Different types of phase transitions for a simple model of alignment of oriented particles

Size: px
Start display at page:

Download "Different types of phase transitions for a simple model of alignment of oriented particles"

Transcription

1 Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle CEREMADE Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse, France) Kinetic Description of Multiscale Phenomena ACMAC, June 21st, 2013 Amic Frouvelle Alignment interaction with different types of phase transitions June /15

2 Goal: macroscopic description of some animal societies Local interactions without leader Emergence of macroscopic structures, phase transitions Example : Vicsek model [1995], following more realistic similar models (Aoki [1982], Reynolds [1987], Huth-Wissel [1992]). Images Benson Kua (flickr) and Amic Frouvelle Alignment interaction with different types of phase transitions June /15

3 Kinetic mean-field model The kinetic model Spatially homogeneous framework Stability issues Ingredients : moving at unit speed, alignment with neighbors, orientational noise. Theorem (following Bolley, Cañizo, Carrillo, 2012) Probability density function f (x, v, t) of finding an individual at x R n, with speed v S (unit sphere of R n ): t f + v x f }{{} transport + ν( J f ) v ( v (v Ω f ) f ) }{{} alignment = τ( J f ) v f }{{} diffusion Local momentum: J f = v S v f (x, v, t) dv. Target orientation: Ω f = J f J f, with J f = K x J f. Assumptions : K with finite second moment, and K, J ν( J ) J and τ bounded Lipschitz. Amic Frouvelle Alignment interaction with different types of phase transitions June /15

4 Space-homogeneous version The kinetic model Spatially homogeneous framework Stability issues Smoluchowski equation on the sphere Reduced equation, for a function f (v, t): t f = Q(f ), Q(f ) = τ( J f ) v [ v f k( J f ) v (v Ω f ) f ] Ω f = J f J f, J f (t) = f (v, t) v dv. Key parameter: the conserved quantity ρ = S f. Key function: k( J ) = ν( J ) τ( J ) (competition between alignment and noise). More precisely, its inverse κ j(κ): Main assumption: J k( J ) increasing. κ = k( J ) J = j(κ) Amic Frouvelle Alignment interaction with different types of phase transitions June /15 S

5 Equilibria The kinetic model Spatially homogeneous framework Stability issues Definitions: von Mises Fisher distribution M κω (v) = e κ v Ω S eκ w Ω dw. Orientation Ω S, concentration κ 0. Order parameter: c(κ) = J MκΩ = We rewrite Q: Q(f ) = τ( J f ) ω π 0 cos θ eκ cos θ sin n 2 θ dθ π 0 eκ cos θ sin n 2 θ dθ [M k( Jf )Ωf ω ( Compatibility relation for steady-states f M k( Jf )Ω f. )] Q(f ) = 0 f = ρm κω, with Ω S and j(κ) = ρc(κ).. Amic Frouvelle Alignment interaction with different types of phase transitions June /15

6 Local analysis near uniform equilibria The kinetic model Spatially homogeneous framework Stability issues j(κ) Critical value: ρ c = lim (0, + ]. κ 0 c(κ) Theorem: Strong instability Exponential stability ρ > ρ c : if J f0 0, then f cannot converge to the uniform equilibrium. ρ < ρ c : There exists a constant δ such that if f 0 ρ H s < δ, then we have for all t 0 f (t) ρ H s f 0 ρ H s e λt 1 1 δ f, with λ = (n 1)τ 0 (1 ρ ). 0 ρ H s ρ c Tools: linearization for the evolution of J f, and then energy estimates for the whole equation. Amic Frouvelle Alignment interaction with different types of phase transitions June /15

7 The kinetic model Spatially homogeneous framework Stability issues Close to a nonisotropic equilibria ρm κω Theorem: Exponential stability in case ( j c ) (κ) > 0 For all s > n 1 2, there exist constants δ > 0 and C > 0, such that if f 0 ρm κω0 H s < δ for some Ω 0 S, there exists Ω S such that f ρm κω H s C f 0 ρm κω0 H s e λt, with λ = cτ(j) j Λ κ ( j c ), where Λ κ is the best constant for the following weighted Poincaré inequality: g 2 MκΩ Λ κ (g g MκΩ ) 2 MκΩ Tools: Free energy F(f ) = S f ln f Φ( J f ), with dφ d J = k( J ), and its dissipation D(f ) = τ( J f ) S f ω(ln f h( J f )ω Ω f ) 2. Instability of ρm κω if ( j c ) (κ) < 0. Amic Frouvelle Alignment interaction with different types of phase transitions June /15

