Modèles hybrides préservant l asymptotique pour les plasmas

Size: px
Start display at page:

Download "Modèles hybrides préservant l asymptotique pour les plasmas"

Transcription

1 Modèles hybrides préservant l asymptotique pour les plasmas Anaïs Crestetto 1, Nicolas Crouseilles 2, Fabrice Deluzet 1, Mohammed Lemou 3, Jacek Narski 1 et Claudia Negulescu 1. Groupe de Travail Méthodes Numériques, LJLL. 8 avril Université Paul Sabatier Toulouse 3, IMT. 2 INRIA Rennes - Bretagne Atlantique & ENS Cachan Bretagne, IRMAR. 3 CNRS & Université de Rennes I & ENS Cachan Bretagne, IRMAR. 1 A. Crestetto AP-hybrid models for plasmas

2 Plasma and applications What is a plasma? A globally neutral gaz, constituted of at least two species of charged particles: positive ions and electrons. Where does it appear? At natural state: - stars, - ionosphere, - auroras, etc. At artificial state: - nuclear fusion, - TV screens, - neon lighting, etc. 2 A. Crestetto AP-hybrid models for plasmas

3 Outline 1 Collisional plasmas: problem and objectives A. Crestetto AP-hybrid models for plasmas

4 Numerical simulation of plasmas Different scales in plasmas, for example collisions parameterized by the Knudsen number ε different kinds of models. Kinetic models Particles represented by a distribution function f (x, v, t). Solving the Vlasov equation (with source term S (ε)) t f + v x f + q m (E+v B) vf = S (ε) coupled to Maxwell equations or Poisson equation. In 3D 7 variables: 3 in space, 3 in velocity and the time heavy computations. 4 A. Crestetto AP-hybrid models for plasmas

5 Fluid models Moment equations on physical quantities linked to f (density, mean velocity, temperature, etc.). Smaller cost, but lost of precision. General difficulties: Find a well adapted model for our system, with a good precision/cost ratio. If two scales in the same simulation, develop a numerical scheme efficient in each regime: - spatial coupling of two schemes, with an interface, - asymptotic-preserving (AP) scheme 4. 4 Jin, SIAM JSC A. Crestetto AP-hybrid models for plasmas

6 Asymptotic-Preserving scheme Let P ε a problem dependent on ε and P ε,h the associated numerical scheme. Pb: Standard schemes need h = O(ε)... Aim: Construct a scheme for which h does not depend on ε. Let P 0 = lim ε 0 P ε the limit problem and P 0,h the associated numerical scheme. Def: P ε,h is AP: uniform stability and consistency with P 0,h. P ε h 0 P ε,h ε 0 ε 0 P 0 P 0,h h 0 6 A. Crestetto AP-hybrid models for plasmas

7 Vlasov-BGK-Poisson system Numerical method Kinetic-fluid numerical scheme for Vlasov-BGK-Poisson using particles in collaboration with Nicolas Crouseilles 5 and Mohammed Lemou 6. 5 INRIA Rennes - Bretagne Atlantique & ENS Cachan Bretagne, IRMAR. 6 CNRS & Université de Rennes I & ENS Cachan Bretagne, IRMAR. 7 A. Crestetto AP-hybrid models for plasmas

8 Vlasov-Poisson-BGK system Vlasov-BGK-Poisson system Numerical method Collisions between particles parameterized by the Knudsen number ε. The Vlasov-Poisson-BGK equations (on [0,L x ] R R +, L x R + ) t f + v x f + E v f = 1 ε Q(f), x E = 1+ f dv. Periodic conditions on f and E. Zero mean condition on E and initial conditions Lx 0 E (x,t)dx = 0, t 0, f (x,v,0) = f 0 (x,v), x [0,L x ], v R. 8 A. Crestetto AP-hybrid models for plasmas

9 Vlasov-BGK-Poisson system Numerical method Q(f) is the BGK collisions operator (Bhatnagar-Gross-Krook): Q(f) = M(U) f, M(U) the Maxwellian having the same first three moments than f, denoted by U. We denote by N (L Q ) = Span { M,vM, v 2 M } the kernel of the linearized operator L Q of Q. A. Crestetto AP-hybrid models for plasmas

10 Objectives Vlasov-BGK-Poisson system Numerical method Construction of an AP scheme, based on a micro-macro decomposition 7,8. Reduction of the numerical cost: - few points are sufficient in v at the limit since collisions bring f to its Maxwellian: f M (U) 0 when ε 0, - idea: use particles for the micro part. 7 Lemou, Mieussens, SIAM JSC Liu, Yu, CMP A. Crestetto AP-hybrid models for plasmas

