Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Size: px
Start display at page:

Download "Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations"

Transcription

1 Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR. CSCAMM, University of Maryland College Park 1 / 39

2 Outline Background: numerical s for equations Semi-Lagragian finite difference s for linear advection equations Ongoing and future work / 39

3 VP system The Vlasov-Poisson (VP) system, f t + p xf + E(t, x) p f = 0, (1) E(t, x) = x φ(t, x), x φ(t, x) = ρ(t, x). () f (t, x, p): the probability of finding a particle with velocity p at position x at time t. ρ(t, x) = f (t, x, p)dp - 1: charge density 3 / 39

4 Numerical approach: Lagrangian vs. Eulerian vs. semi-lagrangian Lagrangian: tracking a finite number of macro-particles. e.g., PIC (Particle In Cell) dx dt = v, dv dt = E (3) Eulerian: fixed numerical mesh e.g., finite difference WENO, finite volume, finite element, spectral. Semi-Lagrangian: e.g., finite difference, finite volume, finite element, spectral. 4 / 39

5 Strang splitting for solving the Vlasov equation f t + v xf + E(t, x) v f = 0, Nonlinear Vlasov eqation a sequence of linear equations. 1-D in x and 1-D in v: f t + v f x = 0, (4) f t + E(t, x) f v = 0. (5) 5 / 39

6 SL schemes 1 Solution space: point values, or cell averages, or piecewise polynomials living on fixed Eulerian grid. Evolution: tracking characteristics backward in time. 3 Project the evolved solution back onto the solution space. Remark: The only error in time comes from tracking characteristics backward in time. The scheme is not subject to CFL time step restriction. 6 / 39

7 Various formulations of difference schemes difference (point values) Scheme I: advective scheme the solution is evolved along characteristics (in Lagrangian spirit) approximating advective form of equation f t + af x = 0. Scheme II: convective scheme the solution is evolved over fixed point (in Eulerian spirit) approximating conservative form of equation f t + (af ) x = 0. a being a constant, with possible extension to a = a(x, t) (relativistic Vlasov equation). 7 / 39

8 Scheme I: advective scheme f n+1 i = f (x i, t n+1 ) = f (x i, t n ) = f (x i ξ 0 x, t n ), ξ 0 = a t x When ξ 0 [0, 1 ] t n+1 t n x 0 x i x i 1 x i x i+1 x i+ x N ξ 0 [0, 1 ] 8 / 39

9 Third order example f n+1 i = fi n + ( 1 6 f i n + fi 1 n 1 f i n 1 3 f i+1)ξ n 0 + ( 1 f i 1 n fi n + 1 f i+1)ξ n 0 + ( 1 6 f i n 1 f i 1 n + 1 f i n 1 6 f i+1)ξ n 0, 3 (6) Method 1: apply WENO interpolation on (6). No mass conservation. 9 / 39

10 Matrix vector form f n+1 i with matrix A L 3 = = = f n i + ξ 0 (f n i, f n i 1, f n i, f n i+1) A L 3 (1, ξ 0, ξ 0), (7) 1/6 0 1/6 1 1/ 1/ 1/ 1 1/ 1/3 1/ 1/6 1/6 0 1/6 5/6 1/ 1/3 1/3 1/ 1/ /6 0 1/6 5/6 1/ 1/3 1/3 1/ 1/6. 10 / 39

11 Conservative formulation Rewrite the advective scheme into a conservative form with f n+1 i = fi n ξ 0 ((fi 1, n fi n, fi+1) n C3 L (1, ξ 0, ξ0) (fi, n fi 1, n fi n ) C3 L (1, ξ 0, ξ0) ) = f n i ξ 0 (ˆf n i+1/ ˆf n i 1/ ) 1 1 C3 L = Method : apply WENO reconstructions on flux functions ˆf n i+1/ The scheme is locally conservative. However, such splitting can NOT be generalized to equations with variable coefficients.. 11 / 39

12 Scheme II: conservative scheme Integrating the conservative form of PDE over [t n, t n+1 ] at x i gives f n+1 i = fi n (. = fi n f t + (af ) x = 0, t n+1 t n F x x=xi? = fi n 1 x ( ˆF i+ 1 af (x, τ)dτ) x x=xi ˆF i 1 ) + O( x k ) where F(x) = t n+1 t n af (x, τ)dτ, and ˆF i± 1 are numerical fluxes. 1 / 39

13 F(x) t n+1 F(x i ) = af (x i, τ)dτ = t n xi x i f (ξ, t n )dξ, by applying the Divergence Theorem on Ω (f t + (af ) x )dx = 0. t n+1 t n x 0 x i x i 1 x i x i+1 x i+ x N 13 / 39

14 F(x) F(x i ) = t n+1 t n af (x i, τ)dτ = xi x i f (ξ, t n )dξ, by applying the Divergence Theorem on Ω (f t + (af ) x )dx = 0. t n+1 Ω t n x 0 x i x i 1 x i x i+1 x i+ x N xi 13 / 39

