Anomalous transport of particles in Plasma physics

Size: px
Start display at page:

Download "Anomalous transport of particles in Plasma physics"

Transcription

1 Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann Bruz rance. b Department of Mathematics, University of Maryland, College Park MD 074 USA. Abstract We investigate the long time/small mean-free-path asymptotic behavior of the solutions of a Vlasov-Lévy-okker-Planck equation and show that the asymptotic dynamics for the VLP are described by an anomalous diffusion equation. Keywords: Kinetic equations, okker-planck operator, Lévy statistic, anomalous diffusion limit, fractional heat equation. 010 MSC: 8D10, 35Q84, 35R Introduction 1.1. The Vlasov-Lévy-okker-Planck equation In this note, we investigate the long time/small mean-free-path asymptotic behavior of the solutions of the following Vlasov-Lévy-okker-Planck equation: { t f + v x f = νdiv v (vf) ( v ) s f in (0, ) f(x, v, 0) = f 0 (x, v) in (1) for s (0, 1), ν > 0. Such an equation models the evolution of the distribution function f(x, v, t) of a cloud of particles in a Plasma: The left hand side of (1) models the free transport of the particles, while the Lévy-okker-Planck operator, in the right hand side: L s (f) = νdiv v (vf) ( v ) s f () describes the interactions of the particles with the background. It can be interpreted as a deterministic description of the Langevin equation for the velocity of the particles, v(t) = νv(t) + A(t), where ν is the friction coefficient and A(t) is a white noise. The 1 Partially supported by NS Grant DMS Partially supported by NS Grant DMS Preprint submitted to Elsevier March 16, 01

2 classical okker-planck operator corresponds to s = 1 and arises when A(t) is a Gaussian white noise. In that case, equilibrium distributions (solutions of L 1 (M) = 0) are Maxwellian (or Gaussian) velocity distributions M = C exp( ν v ). However, some experimental measurements of particles and heat fluxes in confined plasma point to non-local features and non-gaussian distribution functions (see for instance [7]). The introduction of fractional Lévy statistic in the velocity equation (replacing the Gaussian white noise by Lévy white noise in Langevin equation) can be seen as an attempt at taking into account these non-local effects in plasma turbulence. The operator L s for s (0, 1) has been studied in particular by Gentil-Imbert [4] (see also Proposition 1.1 below). Instead of Maxwellian velocity distribution functions, thermodynamical equilibriums for L s are described by Lévy stable distribution functions. These are power law (or heavy tail) functions, which are characterized in particular by infinite second moment of velocity (or infinite variance). In this paper, we show that the long time/small mean-free-path limit for the kinetic equation (1) leads to an anomalous (or fractional) diffusion equation for the density of particles. or the classical Vlasov-okker-Planck equation, a similar asymptotic leads to a standard diffusion equation. The derivation of anomalous diffusion regimes for kinetic equations has been recently investigated in the framework of linear Boltzmann equation (in which the okker-planck operator is replaced by an integral operator), see [6, 5, 1, ]. The common theme between these works and the present paper is the fact that the equilibrium distribution functions are heavy tail functions with infinite second moment of velocity. However, the different nature of the okker-planck operator requires the introduction of new techniques for the investigation of this limit. 1.. Properties of L s We recall that the fractional Laplace operator ( v ) s can be defined using the ourier transform, by ( v ) s f(ξ) = ξ s f(ξ) (3) or as the following singular integral ( v ) s 1 f(v) = c s P.V. [f(v) f(w)] dw (4) v w N+s for some constant c s depending on s and the dimension N. We have the following result (see [4]): Proposition 1.1. When s (0, 1), there exists a unique normalized equilibrium distribution function (v), solution of L s ( ) = νdiv v (v ) ( v ) s = 0, (v) dv = 1. (5) urthermore, (v) > 0 for all v, and is a heavy-tail distribution function: (v) C v N+s as v.

