Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Size: px
Start display at page:

Download "Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling"

Transcription

1 Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre Université de Nantes, LMJL & INRIA Rennes - Bretagne Atlantique, IPSO. 2 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Rennes 1, IRMAR & ENS Rennes. 3 Université de Ferrara, Department of Mathematics and Computer Science. 4 CNRS & Université de Rennes 1, IRMAR & INRIA Rennes - Bretagne Atlantique, IPSO & ENS Rennes. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 1

2 Outline 1 Problem and objectives 2 3 A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 2

3 Introduction Our problem Objectives 1 Problem and objectives Introduction Our problem Objectives 2 3 A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 3

4 Introduction Our problem Objectives Numerical simulation of particle systems We are interested in the numerical simulation of kinetic Problems ε, different scales: collisions parameterized by the Knudsen number ε, the development of Asymptotic Preserving (AP) schemes 5, the reduction of the cost at the limit ε 0. 5 Jin, SIAM JSC A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 4

5 Introduction Our problem Objectives Our Problem ε 1D radiative transport equation, diffusion scaling t f + 1 ε v xf = 1 ε2(ρm f) (1) x [0,L x ] R, v V = [ 1,1], charge density ρ = 1 2 V f dv, M(v) = 1, periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the diffusion limit t ρ 1 3 xxρ = 0. (2) A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 5

6 Objectives (1) Introduction Our problem Objectives Tools Idea Construction of an AP scheme. Reduction of the numerical cost at the limit ε 0. Micro-macro decomposition 6,7 for this model. Previous work with a grid in v for the micro part 8, cost was constant w.r.t. ε. Use particles for the micro part since few information in v is necessary at the limit. 6 Lemou, Mieussens, SIAM JSC Liu, Yu, CMP Crouseilles, Lemou, KRM A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 6

7 Objectives (2) Introduction Our problem Objectives Two points of view: Particle-In-Cell method with weights depending on time, Monte-Carlo techniques 9,10. Some upgrades: scheme of order 2 in time, add an electric field: Vlasov-BGK-Poisson system in 1Dx, 1Dv, space and/or time dependent ε, time-diminishing property. 9 P. Degond, G. Dimarco, L. Pareschi, IJNMF P. Degond, G. Dimarco, JCP A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 7

8 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme 1 Problem and objectives 2 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme 3 A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 8

9 Micro-macro decomposition Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Micro-macro decomposition 11,12 : f = ρm + g with g the rest. N = Span{M} = {f = ρm} null space of the BGK operator Q(f) = ρm f. Π orthogonal projection in L 2( M 1 dv ) onto N: Πh := h M, h := h dv. Hypothesis: first moment of g must be zero = g = 0, since f = ρ. True at the numerical level? If not, we have to impose it. 11 M. Lemou, L. Mieussens, SIAM JSC N. Crouseilles, M. Lemou, KRM A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 9 V

10 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Applying Π to (1) = macro equation on ρ t ρ+ 1 ε x vg = 0. (3) Applying (I Π) to (1) = micro equation on g t g + 1 ε [vm xρ+v x g x vg M] = 1 ε2g. (4) Equation (1) micro-macro system: t ρ+ 1 ε x vg = 0, t g + 1 ε F(ρ,g) = 1 (5) ε 2g, where F(ρ,g) := vm x ρ+v x g x vg M. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 10

11 Difficulties Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Stiff terms in the micro equation (4) on g. In previous works 13,14, stiffest term (of order 1/ε 2 ) considered implicit in time = transport term (of order 1/ε) stabilized. But here: use of particles for the micro part = splitting between the transport term and the source term, = not possible to use the same strategy. Idea? Suitable reformulation of the model. 13 M. Lemou, L. Mieussens, SIAM JSC N. Crouseilles, M. Lemou, KRM A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 11