15 ˆF i± 1 Let H(x) to be a function s.t. then F(x) = 1 x+ x H(ξ)dξ x x x F x x=xi = 1 x (H(x i+ 1 ) H(x i 1 )). Let numerical fluxes ˆF i± 1 = H(x i± 1 ). 14 / 39

16 f n+1 i = fi n (. = fi n F x t n+1 t n A first order scheme af (x, τ)dτ) x = fi n 1 x (F(x i) F(x i 1 )), if a > 0 = fi n 1 xi xi 1 x ( f (ξ, t n )dξ f (ξ, t n )dξ) x i x i 1 Remark. When a is a constant and cfl < 1, the scheme reduces to f n+1 i = f n i a t x (f i n fi 1) n which is the first order upwind scheme. 15 / 39

17 High order WENO reconstructions High order WENO reconstructions are applied in the following reconstructions { } N xi { } {f (x i, t n )} N WENO i=1 f (ξ, t n WENO N )dξ ˆF i+ 1 x i i=1 Computational expensive: two weno reconstruction procedures The reconstruction stencil is widely spread (not compact), leading to instability of algorithm. i=1 16 / 39

18 {f (x i, t n )} N i=1 {f (x i, t n )} N i=1 WENO { xi f (ξ, t n )dξ x i WENO/ENO } N i=1 WENO { ˆF i+ 1 { ˆF i+ 1 } N } N i=1 i=1 17 / 39

19 Third order WENO reconstruction when a = 1, dt < dx. Consider two substencils S 1 = {x i 1, x i }, S = {x i, x i+1 }. Let ξ = dt dx, the third order reconstruction from the three point stencil {x i 1, x i, x i+1 } ˆF i+ 1 = γ 1 ˆF (1) + γ i+ 1 ˆF () i+ 1 where the linear weights γ 1 = 1 ξ 3, γ = + ξ 3, 18 / 39

20 and ˆF (1) i+ 1 ˆF () i+ 1 = ( ( 3 ξ + 1 ξ )f n i = (( 1 ξ + 1 ξ )f n i + ( 1 ξ + 1 ξ )f n i 1)dx ( 1 ξ + 1 ξ )f n i+1)dx Idea of WENO: adjust the linear weighting γ i to a nonlinear weighting w i, such that w i is very close to γ i, in the region of smooth structures, w i weights little on a non-smooth sub-stencil. 19 / 39

21 Smoothness indicator: Nonlinear weights β 1 = (f n i 1 f n i ), β = (f n i f n i+1) w 1 = γ 1 /(ɛ + β 1 ), w = γ /(ɛ + β ) Normalized nonlinear weights w i : w 1 = w 1 /( w 1 + w ), w = w /( w 1 + w ) 0 / 39

22 Method 3 of scheme II 1 Reconstruction numerical fluxes ˆF i± 1 reconstruction of {fi n } N i=1 f n+1 i = fi n 1 x ( ˆF i+ 1 from WENO/ENO ˆF i 1 ), Compare with the of line approach (Runge Kutta time discretization), the time integration of the PDE here is exact. The scheme can be extended to accommodate extra large time step evolution and to the case of variable coefficient a(x, t). 1 / 39

23 Method 1 & : Approximates the advective form of PDE Frame of reference: Lagrangian Method is the conservative formulation of Method 1 for equations with constant coefficients Method 1 can be generalized to equations with variable coefficients Method 3: Approximates the conservative form of PDE Frame of reference: Eulerian conservative scheme extends to equations with variable coefficients / 39

24 Numerical s Method 1,, 3 with fifth order WENO reconstruction Linear advection equation Rigid body rotation Vlasov Poisson system 3 / 39

25 Linear transport: u t + u x + u y = 0 Table: Order of accuracy with u(x, y, t = 0) = sin(x + y) at T = 0. dt = 1.1dx = 1.1dy. 1 3 mesh error order error order error order E-4 8.8E E E E E E E E E E E / 39

26 Rigid body rotation: u t yu x + xu y = 0 Figure: Initial profile and numerical solution of 1 from the numerical mesh , dt = 1.1dx = 1.1dy at T = 1π 5 / 39

27 Rigid body rotation: u t yu x + xu y = 0 Figure: Method and 3 with the numerical mesh , dt = 1.1dx = 1.1dy at T = 1π. 6 / 39

28 Rigid body rotation: u t yu x + xu y = 0 Figure: Method 1 (left) and 3 (right). 7 / 39

29 Rigid body rotation: u t yu x + xu y = 0 Figure: Method 1 (left) and 3 (right). 8 / 39

30 Landau damping Consider the VP system with initial condition, f (x, v, t = 0) = 1 (1 + αcos(kx))exp( v ), (8) π 9 / 39