3 This proposition is proved in [4]. An explicit formula can easily be found for the ourier transform of. Indeed, (v) satisfies (5) if and only if its ourier transform (ξ) satisfies (using (3)): ξ s (ξ) νξ ξ (ξ) = 0, and (0) = 1, which yields the symmetric Lévy distribution in ourier space (ξ) = e 1 sν ξ s when s = 1, we recover Maxwell s distribution function) Main results (note that We now turn to our main goal, which is the investigation of the long time/small meanfree-path-limit of (1). As in [6, 5, 1, ], we start by rescaling the space and time variable as follows: x εx, t ε s t. To simplify the notations, we also take ν = 1 so that (1) becomes { ε s t f ε + εv x f ε = div v (vf ε ) ( v ) s f ε in (0, ) f ε (x, v, 0) = f 0 (x, v) in. The existence of a unique solution satisfying appropriate a priori estimates can be established exactly as in the case of the usual Vlasov-okker-Planck equation. We refer the reader to the article of Degond [3] for further details. Note that since there is no acceleration field here, this is relatively easy. We do not dwell on this issue, which is not the focus of this paper. Our main result is the following: Theorem 1.. Assume that f 0 L (, (v) 1 dvdx). Then, up to a subsequence, the solution f ε of (6) converges weakly in L (0, T ; L (, (v) 1 dvdx)), as ε 0 to ρ(x, t) (v) where ρ(x, t) solves { t ρ + ( x ) s ρ = 0 in (0, ) (6) with ρ 0 (x) = f 0 (x, v) dv. ρ(x, 0) = ρ 0 (x) in (7). Proof of Theorem A priori estimates In order to prove Theorem 1., we need some a priori estimates for f ε, which are consequence of the dissipation properties of the operator L s. These properties have been studied in particular in [4]. The following result will be of use in the sequel. We present the proof here for the sake of completeness. Proposition.1. or all f smooth enough, L s (f) f R dv = D(f) := c [ s f(w) N R (w) f(v) ] (v) dv dw. (8) (v) v w N+s N 3

4 urthermore, there exists θ > 0 such that D(f) θ f(v) ρ (v) 1 dv (9) R (v) N Proof. Inequality (8) is proved in [4] in a more general setting. Let g = f/. We write L s (f)(f/ ) dv = νdiv v (v )g / ( v ) s (g )g dv R N = ( v ) s ( )g / ( v ) s (g )g dv R N = 1 R (( v) s (g ) + g( v ) s (g) dv N where we used (5). It follows (using (4)): L s (f)(f/ ) dv { = c s 1 } [g(v) g(w) ] + g(v) (v) g(w)g(v) dv dw v w N+s = c s RN (v) [g(v) g(w)] v w N+s dv dw = D(f) which gives (8). inally, we write f = ρ + h, with h dv = 0. We then have D(f) = c [ s h(v) (w) R (v) h(w) ] 1 dv dw (w) v w N+s N and since h(v) dv = 0, Poincare s inequality (see for instance Mouhot-Russ-Sire [8]) yields ( ) h(v) D(f) θ (v) dv (v) for some θ > 0, which gives (9). Corollary.. Assume that f 0 satisfies the conditions of Theorem 1.. Then the solution f ε (x, v, t) of (6) satisfies (f ε ) T RN dx dv + f ε ρ ε (f0 ) ε s θ dv dx dt dx dv sup t [0,T ] 0 where ρ ε = f ε dv. In particular, there exists a function ρ(x, t) L ( (0, )) such that f ε (x, v, t) ρ(x, t) (v) weakly in L 1(RN (0, )). Proof. Multiplying (6) by f ε / and integrating with respect to x and v, we get ε s d (f ε ) dx dv = L s (f ε )f ε / dx dv dt and Proposition.1 gives the result. 4