11 Micro-macro model Vlasov-BGK-Poisson system Numerical method Micro-macro decomposition f = M(U) + g: t M(U)+v x M(U)+E v M(U)+ t g+v x g+e v g = 1 ε g. Transport operator T = v x +E v : t M(U)+T M(U)+ t g +T g = 1 ε g. Hypothesis: first 3 moments of g are zeros: mg := m(v) g (x,v,t) dv = 0, with m(v) := ) T (1,v, v 2. 2 Verified at the numerical level? If not, we have to impose it. 1 A. Crestetto AP-hybrid models for plasmas

12 Micro-macro equations Vlasov-BGK-Poisson system Numerical method Let Π M the orthogonal projection in L 2( M 1 dv ) on N (L Q ): Π M (ϕ) = 1 ρ + [ (v u) (v u)ϕ ϕ + T ( v u 2 1 ) ( v u 2 2T 2 T ) ] 1 ϕ M. Properties: (I Π M )( t M) = Π M (g) = Π M ( t g) = 0. By applying (I Π M ) to Vlasov-BGK micro equation on g t g +(I Π M )T (M + g) = 1 ε g. 12 A. Crestetto AP-hybrid models for plasmas

13 Vlasov-BGK-Poisson system Numerical method By applying Π M to Vlasov-BGK macro equation on M(U) t M +Π M T (M + g) = 0. And by taking its first 3 moments t U + x F (U)+ x vm(v)g = S (U), with F (U) the Euler flux and S (U) a source term. Micro-macro system 9 (equivalent to Vlasov-BGK) t g +(I Π M )T (M + g) = 1 ε g, t U + x F (U)+ x vm(v) g = S (U). 9 Bennoune, Lemou, Mieussens, JCP A. Crestetto AP-hybrid models for plasmas

14 Algorithm Vlasov-BGK-Poisson system Numerical method 1. Solving the micro part by a Particle-In-Cell (PIC) method. 2. Projection step to numerically force to zero the first three moments of g ( matching procedure 10 ). 3. Solving the macro part by a finite volume scheme (mesh on x), with a source term dependent on g. 1-3 coupling: similarities with the δf method 11 but here: AP scheme. 10 Degond, Dimarco, Pareschi, IJNMF, Brunner, Valeo, Krommes, Phys. of Plasmas A. Crestetto AP-hybrid models for plasmas

15 1. PIC method on g Vlasov-BGK-Poisson system Numerical method Solving by a PIC method the equation t g +(I Π M )T (M + g) = 1 ε g t g +T g = (I Π M )T M +Π M T g g ε =: S g, coupled to the Poisson equation for the electric field. Model: having N p numerical particles, with position x k, velocity v k and weight ω k, g is approximated by N p g Np (x,v,t) = ω k (t)δ(x x k (t))δ(v v k (t)). k=1 15 A. Crestetto AP-hybrid models for plasmas

16 Collisional plasmas: problem and objectives PIC algorithm Vlasov-BGK-Poisson system Numerical method Mesh generation Electric field computing on the mesh Initialization of positions and velocities of particles Computation of charge density on the mesh (deposition) Interpolation of electric field on the particles Evolution of the weights (if source term) Movement of particles 16 A. Crestetto AP-hybrid models for plasmas

17 Vlasov-BGK-Poisson system Numerical method Equation with source term splitting. 1. Solving the transport part t g +T g = 0. Displacement of particles thanks to the equations of motion dx k dt (t) = v k (t), dv k dt (t) = E (x k (t),t). Second order Verlet scheme (for example): v n+ 1 2 k = v n k + t 2 En (x n k ) x n+1 k = xk n 1 + tvn+ 2 k v n+1 k = v n+ 1 2 k + t 2 En+1( x n+1 ) k. 7 A. Crestetto AP-hybrid models for plasmas

18 Vlasov-BGK-Poisson system Numerical method 2. Solving the source part t g = (I Π M )(T M)+Π M (T g) 1 ε g. Equation on weights of the form dω k dt (t) = α k (t) ω k (t) ε where α k is the weight associated to (I Π M )(T M)+Π M (T g). To have an AP scheme, we make the stiff term implicit: ω n+1 k = ω n k + t αn k ωn+1 t kε. 8 A. Crestetto AP-hybrid models for plasmas

19 2. Projection step At time n+ 1, we have N p g n+1 (x,v) = k=1 ω n+1 k δ ( x x n+1 k Vlasov-BGK-Poisson system Numerical method Micro-macro structure: mg ( x,v,t n+1) = 0. ) ( ) ( δ v v n+1 k g x,v,t n+1 ). A priori not true for g n+1 (x,v) correction We compute U g := mg n+1 0 on each cell x i : U g (x i ) = mg n+1 xi = ω k m(v k ). k/x k [x i,x i+1 ] 2. We seek h N (L Q )= Span { M,vM, v 2 M } h(x,v) = λ(x) m(v) M(x,v) s.t. U g (x i ) = mh(x i,v). 12 C., Crouseilles, Lemou, KRM A. Crestetto AP-hybrid models for plasmas