31 Weak Landau damping: α = 0.01, k = Figure: Time evolution of L norm of electric field. 30 / 39

32 Weak Landau damping (cont.) Figure: Time evolution of L 1 (upper left) and L (upper right) norm, discrete energy (lower left), entropy (lower right). 31 / 39

33 Strong Landau damping: α = 0.5, k = Figure: Time evolution of the L norm of the electric field. 3 / 39

34 Strong Landau damping (cont.) Figure: Time evolution of L 1 (upper left) and L (upper right) norm, discrete energy (lower left), entropy (lower right). 33 / 39

35 Two-stream instability Consider the symmetric two stream instability, the VP system with initial condition f (x, v, t = 0) = 7 π (1 + 5v )(1 + α((cos(kx) +cos(3kx))/1. + cos(kx))exp( v ), with α = 0.01, k = 0.5 and the length of domain in x direction L = π k. 34 / 39

36 Figure: Two stream instability T = 53. The numerical solution of 1 (left) and Method 3 (right) with the numerical mesh / 39

37 Figure: Third order semi-lagrangian WENO. Two stream instability T = 53. The numerical mesh is (left) and (right). 36 / 39

38 Figure: Time development of L 1 (upper left) and L (upper right) norm, discrete energy (lower left), entropy (lower right). 37 / 39

39 Ongoing and future work Algorithm: of variable coefficients Truely multi-dimensional formulation of semi-lagrangian scheme evolving point values. Application advection in incompressible flow relativistic Vlasov equations 38 / 39

40 THANK YOU! 39 / 39

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation Numerical Analysis and Scientific Computing Preprint Seria Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation W. Guo J. Qiu Preprint #21 Department of Mathematics University

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

Weighted ENO Schemes

Weighted ENO Schemes Xiaolei Chen Advisor: Prof. Xiaolin Li Department of Applied Mathematics and Statistics Stony Brook University, The State University of New York February 7, 014 1 3 Mapped WENO-Z Scheme 1D Scalar Hyperbolic

More information

A semi-lagrangian finite difference WENO scheme for scalar nonlinear conservation laws

A semi-lagrangian finite difference WENO scheme for scalar nonlinear conservation laws A semi-lagrangian finite difference WENO scheme for scalar nonlinear conservation laws Chieh-Sen Huang a,, Todd Arbogast b,, Chen-Hui Hung c a Department of Applied Mathematics, National Sun Yat-sen University,

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Chapter 17. Finite Volume Method The partial differential equation

Chapter 17. Finite Volume Method The partial differential equation Chapter 7 Finite Volume Method. This chapter focusses on introducing finite volume method for the solution of partial differential equations. These methods have gained wide-spread acceptance in recent

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

ENO and WENO schemes. Further topics and time Integration

ENO and WENO schemes. Further topics and time Integration ENO and WENO schemes. Further topics and time Integration Tefa Kaisara CASA Seminar 29 November, 2006 Outline 1 Short review ENO/WENO 2 Further topics Subcell resolution Other building blocks 3 Time Integration

More information

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws

A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws A Central Compact-Reconstruction WENO Method for Hyperbolic Conservation Laws Kilian Cooley 1 Prof. James Baeder 2 1 Department of Mathematics, University of Maryland - College Park 2 Department of Aerospace

More information

Fourier analysis for discontinuous Galerkin and related methods. Abstract

Fourier analysis for discontinuous Galerkin and related methods. Abstract Fourier analysis for discontinuous Galerkin and related methods Mengping Zhang and Chi-Wang Shu Abstract In this paper we review a series of recent work on using a Fourier analysis technique to study the

More information

Positivity-preserving high order schemes for convection dominated equations

Positivity-preserving high order schemes for convection dominated equations Positivity-preserving high order schemes for convection dominated equations Chi-Wang Shu Division of Applied Mathematics Brown University Joint work with Xiangxiong Zhang; Yinhua Xia; Yulong Xing; Cheng

More information

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu

Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Bound-preserving high order schemes in computational fluid dynamics Chi-Wang Shu Division of Applied Mathematics Brown University Outline Introduction Maximum-principle-preserving for scalar conservation

More information

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations

Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations mathematics Article Krylov Implicit Integration Factor Methods for Semilinear Fourth-Order Equations Michael Machen and Yong-Tao Zhang * Department of Applied and Computational Mathematics and Statistics,

More information

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws

Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Hierarchical Reconstruction with up to Second Degree Remainder for Solving Nonlinear Conservation Laws Dedicated to Todd F. Dupont on the occasion of his 65th birthday Yingjie Liu, Chi-Wang Shu and Zhiliang

More information

On the positivity of linear weights in WENO approximations. Abstract

On the positivity of linear weights in WENO approximations. Abstract On the positivity of linear weights in WENO approximations Yuanyuan Liu, Chi-Wang Shu and Mengping Zhang 3 Abstract High order accurate weighted essentially non-oscillatory (WENO) schemes have been used