12 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Strategy of Lemou 15 : 1. rewrite (4) t g + 1 ε F(ρ, g) = 1 ε 2 g as t (e t/ε2 g) = et/ε2 F(ρ, g), ε 2. integrate in time between t n and t n+1 and multiply by e tn+1 /ε 2 : g n+1 g n t = e t/ε2 1 t 3. approximate up to terms of order O( t) by: t g = e t/ε2 1 t g n ε 1 e t/ε2 F(ρ n, g n )+O( t), t g ε 1 e t/ε2 F(ρ, g). (6) t No more stiff terms and consistent with the initial micro equation (4). 15 Lemou, CRAS A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 12

13 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme 1. PIC method with evolution of weights where Equation t g = e t/ε2 1 t S g := e t/ε2 1 t g ε 1 e t/ε2 t t g +ε 1 e t/ε2 [v x g] = S g t [vm x ρ+v x g x vg M] g ε 1 e t/ε2 [vm x ρ x vg M]. t Model: having N p particles, with position x k, velocity v k and weight ω k, k = 1,...,N p, g is approximated by N p g Np (t,x,v) = ω k (t)δ(x x k (t))δ(v v k (t)). k=1 A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 13

14 Solving t g +ε 1 e t/ε2 t [v x g] = 0 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme 1. Initialization: mesh in space X i = i x for macroscopic quantities such as ρ(t, x) ρ i (t) and vg (t, x) vg i (t), particles uniformly distributed in phase space (x, v), independently of the mesh, weights initialized to ω k (0) = g (0, x k, v k ) LxLv N p. (L x x-length of the domain, L v v-length.) 2. Movement of particles thanks to motion equations: For example dv k dt (t) = 0 and dx k dt (t) = ε1 e t/ε2 v k. t x n+1 k = x n k +ε(1 e t/ε2 )v k. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 14

15 Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Solving t g = S g 3. Deposition and interpolation for communications between macro mesh and particles. 4. Evolution of weights ω k : dω k dt (t) = S g (x k,v k ) L xl v N p with S g = e t/ε2 1 g ε 1 e t/ε2 [vm x ρ x vg M]. t t In practice: ω n+1 k ω n k t = e t/ε2 1 ωk n t ε1 e t/ε2 [α n k t +βn k ], with α n k = v km x ρ n (x n+1 k ) L xl v N p and βk n = x vg (x n+1 k )M L xl v. N p A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 15

16 2. Projection step Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme We now have N p g n+1 (x,v) ω n+1 k δ ( x x n+1 ) k δ(v vk ). k=1 Nothing ensures g n+1 = 0 at the numerical level. We have to impose it. How? By applying a discrete approximation of (I Π) to each weight ω k. In the case of no regularization (Dirac masses): k I i := { k / x k [X i 1/2,X i+1/2 ] } g i, ω k ω k x p k, k I i p k where p k := ρ(x k )M LxLv N p Maxwellian. is the weight associated to the A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 16

17 3. Macro part Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Equation t ρ+ 1 ε x vg = 0. First proposition: discretization of Finite Volumes type ρ n+1 i = ρ n i t ε vg n+1 i+1 vg n+1 i 1. 2 x A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 17

18 Correction of the macro discretization Micro equation is discretized as ω n+1 k = e t/ε2 ωk n ε(1 e t/ε2 ) Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme vm xρ {}}{ α n k + x vg M {}}{ βk n. Take the moment on cell i: i, and let h n i := e t/ε2 vg n i ε(1 e t/ε2 ) x v 2 g M so that vg n+1 i = ε(1 e t/ε2 ) v 2 M n i }{{} x ρ n i + hi n. 1/3 Np Inject it in the macro equation ρ n+1 i = ρ n i t ε x vg n+1 i, and take the diffusion term implicit new macro discretization: ρ n+1 i = ρ n i + t(1 e t/ε2 ) 1 3 xxρ n+1 i t ε xhi n. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 18