8 Second order (or continuous) phase transition First order (discontinuous) phase transition Hysteresis General statements in the case ( j c ) > 0 for all κ If ρ < ρ c, then the solution converges exponentially fast towards the uniform distribution f = ρ. If ρ = ρ c, the solution converges to the uniform distribution. If ρ > ρ c and J f0 0, then there exists Ω such that f converges exponentialy fast to the von Mises distribution f = ρm κω, where κ > 0 is the unique positive solution to the equation ρc(κ) = j(κ). We can then define c (order parameter) as a function of ρ, and this function is continuous. Critical exponent β: when c(ρ) (ρ ρ c ) β. Can be any number in (0, 1], as one can artificially choose j(κ) = c(κ)(1 + κ 1 β ). Amic Frouvelle Alignment interaction with different types of phase transitions June /15

9 A phase diagram: k( J ) = J + J 2 1 Second order (or continuous) phase transition First order (discontinuous) phase transition Hysteresis Order parameter c c c c n=2 n=3 0 1 ρ ρ ρ c ρ c 4 Density ρ c c c Amic Frouvelle Alignment interaction with different types of phase transitions June /15

10 Second order (or continuous) phase transition First order (discontinuous) phase transition Hysteresis Numerical illustration of the hysteresis phenomena Change of scale f = f ρ. The parameter ρ can now be considered as a free parameter that we let evolve in time. 1 1 Order parameter c (kinetic) Order parameter c (particles) Density ρ Density ρ Amic Frouvelle Alignment interaction with different types of phase transitions June /15

11 Scalings for the kinetic equation Scalings Ordered phase, hydrodynamic model Disordered phase, diffusion 2 scaling parameters : ε (hydrodynamic scaling) and η (characteristic length for the observation kernel K). Reduced kinetic equation ε( t f + v x f ) + K 2 η 2[ v (P v l f f ) m f v f ] = Q(f ) + O(η 4 ), with l f = ν( J f ) P J f Ω x J f + (Ω f x J f ) ν ( J f )Ω f, f m f = (Ω f x J f ) τ ( J f ), Limit as ε 0, in the cases where η = O(ε), or η = O( ε)? Amic Frouvelle Alignment interaction with different types of phase transitions June /15

12 Scalings Ordered phase, hydrodynamic model Disordered phase, diffusion Branch of a stable nonisotropic equilibrium Stable branch of von Mises distributions given by ρ κ(ρ). Theorem: formal hydrodynamic limit When ε 0, in a region where f ε f 0 = ρ(x, t)m κ(ρ)ω(x,t), the functions ρ, Ω satisfy the following system: { t ρ + x (ρ c Ω) = 0, ρ ( t Ω + c(ω x )Ω) + Θ P Ω x ρ = K 2 δp Ω x (ρcω). c = cos θ Mκ, Θ = 1 κ + ρ κ dκ dρ ( c c), δ = ν(σ) c ( n 1 κ + c). Scaling parameter K 2 = lim ε 0 K 2 η 2 ε. Hyperbolicity linked to the critical exponent β (second order), or non hyperbolicity in the neighborhood of ρ (first order). Amic Frouvelle Alignment interaction with different types of phase transitions June /15

13 Region where ρ c ρ ε (x, t) ε Scalings Ordered phase, hydrodynamic model Disordered phase, diffusion Chapman Enskog expansion. Theorem: formal diffusion correction As ε 0, at first order, in a region where f ε f 0 = ρ(x, t), f ε is (formally) given by f ε (x, v, t) = ρ ε (x, t) ε n ρ c v x ρ ε (x, t) (n 1)nτ 0 (ρ c ρ ε (x, t)), And the density ρ ε satisfies the following diffusion equation: t ρ ε = ε ρ ( c 1 x (n 1)nτ 0 ρ c ρ ε xρ ε). Second order phase transition : boundary region where ρ ε (x, t) ρ c = O(ε)? How to connect the two models? Amic Frouvelle Alignment interaction with different types of phase transitions June /15

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle Archimedes Center for Modeling, Analysis & Computation (ACMAC) University of Crete, Heraklion, Crete, Greece

