Validation of an Entropy-Viscosity Model for Large Eddy Simulation

Validation of an Entropy-Viscosity Model for Large Eddy Simulation Validation of an Entropy-Viscosity Model for Large Eddy Simulation J.-L. Guermond, A. Larios and T. Thompson 1 Introduction A primary mainstay of difficulty when working with problems of very high Reynolds

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

Modeling full-mach-range cavitating flow with sharp interface model

Modeling full-mach-range cavitating flow with sharp interface model Center for Turbulence Research Proceedings of the Summer Program 28 83 Modeling full-mach-range cavitating flow with sharp interface model By X. Y. Hu, N. A. Adams, E. Johnsen AND G. Iaccarino In this

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

Incompressible Flow Solver by Means of Pseudo-Compressibility Method

Incompressible Flow Solver by Means of Pseudo-Compressibility Method Incompressible Flow Solver by Means of Pseudo-Compressibility Method Árpád Veress Department of Aircraft and Ships Budapest University of Technology and Economics H Budapest, Sztoczek u. 6. J. ép., Hungary

More information

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations

Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations NASA/CR-1998-208741 ICASE Report No. 98-51 Eigenmode Analysis of Boundary Conditions for the One-dimensional Preconditioned Euler Equations David L. Darmofal Massachusetts Institute of Technology, Cambridge,

More information

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation

A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation A unifying model for fluid flow and elastic solid deformation: a novel approach for fluid-structure interaction and wave propagation S. Bordère a and J.-P. Caltagirone b a. CNRS, Univ. Bordeaux, ICMCB,

More information

Computational Analysis of an Imploding Gas:

Computational Analysis of an Imploding Gas: 1/ 31 Direct Numerical Simulation of Navier-Stokes Equations Stephen Voelkel University of Notre Dame October 19, 2011 2/ 31 Acknowledges Christopher M. Romick, Ph.D. Student, U. Notre Dame Dr. Joseph

More information

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM

A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM A PRACTICALLY UNCONDITIONALLY GRADIENT STABLE SCHEME FOR THE N-COMPONENT CAHN HILLIARD SYSTEM Hyun Geun LEE 1, Jeong-Whan CHOI 1 and Junseok KIM 1 1) Department of Mathematics, Korea University, Seoul

More information

Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows

Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows Extension of finite volume compressible flow solvers to multi-dimensional, variable density zero Mach number flows T. Schneider yz and N. Botta yz 2 and K. J. Geratz ffl and R. Klein yfiz y Freie Universität

More information

State of the Art MHD Methods for Astrophysical Applications p.1/32

State of the Art MHD Methods for Astrophysical Applications p.1/32 State of the Art MHD Methods for Astrophysical Applications Scott C. Noble February 25, 2004 CTA, Physics Dept., UIUC State of the Art MHD Methods for Astrophysical Applications p.1/32 Plan of Attack Is

More information

Adaptive semi-lagrangian schemes for transport

Adaptive semi-lagrangian schemes for transport for transport (how to predict accurate grids?) Martin Campos Pinto CNRS & University of Strasbourg, France joint work Albert Cohen (Paris 6), Michel Mehrenberger and Eric Sonnendrücker (Strasbourg) MAMCDP

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS Conference Applications of Mathematics 212 in honor of the 6th birthday of Michal Křížek. Institute of Mathematics AS CR, Prague 212 ON USING ARTIFICIAL COMPRESSIBILITY METHOD FOR SOLVING TURBULENT FLOWS

More information

Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics

Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics Journal of Computational Physics 167, 177 195 (2001) doi:10.1006/jcph.2000.6666, available online at http://www.idealibrary.com on Two-Dimensional Riemann Solver for Euler Equations of Gas Dynamics M.

More information

Large time-step and asymptotic-preserving numerical schemes for gaz dynamics with stiff sources

Large time-step and asymptotic-preserving numerical schemes for gaz dynamics with stiff sources Lagrange-Projection strategy for the gas-dynamics equations Relaxation for the Lagrangian step Source terms and notion of consistency in the integral sense Propertie Large time-step and asymptotic-preserving

More information

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE]

Relevant self-assessment exercises: [LIST SELF-ASSESSMENT EXERCISES HERE] Chapter 6 Finite Volume Methods In the previous chapter we have discussed finite difference methods for the discretization of PDEs. In developing finite difference methods we started from the differential

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Asymptotic behavior of a diffusive scheme solving the inviscid one-dimensional pressureless gases system

Asymptotic behavior of a diffusive scheme solving the inviscid one-dimensional pressureless gases system Asymptotic behavior of a diffusive scheme solving the inviscid one-dimensional pressureless gases system Laurent Boudin, Julien Mathiaud To cite this version: Laurent Boudin, Julien Mathiaud. Asymptotic

More information

The behaviour of high Reynolds flows in a driven cavity

The behaviour of high Reynolds flows in a driven cavity The behaviour of high Reynolds flows in a driven cavity Charles-Henri BRUNEAU and Mazen SAAD Mathématiques Appliquées de Bordeaux, Université Bordeaux 1 CNRS UMR 5466, INRIA team MC 351 cours de la Libération,

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

A recovery-assisted DG code for the compressible Navier-Stokes equations

A recovery-assisted DG code for the compressible Navier-Stokes equations A recovery-assisted DG code for the compressible Navier-Stokes equations January 6 th, 217 5 th International Workshop on High-Order CFD Methods Kissimmee, Florida Philip E. Johnson & Eric Johnsen Scientific

More information

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES

FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC PROBLEMS WITH DISCONTINUITIES 6th European Conference on Computational Mechanics (ECCM 6) 7th European Conference on Computational Fluid Dynamics (ECFD 7) 1115 June 018, Glasgow, UK FUNDAMENTALS OF LAX-WENDROFF TYPE APPROACH TO HYPERBOLIC

More information

CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire

CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire main ingredients: [LM (M3AS 00, JCP 00)] plane flow: D BGK Model conservative and entropic velocity discretization space discretization: finite

More information