19 Numerical limit Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme When ε 0, x vg M = O(ε) thus h n i = O(ε 2 ) and vg n+1 i = ε 1 3 xρ n i +O(ε 2 ). Injecting in the macro equation ρ n+1 i = ρ n i t ε x vg n+1 i gives ρ n+1 i = ρ n i + t 3 xxρ n i, = we recover a discretization of the limit equation (2). A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 19

20 AP property Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme For fixed ε > 0, the scheme is a first-order (in time) approximation of the reformulated micro-macro system. For fixed t > 0, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (2). = AP property. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 20

21 What about upgrades? Derivation of the micro-macro system First-order reformulation Particle-In-Cell / FV scheme Scheme of second order in time. Consider an electric field. Space and/or time dependent ε + time-diminishing property: number of particles fixed initially. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 21

22 New discretization Monte-Carlo technique Numerical results 1 Problem and objectives 2 3 New discretization Monte-Carlo technique Numerical results A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 22

23 New discretization Monte-Carlo technique Numerical results Our Problem ε 1D radiative transport equation, diffusion scaling x [0,L x ] R, v R, charge density ρ = V ( f ) dv, M(v) = 1 2π exp, t f + 1 ε v xf = 1 ε2(ρm f) (7) v2 2 periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the diffusion limit t ρ xx ρ = 0. (8) A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 23

24 Discretization of the micro equation New discretization Monte-Carlo technique Numerical results Model: considering at each time step N n p particles, with position x n k, velocity v k and constant weight ω k, k = 1,...,N n p, g is approximated by 16 N n p g N n p (t n,x,v) = ω k δ(x xk n )δ(v v k). k=1 Previously, moments of g evolved through the weights of N p (= cst) particles, now it evolves through the number of particles, each one having a constant weight. Solve the transport part as previously by computing x n+1 k = x n k +ε(1 e t/ε2 )v k. 16 N. Crouseilles, G. Dimarco, M. Lemou, KRM A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 24

25 New discretization Monte-Carlo technique Numerical results Monte-Carlo procedure for the source part The source part t g = e t/ε2 1 t is discretized in time with g ε 1 e t/ε2 [vm x ρ x v g M] t g n+1 = e t/ε2 g n (1 e t/ε2 )ε(vm x ρ n x ( v g n )M) where g n denotes the value of the function g after the transport part. Introduce p = e t/ε2 and write g n+1 = p g n (1 p)ε(vm x ρ n x ( v g n )M). A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 25

26 New discretization Monte-Carlo technique Numerical results From a given set of particles (xk n,vn k ) k=1,...,np n at tn : choose pnp n particles randomly and keep them unchanged, discard the others, sample a number of particles from (1 p)p(t n,x,v) := (1 p)ε(vm x ρ n x ( v g n )M). A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 26

27 Initialization New discretization Monte-Carlo technique Numerical results Choose the characteristic weight m p or the characteric number of particles N p necessary to sample the full distribution function f, and link them with m p = 1 xmax f(t = 0,x,v)dvdx. N p x min Now, we want to sample g(t = 0, x, v), that has no sign. We impose ω k {m p, m p }. For velocities, we impose v k {v j, j = 0,...,N v 1} k = 1,...,N n p, where v j = v min + j v, j = 0,...,N v 1. R A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 27

28 New discretization Monte-Carlo technique Numerical results The number of initial positive (resp. negative) particles having the velocity v k = v j in the cell C i = [x i,x i+1 ] is given by N 0,± i,j that is an approximation of 1 m p = ± x v m p g ± (t = 0,x i,v j ), xi+1 vj+1 x i v j ±g ± (t = 0,x,v)dvdx, with g ± = g± g 2 the positive (resp. negative) part of g. Positions of these N 0,± i,j particles are taken uniformly in C i = [x i,x i+1 ]. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 28