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle Institut de Mathématiques de Toulouse Joint work with Jian-Guo Liu (Duke Univ.) and Pierre Degond (IMT) Amic

More information

A note on phase transitions for the Smoluchowski equation with dipolar potential

A note on phase transitions for the Smoluchowski equation with dipolar potential A note on phase transitions for the Smoluchowski equation with dipolar potential Pierre Degond (,2), Amic Frouvelle (3), Jian-Guo Liu (4) arxiv:22.3920v [math-ph] 7 Dec 202 -Université de Toulouse; UPS,

More information

Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics

Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics Phase transitions, hysteresis, and hyperbolicity for self-organized alignment dynamics Pierre Degond (,), Amic Frouvelle (3), Jian-Guo Liu (4) - Université de Toulouse; UPS, INSA, UT, UT; Institut de athématiques

More information

Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics

Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics Arch. Rational ech. Anal. 6 (05) 63 5 Digital Object Identifier (DOI) 0.007/s0005-04-0800-7 Phase Transitions, Hysteresis, and Hyperbolicity for Self-Organized Alignment Dynamics Pierre Degond, Amic Frouvelle

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

A new flocking model through body attitude coordination

A new flocking model through body attitude coordination A new flocking model through body attitude coordination Sara Merino Aceituno (Imperial College London) Pierre Degond (Imperial College London) Amic Frouvelle (Paris Dauphine) ETH Zürich, November 2016

More information

Macroscopic limits and phase transition in a system of self-propelled particles

Macroscopic limits and phase transition in a system of self-propelled particles Macroscopic limits and phase transition in a system of self-propelled particles Pierre Degond (,), Amic Frouvelle (,), Jian-Guo Liu (3) arxiv:09.404v [math-ph] ep 0 -Université de Toulouse; UP, INA, UT,

More information

ACMAC s PrePrint Repository

ACMAC s PrePrint Repository ACMAC s PrePrint Repository Macroscopic limits and phase transition in a system of self-propelled particles Pierre Degond and Amic Frouvelle and Jian-Guo Liu Original Citation: Degond, Pierre and Frouvelle,

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

Hydrodynamic limit and numerical solutions in a system of self-pr

Hydrodynamic limit and numerical solutions in a system of self-pr Hydrodynamic limit and numerical solutions in a system of self-propelled particles Institut de Mathématiques de Toulouse Joint work with: P.Degond, G.Dimarco, N.Wang 1 2 The microscopic model The macroscopic

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Complex systems: Self-organization vs chaos assumption

Complex systems: Self-organization vs chaos assumption 1 Complex systems: Self-organization vs chaos assumption P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

Entropic structure of the Landau equation. Coulomb interaction

Entropic structure of the Landau equation. Coulomb interaction with Coulomb interaction Laurent Desvillettes IMJ-PRG, Université Paris Diderot May 15, 2017 Use of the entropy principle for specific equations Spatially Homogeneous Kinetic equations: 1 Fokker-Planck:

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

arxiv: v1 [math.na] 14 Jan 2019

arxiv: v1 [math.na] 14 Jan 2019 Noname manuscript No. will be inserted by the editor) Kinetic equations and self-organized band formations Quentin Griette Sebastien Motsch arxiv:191.43v1 [math.na] 14 Jan 19 the date of receipt and acceptance

More information

Hydrodynamic Limit with Geometric Correction in Kinetic Equations

Hydrodynamic Limit with Geometric Correction in Kinetic Equations Hydrodynamic Limit with Geometric Correction in Kinetic Equations Lei Wu and Yan Guo KI-Net Workshop, CSCAMM University of Maryland, College Park 2015-11-10 1 Simple Model - Neutron Transport Equation

More information

Mathematical modeling of complex systems Part 1. Overview

Mathematical modeling of complex systems Part 1. Overview 1 Mathematical modeling of complex systems Part 1. Overview P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

Fractional parabolic models arising in flocking. dynamics and fluids. Roman Shvydkoy jointly with Eitan Tadmor. April 18, 2017

Fractional parabolic models arising in flocking. dynamics and fluids. Roman Shvydkoy jointly with Eitan Tadmor. April 18, 2017 Fractional April 18, 2017 Cucker-Smale model (2007) We study macroscopic versions of systems modeling self-organized collective dynamics of agents : ẋ i = v i, v i = λ N φ( x i x j )(v j v i ), N j=1 (x

More information

Fourier Law and Non-Isothermal Boundary in the Boltzmann Theory

Fourier Law and Non-Isothermal Boundary in the Boltzmann Theory in the Boltzmann Theory Joint work with Raffaele Esposito, Yan Guo, Rossana Marra DPMMS, University of Cambridge ICERM November 8, 2011 Steady Boltzmann Equation Steady Boltzmann Equation v x F = Q(F,

More information

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from: http://cnls.lanl.gov/~ebn Plan I.