5 .. Proof of the main result. We can now prove our main result: Proof of Theorem 1.. Let ϕ(x, t) be a test function in D( [0, )). Multiplying (6) by φ ε (x, v, t) = ϕ(x + εv, t), we get: f ε[ ε s t φ ε + εv x φ ε v v φ ε + ( ) s φ ε] dx dv dt +ε s f 0 (x, v)φ ε (x, v, 0) dx dv = 0. Next, we note that v v φ ε = εv x φ ε and ( ) s φ ε = ε s ( ) s ϕ(x + εv, t). We deduce f ε[ ] t ϕ + ( ) s ϕ (x + εv, t) dx dv dt + f 0 (x, v)ϕ(x + εv, 0) dx dv = 0 (10) and we conclude thanks to the following lemma: Lemma.3. or all test function ψ D(R d [0, )), we have f ε ψ(x + εv, t) dx dv dt = ρ(x, t)ψ(x, t) dx dt lim Indeed, passing to the limit in (10), Lemma.3 gives [ ] ρ(x, t) t ϕ + ( ) s ϕ (x, t) dx dt + ρ 0 (x)ϕ(x, 0) dx = 0 which is the weak formulation of (7). Proof of Lemma.3. We write f ε ψ(x + εv, t) dx dv dt = f ε ψ(x, t) dx dv dt + f ε[ ] ψ(x + εv, t) ψ(x) dx dv dt. The first term converges to ρ(x, t) (v)ψ(x, t) dx dv dt = ρ(x, t)ψ(x, t) dx dt. or the second term, we note that f ε[ ψ(x + εv, t) ψ(x)] dx dv dt εcr Dψ L v R f ε dx dv dt and so lim sup v R f ε[ ψ(x + εv, t) ψ(x)] dx dv dt = 0. 5

6 urthermore, C f ε[ ψ(x + εv, t) ψ(x)] dx dv dt ( (f ε ) dx dv dt ) 1/ ( ) [ ] 1/ ψ(x + εv, t) ψ(x) (v) dx dv dt and so lim sup f ε[ ψ(x + εv, t) ψ(x)] dx dv dt ( (f0 ) ) 1/ ( ) 1/ C ψ L (0,T ) dx dv dt (v) dv ( (f0 ) ) 1/ C ψ L (0,T ) dx dv dt R α/. We deduce [ ] f ε lim sup ψ(x + εv, t) ψ(x) dx dv dt CR α/ and since this holds for all R > 0, the result follows. References [1] N. Ben Abdallah, A. Mellet, M. Puel, Anomalous diffusion limit for kinetic equations with degenerate collision frequency, Math. Models Methods Appl. Sci., accepted. [] N. Ben Abdallah, A. Mellet, M. Puel, ractional diffusion limit for collisional kinetic equations: a Hilbert expansion approach, KRM, accepted. [3] P. Degond, Global existence of smooth solutions for the Vlasov-okker-Planck equation in 1 and space dimensions. Ann. Sci. de l E.N.S., 19 (1986), [4] I. Gentil, C. Imbert, The Lévy-okker-Planck equation: Φ entropies and convergence to equilibrium, Asymptot. Anal. 59 (008), [5] A. Mellet, ractional diffusion limit for collisional kinetic equations: A moments method, Indiana Univ. Math. J. 59 (010), [6] A. Mellet, C. Mouhot, S. Mischler, ractional diffusion limit for collisional kinetic equations, Arch. Ration. Mech. Anal. 199 (011), [7] S. Moradi, J. Anderson, B. Weyssow, A theory of non-local linear drift wave transport, preprint (011). arxiv: v [8] C. Mouhot, E. Russ, Y, Sire, ractional Poincaré inequalities for general measures. Journal de Mathématiques Pures et Appliqués (010), to appear. 6

Fractional diffusion limit for collisional kinetic equations: A moments method

Fractional diffusion limit for collisional kinetic equations: A moments method Fractional diffusion limit for collisional kinetic equations: A moments method A. Mellet Department of Mathematics, University of Maryland, College Park MD 2742 USA Abstract This paper is devoted to hydrodynamic

More information

Entropic structure of the Landau equation. Coulomb interaction

Entropic structure of the Landau equation. Coulomb interaction with Coulomb interaction Laurent Desvillettes IMJ-PRG, Université Paris Diderot May 15, 2017 Use of the entropy principle for specific equations Spatially Homogeneous Kinetic equations: 1 Fokker-Planck:

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Luigi Barletti (Università di Firenze) Carlo Cintolesi (Università di Trieste) 6th MMKT Porto Ercole, june 9th