20 Vlasov-BGK-Poisson system Numerical method Solving N x linear systems (3 3) U g (x i ) = A i λ i with A i a matrix containing moments of M and λ i λ(x i ). Computation of weights γ k associated to h on each particle. 3. Correction of the weights in order to preserve the micro-macro structure ω new k ω k γ k. By construction : mg n+1,new xi = U g (x i ) mh(x i,v) = 0. Remark: correction of order 1 (by using linear shape functions) (3N x 3N x ) system. 0 A. Crestetto AP-hybrid models for plasmas

21 3. Macro part Vlasov-BGK-Poisson system Numerical method Solving the equation t U + x F (U) = S (U) x vm(v)g =: S (U,g). Finite volume method U n+1 i = Ui n t ( ) Fi+1/2 n x Fn i 1/2 t S i n, with Rusanov flux Fi+1/2 n = 1 ( ( ) F U n 2 i+1 + F (U n i ) a i+1/2 (U i+1 U i ) ), where a i+1/2 = max j=i,i+1 ( abs R ( JF ( xj ))), R (JF ) being the eigenvalues of the Jacobian of F. Computation of the moments of g to evaluate S n i = S (U n i ) ( vmg n+1 xi+1/2 vmg n+1 xi 1/2 x ). 1 A. Crestetto AP-hybrid models for plasmas

22 Landau damping Vlasov-BGK-Poisson system Numerical method Initial distribution function: f (x,v,0) = 1 ) exp ( v2 (1+α cos(kx)). 2π 2 Micro-macro initializations: 1+αcos(kx) U(x) = 0 1+αcos(kx) and g (x,v,t = 0) = 0. Parameters: α = 0.01, k = 0.5, L x = 2π/k. Observation: electrical energy E (t) = E (t,x) 2 dx. 2 A. Crestetto AP-hybrid models for plasmas

23 Vlasov-BGK-Poisson system Numerical method AP property? Convergence to Euler-Poisson? E (t), comparison with Euler-Poisson. N x = 128, N p = , different values of ε log E(t) L Euler -10 MiMa, eps= MiMa, eps=0.1 MiMa, eps=0.3 MiMa, eps= Time t Good convergence AP scheme. 3 A. Crestetto AP-hybrid models for plasmas

24 Importance of the projection step Vlasov-BGK-Poisson system Numerical method ρ(x), with and without correction. ε = 1, N p = at t = Without correction Correction of order 0 Correction of order Charge density 1-rho Position x Correction the instabilities disappear. 4 A. Crestetto AP-hybrid models for plasmas

25 Numerical-noise reduction Vlasov-BGK-Poisson system Numerical method ρ(x), comparison with a PIC method on the whole f. ε = 1, N x = 128, N p = , at t = PIC BGK MiMa Charge density 1-rho Position x Micro-macro decomposition noise due to the PIC method reduced. 25 A. Crestetto AP-hybrid models for plasmas

26 Computational cost Vlasov-BGK-Poisson system Numerical method E (t), comparison with a PIC method on the whole f. ε = 10 ε = 10 4 N p Time N p Time MiMa s. PIC-BGK s. MiMa s. PIC-BGK s. 26 A. Crestetto AP-hybrid models for plasmas

27 Conclusion Vlasov-BGK-Poisson system Numerical method Micro-macro decomposition for Vlasov-Poisson-BGK using a PIC method. Projection step to numerically force the first 3 moments of g to zero. AP scheme. Reduction of the numerical noise due to the PIC method because only on g. Reduction of the cost compared to grid methods at the ε 0 limit because few particles are sufficient. Also true when g (x,v,0) 0. Perspectives Diffusion limit. Non local collision operators. Dirichlet boundary conditions. 27 A. Crestetto AP-hybrid models for plasmas

28 Anisotropic equation for the electrical potential Coupling strategy AP-Limit coupling for the ionospheric plasma in collaboration with Fabrice Deluzet 13, Jacek Narski 14 and Claudia Negulescu CNRS & Université Paul Sabatier Toulouse 3, IMT. 14 Université Paul Sabatier Toulouse 3, IMT. 8 A. Crestetto AP-hybrid models for plasmas

29 Ionospheric plasma Anisotropic equation for the electrical potential Coupling strategy Ionosphere constituted of partially ionized plasma, submitted to a strong magnetic field. Density of neutral particles and frequency of collisions increase at the extremities of the magnetic field lines, that is at low altitude. Solar winds perturb the plasma and are responsible for irregularities or interruptions in the communication with satellites. Under some hypotheses s.t. - quasi-neutrality, - inerty of ions neglectable in front of collisions with neutral particles, - fixed magnetic field, we only consider a highly anisotropic elliptic equation for the electric potential. 9 A. Crestetto AP-hybrid models for plasmas