More information

Lattice Boltzmann Method

Lattice Boltzmann Method 3 Lattice Boltzmann Method 3.1 Introduction The lattice Boltzmann method is a discrete computational method based upon the lattice gas automata - a simplified, fictitious molecular model. It consists of

More information

Exponential moments for the homogeneous Kac equation

Exponential moments for the homogeneous Kac equation Exponential moments for the homogeneous Kac equation Maja Tasković University of Pennsylvania Young Researchers Workshop: Stochastic and deterministic methods in kinetic theory, Duke University, November

More information

Entropy-dissipation methods I: Fokker-Planck equations

Entropy-dissipation methods I: Fokker-Planck equations 1 Entropy-dissipation methods I: Fokker-Planck equations Ansgar Jüngel Vienna University of Technology, Austria www.jungel.at.vu Introduction Boltzmann equation Fokker-Planck equations Degenerate parabolic

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction

From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction From a Mesoscopic to a Macroscopic Description of Fluid-Particle Interaction Carnegie Mellon University Center for Nonlinear Analysis Working Group, October 2016 Outline 1 Physical Framework 2 3 Free Energy

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

On the interplay between kinetic theory and game theory

On the interplay between kinetic theory and game theory 1 On the interplay between kinetic theory and game theory Pierre Degond Department of mathematics, Imperial College London pdegond@imperial.ac.uk http://sites.google.com/site/degond/ Joint work with J.

More information

YAN GUO, JUHI JANG, AND NING JIANG

YAN GUO, JUHI JANG, AND NING JIANG LOCAL HILBERT EXPANSION FOR THE BOLTZMANN EQUATION YAN GUO, JUHI JANG, AND NING JIANG Abstract. We revisit the classical ork of Caflisch [C] for compressible Euler limit of the Boltzmann equation. By using

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

The Boltzmann Equation and Its Applications

The Boltzmann Equation and Its Applications Carlo Cercignani The Boltzmann Equation and Its Applications With 42 Illustrations Springer-Verlag New York Berlin Heidelberg London Paris Tokyo CONTENTS PREFACE vii I. BASIC PRINCIPLES OF THE KINETIC

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011.

SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. SUMMER SCHOOL - KINETIC EQUATIONS LECTURE II: CONFINED CLASSICAL TRANSPORT Shanghai, 2011. C. Ringhofer ringhofer@asu.edu, math.la.asu.edu/ chris OVERVIEW Quantum and classical description of many particle

More information

Simple examples of MHD equilibria

Simple examples of MHD equilibria Department of Physics Seminar. grade: Nuclear engineering Simple examples of MHD equilibria Author: Ingrid Vavtar Mentor: prof. ddr. Tomaž Gyergyek Ljubljana, 017 Summary: In this seminar paper I will

More information

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Giacomo Dimarco Institut des Mathématiques de Toulouse Université de Toulouse France http://perso.math.univ-toulouse.fr/dimarco giacomo.dimarco@math.univ-toulouse.fr

More information

Long-range forces and phase separation in simple active fluids

Long-range forces and phase separation in simple active fluids 1/21 Long-range forces and phase separation in simple active fluids Alex Solon, PLS fellow, MIT Harvard Kid s seminar, September 19th 2017 Active matter 2/21 Stored energy Mechanical energy Self-propelled

More information

A new flocking model through body attitude coordination

A new flocking model through body attitude coordination A new flocking model through body attitude coordination arxiv:1605.03509v1 [math-ph] 11 May 016 Pierre Degond 1, Amic Frouvelle, and Sara Merino-Aceituno 3 13 Department of Mathematics, Imperial College

More information

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical

Engineering. Spring Department of Fluid Mechanics, Budapest University of Technology and Economics. Large-Eddy Simulation in Mechanical Outline Department of Fluid Mechanics, Budapest University of Technology and Economics Spring 2011 Outline Outline Part I First Lecture Connection between time and ensemble average Ergodicity1 Ergodicity

More information

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1.