More information

hal , version 1-22 Nov 2009

hal , version 1-22 Nov 2009 Author manuscript, published in "Kinet. Relat. Models 1, 3 8) 355-368" PROPAGATION OF GEVREY REGULARITY FOR SOLUTIONS OF LANDAU EQUATIONS HUA CHEN, WEI-XI LI AND CHAO-JIANG XU Abstract. By using the energy-type

More information

Kinetic models of Maxwell type. A brief history Part I

Kinetic models of Maxwell type. A brief history Part I . A brief history Part I Department of Mathematics University of Pavia, Italy Porto Ercole, June 8-10 2008 Summer School METHODS AND MODELS OF KINETIC THEORY Outline 1 Introduction Wild result The central

More information

Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations

Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations Global weak solutions for a Vlasov-Fokker-Planck/Navier-Stokes system of equations A.Mellet and A.Vasseur Department of Mathematics University of Texas at Austin Abstract We establish the existence of

More information

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations

Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations Global Maxwellians over All Space and Their Relation to Conserved Quantites of Classical Kinetic Equations C. David Levermore Department of Mathematics and Institute for Physical Science and Technology

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

Fractional diffusion limit for collisional kinetic equations

Fractional diffusion limit for collisional kinetic equations Fractional diffusion limit for collisional kinetic equations Antoine Mellet, Stéphane Mischler 2 and Clément Mouhot 2 Abstract This paper is devoted to diffusion limits of linear Boltzmann equations. When

More information

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Mathematical modelling of collective behavior

Mathematical modelling of collective behavior Mathematical modelling of collective behavior Young-Pil Choi Fakultät für Mathematik Technische Universität München This talk is based on joint works with José A. Carrillo, Maxime Hauray, and Samir Salem

More information

Anomalous energy transport in FPU-β chain

Anomalous energy transport in FPU-β chain Anomalous energy transport in FPU-β chain Sara Merino Aceituno Joint work with Antoine Mellet (University of Maryland) http://arxiv.org/abs/1411.5246 Imperial College London 9th November 2015. Kinetic

More information

arxiv: v1 [math.ap] 28 Apr 2009

arxiv: v1 [math.ap] 28 Apr 2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION: CLASSICAL SOLUTIONS JUHI JANG AND NING JIANG arxiv:0904.4459v [math.ap] 28 Apr 2009 Abstract. We study the acoustic limit from the Boltzmann equation in the framework

More information

Entropy-dissipation methods I: Fokker-Planck equations

Entropy-dissipation methods I: Fokker-Planck equations 1 Entropy-dissipation methods I: Fokker-Planck equations Ansgar Jüngel Vienna University of Technology, Austria www.jungel.at.vu Introduction Boltzmann equation Fokker-Planck equations Degenerate parabolic

More information

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium

A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium 1/ 22 A Lévy-Fokker-Planck equation: entropies and convergence to equilibrium I. Gentil CEREMADE, Université Paris-Dauphine International Conference on stochastic Analysis and Applications Hammamet, Tunisia,

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system

High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system High-electric-field limit for the Vlasov-Maxwell-Fokker-Planck system Mihai Bostan, Thierry Goudon (November 1, 5 Abstract In this paper we derive the high-electric-field limit of the three dimensional

More information

Hydrodynamic Limits for the Boltzmann Equation

Hydrodynamic Limits for the Boltzmann Equation Hydrodynamic Limits for the Boltzmann Equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Academia Sinica, Taipei, December 2004 LECTURE 2 FORMAL INCOMPRESSIBLE HYDRODYNAMIC

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

REMARKS ON THE ACOUSTIC LIMIT FOR THE BOLTZMANN EQUATION

REMARKS ON THE ACOUSTIC LIMIT FOR THE BOLTZMANN EQUATION REMARKS ON THE ACOUSTIC LIMIT FOR THE BOLTZMANN EQUATION NING JIANG, C. DAVID LEVERMORE, AND NADER MASMOUDI Abstract. We use some new nonlinear estimates found in [1] to improve the results of [6] that

More information

Exponential tail behavior for solutions to the homogeneous Boltzmann equation

Exponential tail behavior for solutions to the homogeneous Boltzmann equation Exponential tail behavior for solutions to the homogeneous Boltzmann equation Maja Tasković The University of Texas at Austin Young Researchers Workshop: Kinetic theory with applications in physical sciences