30 Singular perturbation problem Anisotropic equation for the electrical potential Coupling strategy Domain: Ω = Ω x Ω z = [x,x + ] [z,z + ]. Considered P-problem: (P) x (A x x u ε ) z ( Az ε(z) zu ε )+A 0 u ε = f, for (x,z) Ω x Ω z, A z(x,z ± ) ε(z ± ) z u ε (x,z ± ) = g ± (x), for x Ω x, u ε (x,z) = 0, for (x,z) Ω x Ω z, u ε the solution, A x (x,z), A z (x,z), A 0 (x,z) of the same order of magnitude, in order to have existence and uniqueness of a solution u ε for ε > A. Crestetto AP-hybrid models for plasmas

31 Numerical problem at the ε 0 limit Anisotropic equation for the electrical potential Coupling strategy ε-constant case, let formally ε tends to zero in (P): z (A z z u) = 0, for (x,z) Ω x Ω z, z u(x,z ± ) = 0, for x Ω x, u(x,z) = 0, for (x,z) Ω x Ω z. Non-unique solution: functions constant along the z-coordinate and satisfying u(x,z) = 0 on Ω x Ω z. Ill-conditioned P-model when ε 1. Remark: unique solution if Dirichlet or periodic conditions on Ω z. 1 A. Crestetto AP-hybrid models for plasmas

32 Limit model Anisotropic equation for the electrical potential Coupling strategy Notation: f (x) := 1 L z Ω z f (x,z) dz. Properties: f = 0, f z = f z, ( f x ( f x ) = f x, fg = f ḡ + f g, ) = f x, (fg) = f g f g + f g + f ḡ. (L) Integrating (P) along the z-coordinate and assuming u = u(x) (valid on the limit) gives the limit model: x ( Ax x u ) + A 0 u = f + g+(x) L z g (x) L z, for x Ω x, u(x) = 0, for x Ω x. 2 A. Crestetto AP-hybrid models for plasmas

33 AP reformulation ( AP ) (AP ) Decomposition: u(x,z) = u(x)+u (x,z). AP reformulation 15,16 : ( x Ax x u ) + A 0 u = f + g+(x) L z ( + x A x z u ) A 0 u, u(x) = 0, ( ) x (A x x u ) Az z ε(z) zu + A 0 u = f A 0 u + x (A x x u), A z(x,z ± ) ε(z ± ) z u (x,z ± ) = g ± (x), u (x,z) = 0, u = 0, Anisotropic equation for the electrical potential Coupling strategy g (x) L z for x Ω x, for x Ω x, for (x,z) Ω x Ω z, for x Ω x, for (x,z) Ω x Ω z, constraint. 15 Degond, Deluzet, Negulescu, SIAM MMS Besse, Deluzet, Negulescu, Yang, JSC A. Crestetto AP-hybrid models for plasmas

34 Coupling strategy Anisotropic equation for the electrical potential Coupling strategy Assumptions: - in a large region of the computational domain, ε 1, - the domain can be decomposed in the z-direction into two subdomains, delimited by an interface on z ι [z, z + ]: Ω z = Ω 1 z Ω2 z where Ω 2 z = [z, z ι ] and Ω 1 z = [z ι, z + ], - in Ω 2 z, u does not depend on z. Decomposition: - u Ω (x, z) = u 1 1 (x, z), z - u Ω (x, z) = u 2 2 (x). z 4 A. Crestetto AP-hybrid models for plasmas

35 Anisotropic equation for the electrical potential Coupling strategy (AP 1 ) (AP 2 ) AP-L formulation: ( AP ) (AP 1 ) (AP 2 ) with ( ) x (A x x u 1 ) Az z ε(z) zu 1 + A 0 u 1 = f A 0 u + x (A x x u), A z(x,z +) ε(z +) z u 1 (x,z +) = g + (x), u 1 (x,z) = 0, u 1 (x,z ι) = u 2 (x), Ω 1 u z 1 (x,z) dz + L2 z u 2 (x) = 0, ( ) x Ω A xdz 2 x u z 2 + Ω A 0dzu 2 z 2 for (x,z) Ω x Ω 1 z, for x Ω x, for (x,z) Ω x Ω 1 z, x Ω x, constraint, = Ω fdz g 2 + Az(x,zι) z ε(z ι) z u 1 (x,z ι) ( ) Ω A 0dzu + 2 x z Ω A xdz 2 x u, for (x,z) Ω x Ω2 z u 2 (x) = 0, for x Ω x. 5 A. Crestetto AP-hybrid models for plasmas z,

36 Finite elements discretization Anisotropic equation for the electrical potential Coupling strategy Discretization of Ω x Ω z by x i = i x, i = 0,...,N x + 1, z k = k z, k = 0,...,N z + 1. Interface put on z ι (we assume k = 1,...,N z s.t. z ι = z k ). P 1 hat functions κ 0 (z) = χ i (x) = κ k (z) = z 1 z z, z [z 0,z 1 ) 0, elsewhere x x i 1, x x [x i 1,x i ) x i+1 x, x x [x i,x i+1 ) 0, elsewhere z z k 1, z z [z k 1,z k ) z k+1 z, z z [z k, z k+1 ) 0, elsewhere and κ Nz+1 (z) =, i = 1,...,N x,, k = 1,...,N z, 36 A. Crestetto AP-hybrid models for plasmas z z Nz, z z [z Nz,z Nz+1) 0, elsewhere.