CHAPTER 11: REYNOLDS-STRESS AND RELATED MODELS. Turbulent Flows. Stephen B. Pope Cambridge University Press, 2000 c Stephen B. Pope y + < 1. 1/3 η 1C 2C, axi 1/6 2C y + < 1 axi, ξ > 0 y + 7 axi, ξ < 0 log-law region iso ξ -1/6 0 1/6 1/3 Figure 11.1: The Lumley triangle on the plane of the invariants ξ and η of the Reynolds-stress anisotropy

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

VIII.B Equilibrium Dynamics of a Field

VIII.B Equilibrium Dynamics of a Field VIII.B Equilibrium Dynamics of a Field The next step is to generalize the Langevin formalism to a collection of degrees of freedom, most conveniently described by a continuous field. Let us consider the

More information

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions

On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions On the Interior Boundary-Value Problem for the Stationary Povzner Equation with Hard and Soft Interactions Vladislav A. Panferov Department of Mathematics, Chalmers University of Technology and Göteborg

More information

A HYPERBOLIC RELAXATION MODEL FOR PRODUCT FLOW IN COMPLEX PRODUCTION NETWORKS. Ali Unver, Christian Ringhofer and Dieter Armbruster

A HYPERBOLIC RELAXATION MODEL FOR PRODUCT FLOW IN COMPLEX PRODUCTION NETWORKS. Ali Unver, Christian Ringhofer and Dieter Armbruster DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS Supplement 2009 pp. 790 799 A HYPERBOLIC RELAXATION MODEL FOR PRODUCT FLOW IN COMPLEX PRODUCTION NETWORKS Ali Unver, Christian Ringhofer

More information

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL Purba Chatterjee and Nigel Goldenfeld Department of Physics University of Illinois at Urbana-Champaign Flocking in

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

Computational Fluid Dynamics 2

Computational Fluid Dynamics 2 Seite 1 Introduction Computational Fluid Dynamics 11.07.2016 Computational Fluid Dynamics 2 Turbulence effects and Particle transport Martin Pietsch Computational Biomechanics Summer Term 2016 Seite 2

More information

Kinetic models of Maxwell type. A brief history Part I

Kinetic models of Maxwell type. A brief history Part I . A brief history Part I Department of Mathematics University of Pavia, Italy Porto Ercole, June 8-10 2008 Summer School METHODS AND MODELS OF KINETIC THEORY Outline 1 Introduction Wild result The central

More information

MASS AND ENERGY BALANCE LAWS DERIVED FROM HIGH-FIELD LIMITS OF THERMOSTATTED BOLTZMANN EQUATIONS

MASS AND ENERGY BALANCE LAWS DERIVED FROM HIGH-FIELD LIMITS OF THERMOSTATTED BOLTZMANN EQUATIONS COMMUN. MATH. SCI. Vol. 5, No., pp. 355 38 c 007 International Press MASS AND ENEGY BALANCE LAWS DEIVED FOM HIGH-FIELD LIMITS OF THEMOSTATTED BOLTZMANN EQUATIONS P. DEGOND AND B. WENNBEG Abstract. We derive

More information

Non-equilibrium mixtures of gases: modeling and computation

Non-equilibrium mixtures of gases: modeling and computation Non-equilibrium mixtures of gases: modeling and computation Lecture 1: and kinetic theory of gases Srboljub Simić University of Novi Sad, Serbia Aim and outline of the course Aim of the course To present

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

Mathematical modeling of critical conditions in the thermal explosion problem

Mathematical modeling of critical conditions in the thermal explosion problem Mathematical modeling of critical conditions in the thermal explosion problem G. N. Gorelov and V. A. Sobolev Samara State University, Russia Abstract The paper is devoted to the thermal explosion problem

More information

Anomalous energy transport in FPU-β chain

Anomalous energy transport in FPU-β chain Anomalous energy transport in FPU-β chain Sara Merino Aceituno Joint work with Antoine Mellet (University of Maryland) http://arxiv.org/abs/1411.5246 Imperial College London 9th November 2015. Kinetic