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Séminaire Laurent Schwartz

Séminaire Laurent Schwartz Séminaire Laurent Schwartz EDP et applications Année 2014-2015 Antoine Mellet Anomalous diffusion phenomena: A kinetic approach Séminaire Laurent Schwartz EDP et applications (2014-2015), Exposé n o XII,

More information

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray

From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray From Boltzmann Equations to Gas Dynamics: From DiPerna-Lions to Leray C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

TRAVELING WAVES FOR A BOUNDARY REACTION-DIFFUSION EQUATION

TRAVELING WAVES FOR A BOUNDARY REACTION-DIFFUSION EQUATION TRAVELING WAVES FOR A BOUNDARY REACTION-DIFFUSION EQUATION L. CAFFARELLI, A. MELLET, AND Y. SIRE Abstract. We prove the existence of a traveling wave solution for a boundary reaction diffusion equation

More information

On the local existence for an active scalar equation in critical regularity setting

On the local existence for an active scalar equation in critical regularity setting On the local existence for an active scalar equation in critical regularity setting Walter Rusin Department of Mathematics, Oklahoma State University, Stillwater, OK 7478 Fei Wang Department of Mathematics,

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

Kinetic theory of gases

Kinetic theory of gases Kinetic theory of gases Toan T. Nguyen Penn State University http://toannguyen.org http://blog.toannguyen.org Graduate Student seminar, PSU Jan 19th, 2017 Fall 2017, I teach a graduate topics course: same

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

Score functions, generalized relative Fisher information and applications

Score functions, generalized relative Fisher information and applications Score functions, generalized relative Fisher information and applications Giuseppe Toscani January 19, 2016 Abstract Generalizations of the linear score function, a well-known concept in theoretical statistics,

More information

PARABOLIC LIMIT AND STABILITY OF THE VLASOV FOKKER PLANCK SYSTEM

PARABOLIC LIMIT AND STABILITY OF THE VLASOV FOKKER PLANCK SYSTEM Mathematical Models and Methods in Applied Sciences Vol. 10, No. 7 (2000 1027 1045 c World Scientific Publishing Company PARABOLIC LIMIT AND STABILITY OF THE VLASOV FOKKER PLANCK SYSTEM F. POUPAUD Laboratoire

More information

YAN GUO, JUHI JANG, AND NING JIANG

YAN GUO, JUHI JANG, AND NING JIANG LOCAL HILBERT EXPANSION FOR THE BOLTZMANN EQUATION YAN GUO, JUHI JANG, AND NING JIANG Abstract. We revisit the classical ork of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using

More information

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN

ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN ALMOST EXPONENTIAL DECAY NEAR MAXWELLIAN ROBERT M STRAIN AND YAN GUO Abstract By direct interpolation of a family of smooth energy estimates for solutions near Maxwellian equilibrium and in a periodic

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS

EXISTENCE OF SOLUTIONS FOR CROSS CRITICAL EXPONENTIAL N-LAPLACIAN SYSTEMS Electronic Journal of Differential Equations, Vol. 2014 (2014), o. 28, pp. 1 10. ISS: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu EXISTECE OF SOLUTIOS

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Stochastic equations for thermodynamics

Stochastic equations for thermodynamics J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

More information

GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS

GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS GENERALIZED FRONTS FOR ONE-DIMENSIONAL REACTION-DIFFUSION EQUATIONS ANTOINE MELLET, JEAN-MICHEL ROQUEJOFFRE, AND YANNICK SIRE Abstract. For a class of one-dimensional reaction-diffusion equations, we establish

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Linear Boltzmann Equation and Fractional Diffusion

Linear Boltzmann Equation and Fractional Diffusion Linear Boltzmann Equation and Fractional Diffusion CMLS, École polytechnique, CNRS, Université Paris-Saclay Kinetic Equations: Modeling, Analysis and Numerics University of Texas at Austin, September 18-22

More information

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½

Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ University of Pennsylvania ScholarlyCommons Statistics Papers Wharton Faculty Research 1998 Asymptotic Nonequivalence of Nonparametric Experiments When the Smoothness Index is ½ Lawrence D. Brown University