29 From t n to t n+1 New discretization Monte-Carlo technique Numerical results Transport part with motion equation. Source part (1): keep qni n particles in each cell C i, discard the others. Source part (2): create a number (1 p)m n,± i,j of positive (resp. negative) particles of velocity v j, where M n,± i,j = ± 1 m p x vp n,± (x i,v j ), and P n,± (x i,v j ) is the positive (resp. negative) part of the function P(t n,x,v) evaluated in x i and v j. Source part (3): positions of these new particles are uniformly sampled in C i. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 29

30 AP property New discretization Monte-Carlo technique Numerical results Discretization of macro part: ρ n+1 i = ρ n i t e t/ε2 v gn i+1 v g n i 1 ε 2 x + t(1 e t/ε2 ) ρ i+1 2ρ i +ρ i 1 x 2. Explicit scheme if ρ i = ρ n i. Implicit scheme if ρ i = ρ n+1 i. ε 0: right asymptotic limit, = AP property. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 30

31 What about upgrades? New discretization Monte-Carlo technique Numerical results Scheme of second order in time. Consider an electric field. Space and/or time dependent ε + time-diminishing property: number of particles evolves in time and diminishes with ε. A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 31

32 Density and momentum for ε = 1 New discretization Monte-Carlo technique Numerical results Initially, N 0 p = for MiMa-MC and PIC MC. Density ρ ε=1, T=2 0.8 PIC MC 0.7 Reference MiMa MC x First momentum <vf> ε=1, T=2 PIC MC Reference MiMa MC x A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 32

33 Density and momentum for ε = 0.2 New discretization Monte-Carlo technique Numerical results Density ρ ε=0.2, T=2 0.8 PIC MC 0.7 Reference MiMa MC x First momentum <vf> ε=0.2, T=2 PIC MC Reference MiMa MC x A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 33

34 AP property New discretization Monte-Carlo technique Numerical results Comparison with a discretization of the diffusion limit. First momentum <vf> AP property, T=2 0.8 Limit ε= ε=0.01 ε= x First momentum <vf> AP property, T=2 Limit ε=0.2 ε=0.01 ε= x A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 34

35 Time-diminishing property New discretization Monte-Carlo technique Numerical results Total number of particles is plotted as a function of time for ε = 1, ε = 0.5, ε = 0.2 and ε = 0.1 on the left, ε = 10 2, ε = 10 3 and ε = 10 4 on the right. Total number of particles ε=1, 0.5, 0.2 and 0.1 ε=1 ε=0.5 ε=0.2 ε= t Total number of particles ε=0.01, and ε=0.01 ε=0.001 ε= t A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 35

36 New discretization Monte-Carlo technique Numerical results Thank you for your attention! A. Crestetto, N. Crouseilles, G. Dimarco, M. Lemou Micro-macro methods for Boltzmann-BGK-like eq. 36

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. Workshop Asymptotic-Preserving schemes, Porquerolles.

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

Modèles hybrides préservant l asymptotique pour les plasmas

Modèles hybrides préservant l asymptotique pour les plasmas Modèles hybrides préservant l asymptotique pour les plasmas Anaïs Crestetto 1, Nicolas Crouseilles 2, Fabrice Deluzet 1, Mohammed Lemou 3, Jacek Narski 1 et Claudia Negulescu 1. Groupe de Travail Méthodes

More information

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Giacomo Dimarco Institut des Mathématiques de Toulouse Université de Toulouse France http://perso.math.univ-toulouse.fr/dimarco giacomo.dimarco@math.univ-toulouse.fr

More information

Numerical methods for kinetic equations

Numerical methods for kinetic equations Numerical methods for kinetic equations Lecture 6: fluid-kinetic coupling and hybrid methods Lorenzo Pareschi Department of Mathematics and Computer Science University of Ferrara, Italy http://www.lorenzopareschi.com

More information

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this version: Anaïs Crestetto, Nicolas Crouseilles,

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Jian-Guo Liu Department of Physics and Department of Mathematics, Duke University Collaborators: Pierre