37 Anisotropic equation for the electrical potential Coupling strategy Test functions χ i, i = 1,...,N x, χ i κ k, i = 1,...,N x, Unknowns approximated by u h (x) k = ι,...,n z + 1. = N x i=1 α iχ i (x), u 1h (x,z) = N x i=1 u 2h (x) P h (x) = N x i=1 γ iχ i (x), = N x i=1 δ iχ i (x). Nz+1 k=ι β ik χ i (x)κ k (z), System A 2 + A 4 1 (C L z 11 + C 31 ) 1 (C L z 12 + C 32 ) 0 C 21 + C 01 A 11 + A 01 + A 31 0 B 11 C 22 + C 02 D A 12 + A B 21 B 22 0 α β γ δ = F u F u 1 F u A. Crestetto AP-hybrid models for plasmas

38 ε-variable test case Anisotropic equation for the electrical potential Coupling strategy Domain Ω x Ω z = [0,1] [ 3 2, 1 2]. Test case ε(z) = 1 2 (ε 2(1+tanh(rz))+ε 1 (1 tanh(rz))), with r R +, ε 1 R + and ε 2 = 1, A x (x,z) = A 0 (x,z) = L z + xz 2, A z (x,z) = L z + xz. Exact solution u(x,z) = sin ( )( ( )) 2π 2π x 1+ε(z)sin z. L x L z f, g + and g are computed by injecting the exact solution into the equations. 38 A. Crestetto AP-hybrid models for plasmas

39 Anisotropic equation for the electrical potential Coupling strategy ε as a function of z for different values of r. eps Domain b z r=10 r=20 r=30 39 A. Crestetto AP-hybrid models for plasmas

40 Scheme order Anisotropic equation for the electrical potential Coupling strategy L2-relative error as a function of x z. 0.1 Various eps test case, min(eps)=1e-25 (Relative) L2-error e-05 1e-06 1e-06 1e dx*dz r=10 r=20 r=30 Slope 2 2nd order scheme. 40 A. Crestetto AP-hybrid models for plasmas

41 AP property Anisotropic equation for the electrical potential Coupling strategy L2-relative error as a function of ε 1, comparison with AP and P schemes. (Relative) L2-error Nx=Nz=64 APL scheme AP scheme P scheme AP scheme e-25 1e-20 1e-15 1e-10 1e-05 1 min(eps) 41 A. Crestetto AP-hybrid models for plasmas

42 Computational time Anisotropic equation for the electrical potential Coupling strategy Computational time and number of nonzeros for r = 30 and ε 1 = Scheme N x, N z Time/Time P # non zeros L2-error AP-L 256, AP 256, P 256, AP-L 1024, AP 1024, P 1024, Time reduced compared to the AP scheme. 42 A. Crestetto AP-hybrid models for plasmas

43 Conclusions Anisotropic equation for the electrical potential Coupling strategy 2D AP-L coupling. AP property. Computational time reduced compared to the AP formulation! Perspectives Mathematical analysis. AP-L coupling in 3D. 43 A. Crestetto AP-hybrid models for plasmas

44 Anisotropic equation for the electrical potential Coupling strategy - M. Benoune, M. Lemou, L. Mieussens: Uniformly stable numerical schemes for the Boltzmann equation preserving the compressible Navier-Stokes asymptotics, J. Comput. Phys. 227, pp (2008). - C. Besse, F. Deluzet, C. Negulescu, C. Yang: Efficient numerical methods for strongly anisotropic elliptic equations, Journal of Scientific Computing (2012). - S. Brunner, E. Valeo, J.A. Krommes: Collisional delta-f scheme with evolving background for transport time scale simulations, Phys. of Plasmas 12, (1999). - A. C., N. Crouseilles, M. Lemou: Micro-macro decomposition for Vlasov-BGK equation using particles, Kinetic and Related Models 5, pp (2012). - P. Degond, F. Deluzet, C. Negulescu: An Asymptotic Preserving scheme for strongly anisotropic elliptic problem, SIAM Multiscale Modeling and Simulation 8, pp (2010). - P. Degond, G. Dimarco, L. Pareschi: The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids 67, pp (2011). - S. Jin: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, SIAM J. Sci. Comput. 21, pp (1999). - M. Lemou, L. Mieussens: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, SIAM J. Sci. Comput. 31, pp (2008). - T.-P. Liu, S.-H. Yu: Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles, Comm. in Math. Phys. 246, pp (2004). Thank you for your attention! 44 A. Crestetto AP-hybrid models for plasmas

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. Workshop Asymptotic-Preserving schemes, Porquerolles.