More information

LARGE TIME BEHAVIOR OF THE RELATIVISTIC VLASOV MAXWELL SYSTEM IN LOW SPACE DIMENSION

LARGE TIME BEHAVIOR OF THE RELATIVISTIC VLASOV MAXWELL SYSTEM IN LOW SPACE DIMENSION Differential Integral Equations Volume 3, Numbers 1- (1), 61 77 LARGE TIME BEHAVIOR OF THE RELATIVISTIC VLASOV MAXWELL SYSTEM IN LOW SPACE DIMENSION Robert Glassey Department of Mathematics, Indiana University

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

An Inverse Problem for Gibbs Fields with Hard Core Potential

An Inverse Problem for Gibbs Fields with Hard Core Potential An Inverse Problem for Gibbs Fields with Hard Core Potential Leonid Koralov Department of Mathematics University of Maryland College Park, MD 20742-4015 koralov@math.umd.edu Abstract It is well known that

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

Step Bunching in Epitaxial Growth with Elasticity Effects

Step Bunching in Epitaxial Growth with Elasticity Effects Step Bunching in Epitaxial Growth with Elasticity Effects Tao Luo Department of Mathematics The Hong Kong University of Science and Technology joint work with Yang Xiang, Aaron Yip 05 Jan 2017 Tao Luo

More information

Presenter: Noriyoshi Fukaya

Presenter: Noriyoshi Fukaya Y. Martel, F. Merle, and T.-P. Tsai, Stability and Asymptotic Stability in the Energy Space of the Sum of N Solitons for Subcritical gkdv Equations, Comm. Math. Phys. 31 (00), 347-373. Presenter: Noriyoshi

More information

12. MHD Approximation.

12. MHD Approximation. Phys780: Plasma Physics Lecture 12. MHD approximation. 1 12. MHD Approximation. ([3], p. 169-183) The kinetic equation for the distribution function f( v, r, t) provides the most complete and universal

More information

A global solution curve for a class of free boundary value problems arising in plasma physics

A global solution curve for a class of free boundary value problems arising in plasma physics A global solution curve for a class of free boundary value problems arising in plasma physics Philip Korman epartment of Mathematical Sciences University of Cincinnati Cincinnati Ohio 4522-0025 Abstract

More information

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Dong Li a,1 a School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 854,

More information

Controlled Diffusions and Hamilton-Jacobi Bellman Equations

Controlled Diffusions and Hamilton-Jacobi Bellman Equations Controlled Diffusions and Hamilton-Jacobi Bellman Equations Emo Todorov Applied Mathematics and Computer Science & Engineering University of Washington Winter 2014 Emo Todorov (UW) AMATH/CSE 579, Winter

More information

On the Optimal Choice of Coefficients in a Truncated Wild Sum and Approximate Solutions for the Kac Equation

On the Optimal Choice of Coefficients in a Truncated Wild Sum and Approximate Solutions for the Kac Equation Journal of Statistical Physics, Vol. 109, Nos. 1/2, October 2002 ( 2002) On the Optimal Choice of Coefficients in a Truncated Wild Sum and Approximate Solutions for the Kac Equation Eric A. Carlen 1 and

More information

EDP with strong anisotropy : transport, heat, waves equations

EDP with strong anisotropy : transport, heat, waves equations EDP with strong anisotropy : transport, heat, waves equations Mihaï BOSTAN University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Nachos team INRIA Sophia Antipolis, 3/07/2017 Main goals Effective

More information

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions Vladislav A. Panferov Department of Mathematics, Chalmers University of Technology and Göteborg

More information

Global Weak Solution to the Boltzmann-Enskog equation

Global Weak Solution to the Boltzmann-Enskog equation Global Weak Solution to the Boltzmann-Enskog equation Seung-Yeal Ha 1 and Se Eun Noh 2 1) Department of Mathematical Science, Seoul National University, Seoul 151-742, KOREA 2) Department of Mathematical

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

Downloaded 08/07/18 to Redistribution subject to SIAM license or copyright; see

Downloaded 08/07/18 to Redistribution subject to SIAM license or copyright; see SIAM J. MATH. ANAL. Vol. 5, No. 4, pp. 43 4326 c 28 Society for Industrial and Applied Mathematics Downloaded 8/7/8 to 3.25.254.96. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