More information

Exponential methods for kinetic equations

Exponential methods for kinetic equations Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research

More information

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uniformly accurate averaging numerical schemes for oscillatory evolution equations Uniformly accurate averaging numerical schemes for oscillatory evolution equations Philippe Chartier University of Rennes, INRIA Joint work with M. Lemou (University of Rennes-CNRS), F. Méhats (University

More information

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS Dissertation presented to obtain the HABILITATION À DIRIGER DES RECHERCHES Université Paul Sabatier Toulouse 3 Mention: Applied Mathematics by Luc MIEUSSENS Contributions to the numerical simulation in

More information

arxiv: v1 [math.na] 25 Oct 2018

arxiv: v1 [math.na] 25 Oct 2018 Multi-scale control variate methods for uncertainty quantification in kinetic equations arxiv:80.0844v [math.na] 25 Oct 208 Giacomo Dimarco and Lorenzo Pareschi October 26, 208 Abstract Kinetic equations

More information

CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire

CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire CORBIS: Code Raréfié Bidimensionnel Implicite Stationnaire main ingredients: [LM (M3AS 00, JCP 00)] plane flow: D BGK Model conservative and entropic velocity discretization space discretization: finite

More information

arxiv: v1 [math.na] 7 Nov 2018

arxiv: v1 [math.na] 7 Nov 2018 A NUMERICAL METHOD FOR COUPLING THE BGK MODEL AND EULER EQUATION THROUGH THE LINEARIZED KNUDSEN LAYER HONGXU CHEN, QIN LI, AND JIANFENG LU arxiv:8.34v [math.na] 7 Nov 8 Abstract. The Bhatnagar-Gross-Krook

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

1 Phase Spaces and the Liouville Equation

1 Phase Spaces and the Liouville Equation Phase Spaces and the Liouville Equation emphasize the change of language from deterministic to probablistic description. Under the dynamics: ½ m vi = F i ẋ i = v i with initial data given. What is the

More information

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Qin Li, Lorenzo Pareschi Abstract We consider the development of exponential methods for the robust time discretization

More information

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS Pierre Degond, Jian-Guo Liu 2, Luc Mieussens Abstract. This paper presents a general methodology to design macroscopic fluid models that

More information

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations April 21-24, 2016 Department of Mathematics University of Wisconsin-Madison SCHEDULE Thursday, April 21 Friday, April 22 Saturday,

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Irene M. Gamba, Shi Jin, and Liu Liu Abstract In this

More information

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Shi Jin University of Wisconsin-Madison, USA Kinetic equations Different Q Boltmann Landau

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW SHI JIN Contents 1. Introduction 1 2. Hyperbolic systems with stiff relaxations 3 3. Kinetic equations: the

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation

A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation A class of asymptotic-preserving schemes for the Fokker-Planck-Landau equation Shi Jin Bokai Yan October 2, 200 Abstract We present a class of asymptotic-preserving AP) schemes for the nonhomogeneous Fokker-Planck-Landau

More information

Adaptive semi-lagrangian schemes for transport

Adaptive semi-lagrangian schemes for transport for transport (how to predict accurate grids?) Martin Campos Pinto CNRS & University of Strasbourg, France joint work Albert Cohen (Paris 6), Michel Mehrenberger and Eric Sonnendrücker (Strasbourg) MAMCDP

More information

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models

Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models Consistency analysis of a 1D Finite Volume scheme for barotropic Euler models F Berthelin 1,3, T Goudon 1,3, and S Mineaud,3 1 Inria, Sophia Antipolis Méditerranée Research Centre, Proect COFFEE Inria,

More information

On the Asymptotic Preserving property of the Unified Gas Kinetic Scheme for the diffusion limit of linear kinetic models