More information

An Improved Non-linear Weights for Seventh-Order WENO Scheme

An Improved Non-linear Weights for Seventh-Order WENO Scheme An Improved Non-linear Weights for Seventh-Order WENO Scheme arxiv:6.06755v [math.na] Nov 06 Samala Rathan, G Naga Raju Department of Mathematics, Visvesvaraya National Institute of Technology, Nagpur,

More information

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws

Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws NASA/CR-97-0653 ICASE Report No. 97-65 Essentially Non-Oscillatory and Weighted Essentially Non-Oscillatory Schemes for Hyperbolic Conservation Laws Chi-Wang Shu Brown University Institute for Computer

More information

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws

ICES REPORT A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws ICES REPORT 7- August 7 A Multilevel-WENO Technique for Solving Nonlinear Conservation Laws by Todd Arbogast, Chieh-Sen Huang, and Xikai Zhao The Institute for Computational Engineering and Sciences The

More information

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations

A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations A Bound-Preserving Fourth Order Compact Finite Difference Scheme for Scalar Convection Diffusion Equations Hao Li Math Dept, Purdue Univeristy Ocean University of China, December, 2017 Joint work with

More information

Multi-water-bag model and method of moments for Vlasov

Multi-water-bag model and method of moments for Vlasov and method of moments for the Vlasov equation 1, Philippe Helluy 2, Nicolas Besse 3 FVCA 2011, Praha, June 6. 1 INRIA Nancy - Grand Est & University of Strasbourg - IRMA crestetto@math.unistra.fr (PhD

More information

A Survey of Computational High Frequency Wave Propagation II. Olof Runborg NADA, KTH

A Survey of Computational High Frequency Wave Propagation II. Olof Runborg NADA, KTH A Survey of Computational High Frequency Wave Propagation II Olof Runborg NADA, KTH High Frequency Wave Propagation CSCAMM, September 19-22, 2005 Numerical methods Direct methods Wave equation (time domain)

More information

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws

A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A New Fourth-Order Non-Oscillatory Central Scheme For Hyperbolic Conservation Laws A. A. I. Peer a,, A. Gopaul a, M. Z. Dauhoo a, M. Bhuruth a, a Department of Mathematics, University of Mauritius, Reduit,

More information

A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS WITH HIGHER ORDER DERIVATIVES

A DISCONTINUOUS GALERKIN FINITE ELEMENT METHOD FOR TIME DEPENDENT PARTIAL DIFFERENTIAL EQUATIONS WITH HIGHER ORDER DERIVATIVES MATHEMATCS OF COMPUTATON Volume 77, Number 6, April 008, Pages 699 730 S 005-5718(07)0045-5 Article electronically published on September 6, 007 A DSCONTNUOUS GALERKN FNTE ELEMENT METHOD FOR TME DEPENDENT

More information

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1

Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations 1 Finite difference Hermite WENO schemes for the Hamilton-Jacobi equations Feng Zheng, Chi-Wang Shu 3 and Jianian Qiu 4 Abstract In this paper, a new type of finite difference Hermite weighted essentially

More information

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation

Chapter 3. Finite Difference Methods for Hyperbolic Equations Introduction Linear convection 1-D wave equation Chapter 3. Finite Difference Methods for Hyperbolic Equations 3.1. Introduction Most hyperbolic problems involve the transport of fluid properties. In the equations of motion, the term describing the transport

More information

DISCONTINOUS GALERKIN METHODS FOR VLASOV MODELS OF PLASMA

DISCONTINOUS GALERKIN METHODS FOR VLASOV MODELS OF PLASMA DISCONTINOUS GALERKIN METHODS FOR VLASOV MODELS OF PLASMA By David C. Seal A dissertation submitted in partial fulfillment of the requirements for the degree of Doctor of Philosophy (Mathematics) at the

More information

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract

Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of. Conservation Laws 1. Abstract Inverse Lax-Wendroff Procedure for Numerical Boundary Conditions of Conservation Laws Sirui Tan and Chi-Wang Shu 3 Abstract We develop a high order finite difference numerical boundary condition for solving

More information

A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws

A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws A re-averaged WENO reconstruction and a third order CWENO scheme for hyperbolic conservation laws Chieh-Sen Huang a,, Todd Arbogast b,, Chen-Hui Hung c,3 a Department of Applied Mathematics and National

More information

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows.