More information

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY

LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY PORTUGALIAE MATHEMATICA Vol. 56 Fasc. 2 1999 LINEAR FLOW IN POROUS MEDIA WITH DOUBLE PERIODICITY R. Bunoiu and J. Saint Jean Paulin Abstract: We study the classical steady Stokes equations with homogeneous

More information

BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY

BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF TYPE WITH ARBITRARY POSITIVE INITIAL ENERGY Electronic Journal of Differential Equations, Vol. 6 6, No. 33, pp. 8. ISSN: 7-669. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu BLOW-UP OF SOLUTIONS FOR VISCOELASTIC EQUATIONS OF KIRCHHOFF

More information

GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS

GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS GLOBAL WEAK SOLUTION TO THE MAGNETOHYDRODYNAMIC AND VLASOV EQUATIONS ROBIN MING CHEN, JILONG HU, AND DEHUA WANG Abstract. An initial-boundary value problem for the fluid-particle system of the inhomogeneous

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry

Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry 1 Entropy Methods for Reaction-Diffusion Equations with Degenerate Diffusion Arising in Reversible Chemistry L. Desvillettes CMLA, ENS Cachan, IUF & CNRS, PRES UniverSud, 61, avenue du Président Wilson,

More information

The Schrödinger equation with spatial white noise potential

The Schrödinger equation with spatial white noise potential The Schrödinger equation with spatial white noise potential Arnaud Debussche IRMAR, ENS Rennes, UBL, CNRS Hendrik Weber University of Warwick Abstract We consider the linear and nonlinear Schrödinger equation

More information

Laplace s Equation. Chapter Mean Value Formulas

Laplace s Equation. Chapter Mean Value Formulas Chapter 1 Laplace s Equation Let be an open set in R n. A function u C 2 () is called harmonic in if it satisfies Laplace s equation n (1.1) u := D ii u = 0 in. i=1 A function u C 2 () is called subharmonic

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER

QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER QUANTUM MODELS FOR SEMICONDUCTORS AND NONLINEAR DIFFUSION EQUATIONS OF FOURTH ORDER MARIA PIA GUALDANI The modern computer and telecommunication industry relies heavily on the use of semiconductor devices.

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY

WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL FLUID EQUATIONS WITH DEGENERACY ON THE BOUNDARY Electronic Journal of Differential Equations, Vol. 2017 (2017), No. 13, pp. 1 15. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu WELL-POSEDNESS OF WEAK SOLUTIONS TO ELECTRORHEOLOGICAL

More information

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX

COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX COMMENT ON : HYPERCONTRACTIVITY OF HAMILTON-JACOBI EQUATIONS, BY S. BOBKOV, I. GENTIL AND M. LEDOUX F. OTTO AND C. VILLANI In their remarkable work [], Bobkov, Gentil and Ledoux improve, generalize and

More information

HIGH FRICTION LIMIT OF THE KRAMERS EQUATION : THE MULTIPLE TIME SCALE APPROACH. Lydéric Bocquet

HIGH FRICTION LIMIT OF THE KRAMERS EQUATION : THE MULTIPLE TIME SCALE APPROACH. Lydéric Bocquet HIGH FRICTION LIMIT OF THE KRAMERS EQUATION : THE MULTIPLE TIME SCALE APPROACH Lydéric Bocquet arxiv:cond-mat/9605186v1 30 May 1996 Laboratoire de Physique, Ecole Normale Supérieure de Lyon (URA CNRS 1325),

More information

Γ-convergence of functionals on divergence-free fields

Γ-convergence of functionals on divergence-free fields Γ-convergence of functionals on divergence-free fields N. Ansini Section de Mathématiques EPFL 05 Lausanne Switzerland A. Garroni Dip. di Matematica Univ. di Roma La Sapienza P.le A. Moro 2 0085 Rome,

More information

Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes system of equations

Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes system of equations Asymptotic analysis for a Vlasov-Fokker-Planck/Compressible Navier-Stokes system of equations A.Mellet and A.Vasseur Department of Mathematics University of Texas at Austin Abstract This article is devoted