On the Asymptotic Preserving property of the Unified Gas Kinetic Scheme for the diffusion limit of linear kinetic models On the Asymptotic Preserving property of the Unified Gas Kinetic Scheme for the diffusion limit of linear kinetic models Luc Mieussens To cite this version: Luc Mieussens. On the Asymptotic Preserving

More information

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation Wei Ren a, Hong Liu a,, Shi Jin b,c a J C Wu Center for Aerodynamics, School of Aeronautics and Aerospace, Shanghai Jiao Tong University,

More information

The Moment Guided Monte Carlo Method

The Moment Guided Monte Carlo Method The Moment Guided Monte Carlo Method Pierre Degond,, Giacomo Dimarco,,3 and Lorenzo Pareschi Université de Toulouse; UPS, INSA, UT, UTM ; Institut de Mathématiques de Toulouse ; F-3 Toulouse, France. CNRS;

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Traveling waves of a kinetic transport model for the KPP-Fisher equation Traveling waves of a kinetic transport model for the KPP-Fisher equation Christian Schmeiser Universität Wien and RICAM homepage.univie.ac.at/christian.schmeiser/ Joint work with C. Cuesta (Bilbao), S.

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Asymptotic-Preserving Schemes

Asymptotic-Preserving Schemes Asymptotic-Preserving Schemes Porto-Ercole summer school 2012 MMKT Methods and Models of Kinetic Theory MODELING, SIMULATION AND MATHEMATICAL ANALYSIS OF MAGNETICALLY CONFINED PLASMAS Claudia NEGULESCU

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Finite volumes schemes preserving the low Mach number limit for the Euler system

Finite volumes schemes preserving the low Mach number limit for the Euler system Finite volumes schemes preserving the low Mach number limit for the Euler system M.-H. Vignal Low Velocity Flows, Paris, Nov. 205 Giacomo Dimarco, Univ. de Ferrara, Italie Raphael Loubere, IMT, CNRS, France

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 2: Monte Carlo simulation methods Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA Uncertainty Quantification for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Where do kinetic equations sit in physics Kinetic equations with applications

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Implicit kinetic relaxation schemes. Application to the plasma physic

Implicit kinetic relaxation schemes. Application to the plasma physic Implicit kinetic relaxation schemes. Application to the plasma physic D. Coulette 5, E. Franck 12, P. Helluy 12, C. Courtes 2, L. Navoret 2, L. Mendoza 2, F. Drui 2 ABPDE II, Lille, August 2018 1 Inria

More information

Numerical methods for plasma physics in collisional regimes

Numerical methods for plasma physics in collisional regimes J. Plasma Physics (15), vol. 81, 358116 c Cambridge University Press 1 doi:1.117/s3778176 1 Numerical methods for plasma physics in collisional regimes G. Dimarco 1,Q.Li,L.Pareschi 1 and B. Yan 3 1 Department

More information

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS FOR THE RELATIVISTIC GRAVITATIONAL VLASOV- POISSON SYSTEM Mohammed Lemou CNRS and IRMAR, Rennes Florian Méhats University of Rennes 1 and IRMAR Pierre

More information

Anomalous energy transport in FPU-β chain

Anomalous energy transport in FPU-β chain Anomalous energy transport in FPU-β chain Sara Merino Aceituno Joint work with Antoine Mellet (University of Maryland) http://arxiv.org/abs/1411.5246 Imperial College London 9th November 2015. Kinetic

More information

Berk-Breizman and diocotron instability testcases

Berk-Breizman and diocotron instability testcases Berk-Breizman and diocotron instability testcases M. Mehrenberger, N. Crouseilles, V. Grandgirard, S. Hirstoaga, E. Madaule, J. Petri, E. Sonnendrücker Université de Strasbourg, IRMA (France); INRIA Grand

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs. Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Shanghai Jiao Tong University,

More information

Topics covered so far:

Topics covered so far: Topics covered so far: Chap 1: The kinetic theory of gases P, T, and the Ideal Gas Law Chap 2: The principles of statistical mechanics 2.1, The Boltzmann law (spatial distribution) 2.2, The distribution