A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows. A parametrized maximum principle preserving flux limiter for finite difference RK-WENO schemes with applications in incompressible flows Tao Xiong Jing-ei Qiu Zhengfu Xu 3 Abstract In Xu [] a class of

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

A numerical study of SSP time integration methods for hyperbolic conservation laws

A numerical study of SSP time integration methods for hyperbolic conservation laws MATHEMATICAL COMMUNICATIONS 613 Math. Commun., Vol. 15, No., pp. 613-633 (010) A numerical study of SSP time integration methods for hyperbolic conservation laws Nelida Črnjarić Žic1,, Bojan Crnković 1

More information

Mixed semi-lagrangian/finite difference methods for plasma simulations

Mixed semi-lagrangian/finite difference methods for plasma simulations Mixed semi-lagrangian/finite difference methods for plasma simulations Francis Filbet, Chang Yang To cite this version: Francis Filbet, Chang Yang. Mixed semi-lagrangian/finite difference methods for plasma

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract

Improvement of convergence to steady state solutions of Euler equations with. the WENO schemes. Abstract Improvement of convergence to steady state solutions of Euler equations with the WENO schemes Shuhai Zhang, Shufen Jiang and Chi-Wang Shu 3 Abstract The convergence to steady state solutions of the Euler

More information

30 crete maximum principle, which all imply the bound-preserving property. But most

30 crete maximum principle, which all imply the bound-preserving property. But most 3 4 7 8 9 3 4 7 A HIGH ORDER ACCURATE BOUND-PRESERVING COMPACT FINITE DIFFERENCE SCHEME FOR SCALAR CONVECTION DIFFUSION EQUATIONS HAO LI, SHUSEN XIE, AND XIANGXIONG ZHANG Abstract We show that the classical

More information

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods

Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Weighted Essentially Non-Oscillatory limiters for Runge-Kutta Discontinuous Galerkin Methods Jianxian Qiu School of Mathematical Science Xiamen University jxqiu@xmu.edu.cn http://ccam.xmu.edu.cn/teacher/jxqiu

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases

Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases Erwan Deriaz Fusion Plasma Team Institut Jean Lamour (Nancy), CNRS / Université de Lorraine VLASIX

More information

Benchmarks in Computational Plasma Physics

Benchmarks in Computational Plasma Physics Benchmarks in Computational Plasma Physics P. Londrillo INAF, Bologna, Italie S. Landi Università di Firenze, Italie What you compute when you do computations of the Vlasov equation? Overview A short review

More information

Recovery of high order accuracy in radial basis function approximation for discontinuous problems

Recovery of high order accuracy in radial basis function approximation for discontinuous problems Recovery of high order accuracy in radial basis function approximation for discontinuous problems Chris L. Bresten, Sigal Gottlieb 1, Daniel Higgs, Jae-Hun Jung* 2 Abstract Radial basis function(rbf) methods

More information

Solving the Euler Equations!

Solving the Euler Equations! http://www.nd.edu/~gtryggva/cfd-course/! Solving the Euler Equations! Grétar Tryggvason! Spring 0! The Euler equations for D flow:! where! Define! Ideal Gas:! ρ ρu ρu + ρu + p = 0 t x ( / ) ρe ρu E + p

More information

Computational Methods in Plasma Physics

Computational Methods in Plasma Physics Computational Methods in Plasma Physics Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Purpose of Talk Describe use of numerical methods to solve simple problem in plasma

More information

Well-balanced DG scheme for Euler equations with gravity

Well-balanced DG scheme for Euler equations with gravity Well-balanced DG scheme for Euler equations with gravity Praveen Chandrashekar praveen@tifrbng.res.in Center for Applicable Mathematics Tata Institute of Fundamental Research Bangalore 560065 Higher Order

More information

Fifth order multi-moment WENO schemes for hyperbolic conservation laws

Fifth order multi-moment WENO schemes for hyperbolic conservation laws J. Sci. Comput. manuscript No. (will be inserted by the editor) Fifth order multi-moment WENO schemes for hyperbolic conservation laws Chieh-Sen Huang Feng Xiao Todd Arbogast Received: May 24 / Accepted:

More information

Physics-Based Animation

Physics-Based Animation CSCI 5980/8980: Special Topics in Computer Science Physics-Based Animation 13 Fluid simulation with grids October 20, 2015 Today Presentation schedule Fluid simulation with grids Course feedback survey

More information

Moments conservation in adaptive Vlasov solver

Moments conservation in adaptive Vlasov solver 12 Moments conservation in adaptive Vlasov solver M. Gutnic a,c, M. Haefele b,c and E. Sonnendrücker a,c a IRMA, Université Louis Pasteur, Strasbourg, France. b LSIIT, Université Louis Pasteur, Strasbourg,

More information

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation

A local-structure-preserving local discontinuous Galerkin method for the Laplace equation A local-structure-preserving local discontinuous Galerkin method for the Laplace equation Fengyan Li 1 and Chi-Wang Shu 2 Abstract In this paper, we present a local-structure-preserving local discontinuous

More information

An Eulerian-Lagrangian WENO Scheme for Nonlinear Conservation Laws

An Eulerian-Lagrangian WENO Scheme for Nonlinear Conservation Laws An Eulerian-Lagrangian WENO Scheme for Nonlinear Conservation Laws Chieh-Sen Huang a,, Todd Arbogast b, a Department of Applied Mathematics, National Sun Yat-sen University, Kaohsiung 84, Taiwan, R.O.C.