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this version: Anaïs Crestetto, Nicolas Crouseilles,

More information

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Giacomo Dimarco Institut des Mathématiques de Toulouse Université de Toulouse France http://perso.math.univ-toulouse.fr/dimarco giacomo.dimarco@math.univ-toulouse.fr

More information

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal 1 An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal IMT: Institut de Mathématiques de Toulouse 1. Introduction.

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Numerical methods for kinetic equations

Numerical methods for kinetic equations Numerical methods for kinetic equations Lecture 6: fluid-kinetic coupling and hybrid methods Lorenzo Pareschi Department of Mathematics and Computer Science University of Ferrara, Italy http://www.lorenzopareschi.com

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA Uncertainty Quantification for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Where do kinetic equations sit in physics Kinetic equations with applications

More information

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs. Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Shanghai Jiao Tong University,

More information

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Shi Jin University of Wisconsin-Madison, USA Kinetic equations Different Q Boltmann Landau

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation.

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. N. Crouseilles a, b, P. Degond a, and M. Lemou a a MIP, UMR CNRS 564, UFR MIG, Université Paul Sabatier 8, route de Narbonne,

More information

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS Dissertation presented to obtain the HABILITATION À DIRIGER DES RECHERCHES Université Paul Sabatier Toulouse 3 Mention: Applied Mathematics by Luc MIEUSSENS Contributions to the numerical simulation in

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Finite volumes schemes preserving the low Mach number limit for the Euler system

Finite volumes schemes preserving the low Mach number limit for the Euler system Finite volumes schemes preserving the low Mach number limit for the Euler system M.-H. Vignal Low Velocity Flows, Paris, Nov. 205 Giacomo Dimarco, Univ. de Ferrara, Italie Raphael Loubere, IMT, CNRS, France

More information

arxiv: v1 [math.na] 7 Nov 2018

arxiv: v1 [math.na] 7 Nov 2018 A NUMERICAL METHOD FOR COUPLING THE BGK MODEL AND EULER EQUATION THROUGH THE LINEARIZED KNUDSEN LAYER HONGXU CHEN, QIN LI, AND JIANFENG LU arxiv:8.34v [math.na] 7 Nov 8 Abstract. The Bhatnagar-Gross-Krook

More information

Asymptotic-Preserving Schemes for anisotropic diffusion problems related to magnetized plasma simulation

Asymptotic-Preserving Schemes for anisotropic diffusion problems related to magnetized plasma simulation Asymptotic-Preserving Schemes for anisotropic diffusion problems related to magnetized plasma simulation Fabrice Deluzet 1 joint work with C. Besse 2, S. Brull 3, A. Crestetto 1, P. Degond 1, A. Lozinski

More information

Introduction. Chapter Plasma: definitions

Introduction. Chapter Plasma: definitions Chapter 1 Introduction 1.1 Plasma: definitions A plasma is a quasi-neutral gas of charged and neutral particles which exhibits collective behaviour. An equivalent, alternative definition: A plasma is a

More information

Modeling of striations instabilities and numerical simulations

Modeling of striations instabilities and numerical simulations 1 Modeling of striations instabilities and numerical simulations C. Besse MIP, Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France besse@mip.ups-tlse.fr Joint work with 2 Model

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Plasmas as fluids. S.M.Lea. January 2007

Plasmas as fluids. S.M.Lea. January 2007 Plasmas as fluids S.M.Lea January 2007 So far we have considered a plasma as a set of non intereacting particles, each following its own path in the electric and magnetic fields. Now we want to consider

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

Lecture 4: The particle equations (1)

Lecture 4: The particle equations (1) Lecture 4: The particle equations (1) Presenter: Mark Eric Dieckmann Department of Science and Technology (ITN), Linköping University, Sweden July 17, 2014 Overview We have previously discussed the leapfrog

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Exponential methods for kinetic equations

Exponential methods for kinetic equations Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research

More information

Waves in plasma. Denis Gialis

Waves in plasma. Denis Gialis Waves in plasma Denis Gialis This is a short introduction on waves in a non-relativistic plasma. We will consider a plasma of electrons and protons which is fully ionized, nonrelativistic and homogeneous.