More information

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I

Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I Fluid-Particles Interaction Models Asymptotics, Theory and Numerics I J. A. Carrillo collaborators: T. Goudon (Lille), P. Lafitte (Lille) and F. Vecil (UAB) (CPDE 2005), (JCP, 2008), (JSC, 2008) ICREA

More information

An improved unified gas-kinetic scheme and the study of shock structures

An improved unified gas-kinetic scheme and the study of shock structures IMA Journal of Applied Mathematics (2011) 76, 698 711 doi:10.1093/imamat/hxr002 Advance Access publication on March 16, 2011 An improved unified gas-kinetic scheme and the study of shock structures KUN

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond

More information

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation

Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Microscopically Implicit-Macroscopically Explicit schemes for the BGK equation Sandra Pieraccini, Gabriella Puppo July 25, 2 Abstract In this work a new class of numerical methods for the BGK model of

More information

A new flocking model through body attitude coordination

A new flocking model through body attitude coordination A new flocking model through body attitude coordination Sara Merino Aceituno (Imperial College London) Pierre Degond (Imperial College London) Amic Frouvelle (Paris Dauphine) ETH Zürich, November 2016

More information

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation.

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. N. Crouseilles a, b, P. Degond a, and M. Lemou a a MIP, UMR CNRS 564, UFR MIG, Université Paul Sabatier 8, route de Narbonne,

More information

Boltzmann Equation and Hydrodynamics beyond Navier-Stokes

Boltzmann Equation and Hydrodynamics beyond Navier-Stokes Boltzmann Equation and Hydrodynamics beyond Navier-Stokes Alexander Bobylev Keldysh Institute for Applied Mathematics, RAS, Moscow Chapman-Enskog method and Burnett equations Notation: f (x, v, t) - distribution

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a chapter published in Domain Decomposition Methods in Science and Engineering XXI. Citation for the original published chapter: Gander,

More information

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

A successive penalty based Asymptotic-Preserving scheme for kinetic equations A successive penalty based Asymptotic-Preserving scheme for kinetic equations Bokai Yan Shi Jin September 30, 202 Abstract We propose an asymptotic-preserving AP) scheme for kinetic equations that is efficient

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

arxiv: v1 [math.ap] 28 Apr 2009

arxiv: v1 [math.ap] 28 Apr 2009 ACOUSTIC LIMIT OF THE BOLTZMANN EQUATION: CLASSICAL SOLUTIONS JUHI JANG AND NING JIANG arxiv:0904.4459v [math.ap] 28 Apr 2009 Abstract. We study the acoustic limit from the Boltzmann equation in the framework

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

Fluid Dynamics from Kinetic Equations

Fluid Dynamics from Kinetic Equations Fluid Dynamics from Kinetic Equations François Golse Université Paris 7 & IUF, Laboratoire J.-L. Lions golse@math.jussieu.fr & C. David Levermore University of Maryland, Dept. of Mathematics & IPST lvrmr@math.umd.edu

More information

Équation de Burgers avec particule ponctuelle

Équation de Burgers avec particule ponctuelle Équation de Burgers avec particule ponctuelle Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France 7 juin 2010 En collaboration avec B. Andreianov, F. Lagoutière et T. Takahashi Nicolas Seguin

More information

Particle in Cell method

Particle in Cell method Particle in Cell method Birdsall and Langdon: Plasma Physics via Computer Simulation Dawson: Particle simulation of plasmas Hockney and Eastwood: Computer Simulations using Particles we start with an electrostatic

More information

Palindromic Discontinuous Galerkin Method

Palindromic Discontinuous Galerkin Method Palindromic Discontinuous Galerkin Method David Coulette, Emmanuel Franck, Philippe Helluy, Michel Mehrenberger, Laurent Navoret To cite this version: David Coulette, Emmanuel Franck, Philippe Helluy,