More information

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement

Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Numerical Solutions for Hyperbolic Systems of Conservation Laws: from Godunov Method to Adaptive Mesh Refinement Romain Teyssier CEA Saclay Romain Teyssier 1 Outline - Euler equations, MHD, waves, hyperbolic

More information

1 Introduction and Notations he simplest model to describe a hot dilute electrons moving in a fixed ion background is the following one dimensional Vl

1 Introduction and Notations he simplest model to describe a hot dilute electrons moving in a fixed ion background is the following one dimensional Vl Numerical Study on Landau Damping ie Zhou 1 School of Mathematical Sciences Peking University, Beijing 100871, China Yan Guo 2 Lefschetz Center for Dynamical Systems Division of Applied Mathematics Brown

More information

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws

A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws A Fourth-Order Central Runge-Kutta Scheme for Hyperbolic Conservation Laws Mehdi Dehghan, Rooholah Jazlanian Department of Applied Mathematics, Faculty of Mathematics and Computer Science, Amirkabir University

More information

FDM for parabolic equations

FDM for parabolic equations FDM for parabolic equations Consider the heat equation where Well-posed problem Existence & Uniqueness Mass & Energy decreasing FDM for parabolic equations CNFD Crank-Nicolson + 2 nd order finite difference

More information

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3 ESAIM: PROCEEDINGS AND SURVEYS, September 014, Vol. 45, p. 379-389 J.-S. Dhersin, Editor HYPERBOLIC APPROXIMATION OF THE FOURIER TRANSFORMED VLASOV EQUATION Nhung Pham 1, Philippe Helluy and Laurent Navoret

More information

Numerical Smoothness and PDE Error Analysis

Numerical Smoothness and PDE Error Analysis Numerical Smoothness and PDE Error Analysis GLSIAM 2013 Central Michigan University Tong Sun Bowling Green State University April 20, 2013 Table of contents Why consider Numerical Smoothness? What is Numerical

More information

Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas

Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas Sistemas Hiperbólicos no Lineales: Un Nuevo Método para Calcular Flujos Relativistas Pedro González-Casanova Henríquez Unidad de Investigación en Cómputo Aplicado DGSCA, UNAM Elvira Torondel y Ricard Garrido

More information

PDE Solvers for Fluid Flow

PDE Solvers for Fluid Flow PDE Solvers for Fluid Flow issues and algorithms for the Streaming Supercomputer Eran Guendelman February 5, 2002 Topics Equations for incompressible fluid flow 3 model PDEs: Hyperbolic, Elliptic, Parabolic

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems

A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems A Hamiltonian Numerical Scheme for Large Scale Geophysical Fluid Systems Bob Peeters Joint work with Onno Bokhove & Jason Frank TW, University of Twente, Enschede CWI, Amsterdam PhD-TW colloquium, 9th

More information

A central discontinuous Galerkin method for Hamilton-Jacobi equations

A central discontinuous Galerkin method for Hamilton-Jacobi equations A central discontinuous Galerkin method for Hamilton-Jacobi equations Fengyan Li and Sergey Yakovlev Abstract In this paper, a central discontinuous Galerkin method is proposed to solve for the viscosity

More information

Chapter 1. Introduction

Chapter 1. Introduction Chapter 1 Introduction Many astrophysical scenarios are modeled using the field equations of fluid dynamics. Fluids are generally challenging systems to describe analytically, as they form a nonlinear

More information

HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS

HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS June 6, 7 :7 WSPC/Lecture Notes Series: 9in x 6in chapter HIGH ORDER NUMERICAL METHODS FOR TIME DEPENDENT HAMILTON-JACOBI EQUATIONS Chi-Wang Shu Division of Applied Mathematics, Brown University Providence,

More information

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R

4 Riesz Kernels. Since the functions k i (ξ) = ξ i. are bounded functions it is clear that R 4 Riesz Kernels. A natural generalization of the Hilbert transform to higher dimension is mutiplication of the Fourier Transform by homogeneous functions of degree 0, the simplest ones being R i f(ξ) =

More information

Development and stability analysis of the inverse Lax-Wendroff boundary. treatment for central compact schemes 1

Development and stability analysis of the inverse Lax-Wendroff boundary. treatment for central compact schemes 1 Development and stability analysis of the inverse Lax-Wendroff boundary treatment for central compact schemes François Vilar 2 and Chi-Wang Shu 3 Division of Applied Mathematics, Brown University, Providence,

More information

Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas

Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas A. H. Hakim G. W. Hammett Eric Shi Princeton Plasma Physics Laboratory, Princeton, NJ ammar@princeton.edu http://www.ammar-hakim.org/sj