More information

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations April 21-24, 2016 Department of Mathematics University of Wisconsin-Madison SCHEDULE Thursday, April 21 Friday, April 22 Saturday,

More information

Adaptive semi-lagrangian schemes for transport

Adaptive semi-lagrangian schemes for transport for transport (how to predict accurate grids?) Martin Campos Pinto CNRS & University of Strasbourg, France joint work Albert Cohen (Paris 6), Michel Mehrenberger and Eric Sonnendrücker (Strasbourg) MAMCDP

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Jian-Guo Liu Department of Physics and Department of Mathematics, Duke University Collaborators: Pierre

More information

Implicit kinetic relaxation schemes. Application to the plasma physic

Implicit kinetic relaxation schemes. Application to the plasma physic Implicit kinetic relaxation schemes. Application to the plasma physic D. Coulette 5, E. Franck 12, P. Helluy 12, C. Courtes 2, L. Navoret 2, L. Mendoza 2, F. Drui 2 ABPDE II, Lille, August 2018 1 Inria

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

An improved unified gas-kinetic scheme and the study of shock structures

An improved unified gas-kinetic scheme and the study of shock structures IMA Journal of Applied Mathematics (2011) 76, 698 711 doi:10.1093/imamat/hxr002 Advance Access publication on March 16, 2011 An improved unified gas-kinetic scheme and the study of shock structures KUN

More information

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a chapter published in Domain Decomposition Methods in Science and Engineering XXI. Citation for the original published chapter: Gander,

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS FOR THE RELATIVISTIC GRAVITATIONAL VLASOV- POISSON SYSTEM Mohammed Lemou CNRS and IRMAR, Rennes Florian Méhats University of Rennes 1 and IRMAR Pierre

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Asymptotic-Preserving Schemes

Asymptotic-Preserving Schemes Asymptotic-Preserving Schemes Porto-Ercole summer school 2012 MMKT Methods and Models of Kinetic Theory MODELING, SIMULATION AND MATHEMATICAL ANALYSIS OF MAGNETICALLY CONFINED PLASMAS Claudia NEGULESCU

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uniformly accurate averaging numerical schemes for oscillatory evolution equations Uniformly accurate averaging numerical schemes for oscillatory evolution equations Philippe Chartier University of Rennes, INRIA Joint work with M. Lemou (University of Rennes-CNRS), F. Méhats (University

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations

Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Applied Mathematics Volume 2012, Article ID 957185, 8 pages doi:10.1155/2012/957185 Research Article On a Quasi-Neutral Approximation to the Incompressible Euler Equations Jianwei Yang and Zhitao Zhuang

More information

Forced hybrid-kinetic turbulence in 2D3V

Forced hybrid-kinetic turbulence in 2D3V Forced hybrid-kinetic turbulence in 2D3V Silvio Sergio Cerri1,2 1 In collaboration with: 3 F. Califano, F. Rincon, F. Jenko4, D. Told4 1 Physics Department E. Fermi, University of Pisa, Italy fu r Plasmaphysik,

More information

arxiv: v1 [math.na] 25 Oct 2018

arxiv: v1 [math.na] 25 Oct 2018 Multi-scale control variate methods for uncertainty quantification in kinetic equations arxiv:80.0844v [math.na] 25 Oct 208 Giacomo Dimarco and Lorenzo Pareschi October 26, 208 Abstract Kinetic equations

More information

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams

Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and photon beams 22 nd International Symposium on Plasma Chemistry July 5-10, 2015; Antwerp, Belgium Analysis of recombination and relaxation of non-equilibrium air plasma generated by short time energetic electron and

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Physique des plasmas radiofréquence Pascal Chabert

Physique des plasmas radiofréquence Pascal Chabert Physique des plasmas radiofréquence Pascal Chabert LPP, Ecole Polytechnique pascal.chabert@lpp.polytechnique.fr Planning trois cours : Lundi 30 Janvier: Rappels de physique des plasmas froids Lundi 6 Février:

More information

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows

A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows A Unified Gas-kinetic Scheme for Continuum and Rarefied Flows K. Xu and J.C. Huang Mathematics Department, Hong Kong University of Science and Technology, Hong Kong Department of Merchant Marine, National

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

Moments conservation in adaptive Vlasov solver

Moments conservation in adaptive Vlasov solver 12 Moments conservation in adaptive Vlasov solver M. Gutnic a,c, M. Haefele b,c and E. Sonnendrücker a,c a IRMA, Université Louis Pasteur, Strasbourg, France. b LSIIT, Université Louis Pasteur, Strasbourg,

More information

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection

Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection 1 ITR/P1-37 Physics and Modelling of a Negative Ion Source Prototype for the ITER Neutral Beam Injection J.P. Boeuf a, G. Fubiani a, G. Hagelaar a, N. Kohen a, L. Pitchford a, P. Sarrailh a, and A. Simonin

More information

Landau Damping Simulation Models

Landau Damping Simulation Models Landau Damping Simulation Models Hua-sheng XIE (u) huashengxie@gmail.com) Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China Oct. 9, 2013

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Irene M. Gamba, Shi Jin, and Liu Liu Abstract In this