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

Moments conservation in adaptive Vlasov solver

Moments conservation in adaptive Vlasov solver 12 Moments conservation in adaptive Vlasov solver M. Gutnic a,c, M. Haefele b,c and E. Sonnendrücker a,c a IRMA, Université Louis Pasteur, Strasbourg, France. b LSIIT, Université Louis Pasteur, Strasbourg,

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

NONLOCAL ELLIPTIC PROBLEMS

NONLOCAL ELLIPTIC PROBLEMS EVOLUTION EQUATIONS: EXISTENCE, REGULARITY AND SINGULARITIES BANACH CENTER PUBLICATIONS, VOLUME 52 INSTITUTE OF MATHEMATICS POLISH ACADEMY OF SCIENCES WARSZAWA 2 NONLOCAL ELLIPTIC PROBLEMS ANDRZE J KR

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation:

The Dirichlet s P rinciple. In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: Oct. 1 The Dirichlet s P rinciple In this lecture we discuss an alternative formulation of the Dirichlet problem for the Laplace equation: 1. Dirichlet s Principle. u = in, u = g on. ( 1 ) If we multiply

More information

arxiv: v2 [math.fa] 17 May 2016

arxiv: v2 [math.fa] 17 May 2016 ESTIMATES ON SINGULAR VALUES OF FUNCTIONS OF PERTURBED OPERATORS arxiv:1605.03931v2 [math.fa] 17 May 2016 QINBO LIU DEPARTMENT OF MATHEMATICS, MICHIGAN STATE UNIVERSITY EAST LANSING, MI 48824, USA Abstract.

More information

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent

Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent Non-homogeneous semilinear elliptic equations involving critical Sobolev exponent Yūki Naito a and Tokushi Sato b a Department of Mathematics, Ehime University, Matsuyama 790-8577, Japan b Mathematical

More information

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence

CONVERGENCE THEORY. G. ALLAIRE CMAP, Ecole Polytechnique. 1. Maximum principle. 2. Oscillating test function. 3. Two-scale convergence 1 CONVERGENCE THEOR G. ALLAIRE CMAP, Ecole Polytechnique 1. Maximum principle 2. Oscillating test function 3. Two-scale convergence 4. Application to homogenization 5. General theory H-convergence) 6.

More information

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method Alexis Vasseur, and Yi Wang Department of Mathematics, University of Texas

More information

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN

STOKES PROBLEM WITH SEVERAL TYPES OF BOUNDARY CONDITIONS IN AN EXTERIOR DOMAIN Electronic Journal of Differential Equations, Vol. 2013 2013, No. 196, pp. 1 28. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu STOKES PROBLEM

More information

Small BGK waves and nonlinear Landau damping (higher dimensions)

Small BGK waves and nonlinear Landau damping (higher dimensions) Small BGK waves and nonlinear Landau damping higher dimensions Zhiwu Lin and Chongchun Zeng School of Mathematics Georgia Institute of Technology Atlanta, GA, USA Abstract Consider Vlasov-Poisson system

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Smoluchowski Navier-Stokes Systems

Smoluchowski Navier-Stokes Systems Smoluchowski Navier-Stokes Systems Peter Constantin Mathematics, U. of Chicago CSCAMM, April 18, 2007 Outline: 1. Navier-Stokes 2. Onsager and Smoluchowski 3. Coupled System Fluid: Navier Stokes Equation

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

New Discretizations of Turbulent Flow Problems

New Discretizations of Turbulent Flow Problems New Discretizations of Turbulent Flow Problems Carolina Cardoso Manica and Songul Kaya Merdan Abstract A suitable discretization for the Zeroth Order Model in Large Eddy Simulation of turbulent flows is

More information

ON PARABOLIC HARNACK INEQUALITY

ON PARABOLIC HARNACK INEQUALITY ON PARABOLIC HARNACK INEQUALITY JIAXIN HU Abstract. We show that the parabolic Harnack inequality is equivalent to the near-diagonal lower bound of the Dirichlet heat kernel on any ball in a metric measure-energy

More information