More information

Scientific Computing I

Scientific Computing I Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Neckel Winter 2013/2014 Module 8: An Introduction to Finite Element Methods, Winter 2013/2014 1 Part I: Introduction to

More information

ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG EXTERNAL MAGNETIC FIELD

ON THE VLASOV-MAXWELL SYSTEM WITH A STRONG EXTERNAL MAGNETIC FIELD ON THE VLASOV-MAXWELL SYSTEM WITH A STONG EXTENAL MAGNETIC FIELD Francis Filbet, Tao Xiong, Eric Sonnendr ucker To cite this version: Francis Filbet, Tao Xiong, Eric Sonnendr ucker. ON THE VLASOV-MAXWELL

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

Lecture 16. Wednesday, May 25, φ t + V φ = 0 (1) In upwinding, we choose the discretization of the spatial derivative based on the sign of u.

Lecture 16. Wednesday, May 25, φ t + V φ = 0 (1) In upwinding, we choose the discretization of the spatial derivative based on the sign of u. Lecture 16 Wednesday, May 25, 2005 Consider the linear advection equation φ t + V φ = 0 (1) or in 1D φ t + uφ x = 0. In upwinding, we choose the discretization of the spatial derivative based on the sign

More information

Stable Semi-Discrete Schemes for the 2D Incompressible Euler Equations

Stable Semi-Discrete Schemes for the 2D Incompressible Euler Equations Stable Semi-Discrete Schemes for the D Incompressible Euler Equations Doron Levy Department of Mathematics Stanford University dlevy@math.stanford.edu http://math.stanford.edu/ dlevy Maryland, May 004

More information

FEM Convergence for PDEs with Point Sources in 2-D and 3-D

FEM Convergence for PDEs with Point Sources in 2-D and 3-D FEM Convergence for PDEs with Point Sources in 2-D and 3-D Kourosh M. Kalayeh 1, Jonathan S. Graf 2 Matthias K. Gobbert 2 1 Department of Mechanical Engineering 2 Department of Mathematics and Statistics

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Eulerian Vortex Motion in Two and Three Dimensions

Eulerian Vortex Motion in Two and Three Dimensions Eulerian Vortex Motion in Two and Three Dimensions Igor Yanovsky June 2006 1 Objective An Eulerian approach is used to solve the motion of an incompressible fluid, in two and three dimensions, in which

More information

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS

DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS DISCONTINUOUS GALERKIN METHOD FOR TIME DEPENDENT PROBLEMS: SURVEY AND RECENT DEVELOPMENTS CHI-WANG SHU Abstract. In these lectures we give a general survey on discontinuous Galerkin methods for solving

More information

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016 for Vlasov type for Vlasov type 1 2 ECCOMAS 2016 In collaboration with : Bedros Afeyan, Aurore Back, Fernando Casas, Nicolas Crouseilles, Adila Dodhy, Erwan Faou, Yaman Güclü, Adnane Hamiaz, Guillaume

More information

Dedicated to the 70th birthday of Professor Lin Qun

Dedicated to the 70th birthday of Professor Lin Qun Journal of Computational Mathematics, Vol.4, No.3, 6, 39 5. ANTI-DIFFUSIVE FINITE DIFFERENCE WENO METHODS FOR SHALLOW WATER WITH TRANSPORT OF POLLUTANT ) Zhengfu Xu (Department of Mathematics, Pennsylvania

More information

High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory!

High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory! High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory! Why Higher Order?! Locally-refined grids, mapped-multiblock grids smooth except

More information

Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators

Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators Journal of Scientific Computing, Vol. 8, No., February 3 ( 3) Strong Stability Preserving Properties of Runge Kutta Time Discretization Methods for Linear Constant Coefficient Operators Sigal Gottlieb

More information

A Discontinuous Galerkin Method for Vlasov Systems

A Discontinuous Galerkin Method for Vlasov Systems A Discontinuous Galerkin Method for Vlasov Systems P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu http://www.ph.utexas.edu/

More information

Francis X. Giraldo,

Francis X. Giraldo, 1 Time-Integrators Francis X. Giraldo, giraldo@nrlmry.navy.mil, www.nrlmry.navy.mil/~giraldo/projects/nseam.html 1.1 Introduction Roughly speaking, there are 2 classes of TIs: 1. EulerianMethods(fixed-frame-e.g.,arockatthebottomofaflowing

More information

Divergence Formulation of Source Term

Divergence Formulation of Source Term Preprint accepted for publication in Journal of Computational Physics, 2012 http://dx.doi.org/10.1016/j.jcp.2012.05.032 Divergence Formulation of Source Term Hiroaki Nishikawa National Institute of Aerospace,