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect

Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect draft, March, 007 Numerical simulations of rarefied gases in curved channels: thermal creep, circulating flow, and pumping effect Kazuo Aoki, Pierre Degond, Luc Mieussens Abstract. We present numerical

More information

Lattice Boltzmann Method for Moving Boundaries

Lattice Boltzmann Method for Moving Boundaries Lattice Boltzmann Method for Moving Boundaries Hans Groot March 18, 2009 Outline 1 Introduction 2 Moving Boundary Conditions 3 Cylinder in Transient Couette Flow 4 Collision-Advection Process for Moving

More information

A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media Maxime Roger, Cyril Caliot, Nicolas Crouseilles, Pedro Jorge Martins Coelho To cite this version: Maxime Roger,

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle CEREMADE Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre

More information

Monte Carlo method with negative particles

Monte Carlo method with negative particles Monte Carlo method with negative particles Bokai Yan Joint work with Russel Caflisch Department of Mathematics, UCLA Bokai Yan (UCLA) Monte Carlo method with negative particles 1/ 2 The long range Coulomb

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

On a class of implicit-explicit Runge-Kutta schemes for stiff kinetic equations preserving the Navier-Stokes limit

On a class of implicit-explicit Runge-Kutta schemes for stiff kinetic equations preserving the Navier-Stokes limit On a class of implicit-eplicit Runge-Kutta schemes for stiff kinetic equations preserving the Navier-Stokes limit Jingwei Hu Xiangiong Zhang June 8, 17 Abstract Implicit-eplicit (IMEX) Runge-Kutta (RK)

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

Hydrodynamic Limits for the Boltzmann Equation

Hydrodynamic Limits for the Boltzmann Equation Hydrodynamic Limits for the Boltzmann Equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Academia Sinica, Taipei, December 2004 LECTURE 2 FORMAL INCOMPRESSIBLE HYDRODYNAMIC

More information

A Discontinuous Galerkin Method for Vlasov Systems

A Discontinuous Galerkin Method for Vlasov Systems A Discontinuous Galerkin Method for Vlasov Systems P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu http://www.ph.utexas.edu/

More information

A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES

A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES A CLASS OF ASYMPTOTIC PRESERVING SCHEMES FOR KINETIC EQUATIONS AND RELATED PROBLEMS WITH STIFF SOURCES FRANCIS FILBET AND SHI JIN Abstract. In this paper, we propose a general framework to design asymptotic

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal 1 An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal IMT: Institut de Mathématiques de Toulouse 1. Introduction.

More information

VALIDITY OF THE BOLTZMANN EQUATION

VALIDITY OF THE BOLTZMANN EQUATION VALIDITY OF THE BOLTZMANN EQUATION BEYOND HARD SPHERES based on joint work with M. Pulvirenti and C. Saffirio Sergio Simonella Technische Universität München Sergio Simonella - TU München Academia Sinica

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle Archimedes Center for Modeling, Analysis & Computation (ACMAC) University of Crete, Heraklion, Crete, Greece

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

EDP with strong anisotropy : transport, heat, waves equations

EDP with strong anisotropy : transport, heat, waves equations EDP with strong anisotropy : transport, heat, waves equations Mihaï BOSTAN University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Nachos team INRIA Sophia Antipolis, 3/07/2017 Main goals Effective

More information

A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media

A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media A hybrid transport-diffusion model for radiative transfer in absorbing and scattering media M. Roger a, C. Caliot b, N. Crouseilles c, P.J. Coelho d a Université de Lyon, CNRS, INSA-Lyon, CETHIL, UMR58,

More information

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme

Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Equivalence between kinetic method for fluid-dynamic equation and macroscopic finite-difference scheme Pietro Asinari (1), Taku Ohwada (2) (1) Department of Energetics, Politecnico di Torino, Torino 10129,

More information