More information

The Moment Guided Monte Carlo Method

The Moment Guided Monte Carlo Method The Moment Guided Monte Carlo Method Pierre Degond,, Giacomo Dimarco,,3 and Lorenzo Pareschi Université de Toulouse; UPS, INSA, UT, UTM ; Institut de Mathématiques de Toulouse ; F-3 Toulouse, France. CNRS;

More information

Stability of Mach Configuration

Stability of Mach Configuration Stability of Mach Configuration Suxing CHEN Fudan University sxchen@public8.sta.net.cn We prove the stability of Mach configuration, which occurs in moving shock reflection by obstacle or shock interaction

More information

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Qin Li, Lorenzo Pareschi Abstract We consider the development of exponential methods for the robust time discretization

More information

Hybrid Simulations: Numerical Details and Current Applications

Hybrid Simulations: Numerical Details and Current Applications Hybrid Simulations: Numerical Details and Current Applications Dietmar Krauss-Varban and numerous collaborators Space Sciences Laboratory, UC Berkeley, USA Boulder, 07/25/2008 Content 1. Heliospheric/Space

More information

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Michael Barnes Plasma Science & Fusion Center Massachusetts Institute of Technology Collaborators:

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution

One dimensional hybrid Maxwell-Boltzmann model of shearth evolution Technical collection One dimensional hybrid Maxwell-Boltzmann model of shearth evolution 27 - Conferences publications P. Sarrailh L. Garrigues G. J. M. Hagelaar J. P. Boeuf G. Sandolache S. Rowe B. Jusselin

More information

Fractional diffusion limit for collisional kinetic equations: A moments method

Fractional diffusion limit for collisional kinetic equations: A moments method Fractional diffusion limit for collisional kinetic equations: A moments method A. Mellet Department of Mathematics, University of Maryland, College Park MD 2742 USA Abstract This paper is devoted to hydrodynamic

More information

A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES

A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES FRANCIS FILBET AND SHI JIN Abstract. In this paper, we propose a general framework to design asymptotic

More information

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1

A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 A Comparison between the Two-fluid Plasma Model and Hall-MHD for Captured Physics and Computational Effort 1 B. Srinivasan 2, U. Shumlak Aerospace and Energetics Research Program University of Washington,

More information

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter)

Lecture Note 1. 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Lecture Note 1 1.1 Plasma 99% of the matter in the universe is in the plasma state. Solid -> liquid -> Gas -> Plasma (The fourth state of matter) Recall: Concept of Temperature A gas in thermal equilibrium

More information

Multi-water-bag model and method of moments for Vlasov

Multi-water-bag model and method of moments for Vlasov and method of moments for the Vlasov equation 1, Philippe Helluy 2, Nicolas Besse 3 FVCA 2011, Praha, June 6. 1 INRIA Nancy - Grand Est & University of Strasbourg - IRMA crestetto@math.unistra.fr (PhD

More information

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW SHI JIN Contents 1. Introduction 1 2. Hyperbolic systems with stiff relaxations 3 3. Kinetic equations: the

More information

Research supported by the NSF Aeronomy & CEDAR Grants

Research supported by the NSF Aeronomy & CEDAR Grants Large-Scale Simulations of Farley- Buneman Turbulence in 2D and 3D and Hybrid Gradient Drift Simulations by Meers Oppenheim, Yakov Dimant, Yann Tambouret Center for Space Physics, Boston University, Boston,

More information

Hybrid Kinetic-MHD simulations with NIMROD

Hybrid Kinetic-MHD simulations with NIMROD simulations with NIMROD Charlson C. Kim and the NIMROD Team Plasma Science and Innovation Center University of Washington CSCADS Workshop July 18, 2011 NIMROD C.R. Sovinec, JCP, 195, 2004 parallel, 3-D,

More information

Hierarchical Modeling of Complicated Systems

Hierarchical Modeling of Complicated Systems Hierarchical Modeling of Complicated Systems C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park, MD lvrmr@math.umd.edu presented

More information

ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG EXTERNAL MAGNETIC FIELD

ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG EXTERNAL MAGNETIC FIELD ON THE VLASOV-MAXWELL SYSTEM WITH A STONG EXTENAL MAGNETIC FIELD Francis Filbet, Tao Xiong, Eric Sonnendr ucker To cite this version: Francis Filbet, Tao Xiong, Eric Sonnendr ucker. ON THE VLASOV-MAXWELL

More information

Computational plasma physics

Computational plasma physics Computational plasma physics Eric Sonnendrücker Max-Planck-Institut für Plasmaphysik und Zentrum Mathematik, TU München Lecture notes Sommersemester 015 July 13, 015 Contents 1 Introduction 3 Plasma models

More information

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

A successive penalty based Asymptotic-Preserving scheme for kinetic equations A successive penalty based Asymptotic-Preserving scheme for kinetic equations Bokai Yan Shi Jin September 30, 202 Abstract We propose an asymptotic-preserving AP) scheme for kinetic equations that is efficient

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information