More information

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux

Introduction to Finite Volume projection methods. On Interfaces with non-zero mass flux Introduction to Finite Volume projection methods On Interfaces with non-zero mass flux Rupert Klein Mathematik & Informatik, Freie Universität Berlin Summerschool SPP 1506 Darmstadt, July 09, 2010 Introduction

More information

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere

A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere A High-Order Galerkin Solver for the Poisson Problem on the Surface of the Cubed Sphere Michael Levy University of Colorado at Boulder Department of Applied Mathematics August 10, 2007 Outline 1 Background

More information

SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES

SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES Proceedings of ALGORITMY 2016 pp. 155 164 SMOOTHNESS INDICATORS FOR WENO SCHEME USING UNDIVIDED DIFFERENCES TAMER H. M. A. KASEM AND FRANÇOIS G. SCHMITT Abstract. The weighted essentially non-oscillatory

More information

Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations

Krylov single-step implicit integration factor WENO methods for advection-diffusion-reaction equations Accepted Manuscript Krylov single-step implicit integration factor WENO methods for advection diffusion reaction equations Tian Jiang, Yong-Tao Zhang PII: S0021-9991(16)00029-2 DOI: http://dx.doi.org/10.1016/j.jcp.2016.01.021

More information

Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments

Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments Maximum-principle-satisfying and positivity-preserving high order schemes for conservation laws: Survey and new developments By Xiangxiong Zhang 1 and Chi-Wang Shu 1 Department of Mathematics, Brown University,

More information

Mathematical Economics: Lecture 2

Mathematical Economics: Lecture 2 Mathematical Economics: Lecture 2 Yu Ren WISE, Xiamen University September 25, 2012 Outline 1 Number Line The number line, origin (Figure 2.1 Page 11) Number Line Interval (a, b) = {x R 1 : a < x < b}

More information

A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations.

A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations. A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations. Nicolas Crouseilles Thomas Respaud January, Abstract In this report, a charge preserving numerical resolution of

More information

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant

Anti-diffusive finite difference WENO methods for shallow water with. transport of pollutant Anti-diffusive finite difference WENO methods for shallow water with transport of pollutant Zhengfu Xu 1 and Chi-Wang Shu 2 Dedicated to Professor Qun Lin on the occasion of his 70th birthday Abstract

More information

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies

Soft Bodies. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Soft-Body Physics Soft Bodies Realistic objects are not purely rigid. Good approximation for hard ones. approximation breaks when objects break, or deform. Generalization: soft (deformable) bodies Deformed

More information

Surprising Computations

Surprising Computations .... Surprising Computations Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca www.cs.ubc.ca/ ascher/ Uri Ascher (UBC) Surprising Computations Fall 2012 1 / 67 Motivation.

More information

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract

Numerical resolution of discontinuous Galerkin methods for time dependent. wave equations 1. Abstract Numerical resolution of discontinuous Galerkin methods for time dependent wave equations Xinghui Zhong 2 and Chi-Wang Shu Abstract The discontinuous Galerkin DG method is known to provide good wave resolution

More information

Numerical Solution Techniques in Mechanical and Aerospace Engineering

Numerical Solution Techniques in Mechanical and Aerospace Engineering Numerical Solution Techniques in Mechanical and Aerospace Engineering Chunlei Liang LECTURE 9 Finite Volume method II 9.1. Outline of Lecture Conservation property of Finite Volume method Apply FVM to

More information

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V

Lehrstuhl Informatik V. Lehrstuhl Informatik V. 1. solve weak form of PDE to reduce regularity properties. Lehrstuhl Informatik V Part I: Introduction to Finite Element Methods Scientific Computing I Module 8: An Introduction to Finite Element Methods Tobias Necel Winter 4/5 The Model Problem FEM Main Ingredients Wea Forms and Wea

More information

CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION

CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION CENTRAL DISCONTINUOUS GALERKIN METHODS ON OVERLAPPING CELLS WITH A NON-OSCILLATORY HIERARCHICAL RECONSTRUCTION YINGJIE LIU, CHI-WANG SHU, EITAN TADMOR, AND MENGPING ZHANG Abstract. The central scheme of

More information

Integration of Vlasov-type equations

Integration of Vlasov-type equations Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Plasma the fourth state of matter 99% of the visible matter in the universe is made of plasma

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost

Game Physics. Game and Media Technology Master Program - Utrecht University. Dr. Nicolas Pronost Game and Media Technology Master Program - Utrecht University Dr. Nicolas Pronost Soft body physics Soft bodies In reality, objects are not purely rigid for some it is a good approximation but if you hit

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Computing High Frequency Waves By the Level Set Method

Computing High Frequency Waves By the Level Set Method Computing High Frequency Waves By the Level Set Method Hailiang Liu Department of Mathematics Iowa State University Collaborators: Li-Tien Cheng (UCSD), Stanley Osher (UCLA) Shi Jin (UW-Madison), Richard

More information