More information

Interaction(s) fluide-structure & modélisation de la turbulence

Interaction(s) fluide-structure & modélisation de la turbulence Interaction(s) fluide-structure & modélisation de la turbulence Pierre Sagaut Institut Jean Le Rond d Alembert Université Pierre et Marie Curie- Paris 6, France http://www.ida.upmc.fr/~sagaut GDR Turbulence

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

Global well-posedness and decay for the viscous surface wave problem without surface tension

Global well-posedness and decay for the viscous surface wave problem without surface tension Global well-posedness and decay for the viscous surface wave problem without surface tension Ian Tice (joint work with Yan Guo) Université Paris-Est Créteil Laboratoire d Analyse et de Mathématiques Appliquées

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Numerical Simulation of Herding and Flocking Models

Numerical Simulation of Herding and Flocking Models ERASMUS MUNDUS MASTER OF INDUSTRIAL MATHEMATICS Numerical Simulation of Herding and Flocking Models Robert Setekera Supervisor: Prof. Dr. Axel Klar A Thesis submitted for the degree of Master of Science

More information

and in each case give the range of values of x for which the expansion is valid.

and in each case give the range of values of x for which the expansion is valid. α β γ δ ε ζ η θ ι κ λ µ ν ξ ο π ρ σ τ υ ϕ χ ψ ω Mathematics is indeed dangerous in that it absorbs students to such a degree that it dulls their senses to everything else P Kraft Further Maths A (MFPD)

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

Pressure and phase separation in active matter

Pressure and phase separation in active matter 1/33 Pressure and phase separation in active matter Alex Solon Technion, November 13th 2016 Active matter 2/33 Stored energy Mechanical energy Self-propelled particles Active matter 2/33 Stored energy

More information

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Traveling waves of a kinetic transport model for the KPP-Fisher equation Traveling waves of a kinetic transport model for the KPP-Fisher equation Christian Schmeiser Universität Wien and RICAM homepage.univie.ac.at/christian.schmeiser/ Joint work with C. Cuesta (Bilbao), S.

More information

VALIDITY OF THE BOLTZMANN EQUATION

VALIDITY OF THE BOLTZMANN EQUATION VALIDITY OF THE BOLTZMANN EQUATION BEYOND HARD SPHERES based on joint work with M. Pulvirenti and C. Saffirio Sergio Simonella Technische Universität München Sergio Simonella - TU München Academia Sinica

More information

Heat Flows, Geometric and Functional Inequalities

Heat Flows, Geometric and Functional Inequalities Heat Flows, Geometric and Functional Inequalities M. Ledoux Institut de Mathématiques de Toulouse, France heat flow and semigroup interpolations Duhamel formula (19th century) pde, probability, dynamics

More information

Title of communication, titles not fitting in one line will break automatically

Title of communication, titles not fitting in one line will break automatically Title of communication titles not fitting in one line will break automatically First Author Second Author 2 Department University City Country 2 Other Institute City Country Abstract If you want to add

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

Quasi-stationary-states in Hamiltonian mean-field dynamics

Quasi-stationary-states in Hamiltonian mean-field dynamics Quasi-stationary-states in Hamiltonian mean-field dynamics STEFANO RUFFO Dipartimento di Energetica S. Stecco, Università di Firenze, and INFN, Italy Statistical Mechanics Day III, The Weizmann Institute

More information

Resolvent estimates for high-contrast elliptic problems with periodic coefficients

Resolvent estimates for high-contrast elliptic problems with periodic coefficients Resolvent estimates for high-contrast elliptic problems with periodic coefficients Joint work with Shane Cooper (University of Bath) 25 August 2015, Centro de Ciencias de Benasque Pedro Pascual Partial

More information

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work. Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

Exponential tail behavior for solutions to the homogeneous Boltzmann equation

Exponential tail behavior for solutions to the homogeneous Boltzmann equation Exponential tail behavior for solutions to the homogeneous Boltzmann equation Maja Tasković The University of Texas at Austin Young Researchers Workshop: Kinetic theory with applications in physical sciences

More information

Hyperbolic Models for Large Supply Chains. Christian Ringhofer (Arizona State University) Hyperbolic Models for Large Supply Chains p.

Hyperbolic Models for Large Supply Chains. Christian Ringhofer (Arizona State University) Hyperbolic Models for Large Supply Chains p. Hyperbolic Models for Large Supply Chains Christian Ringhofer (Arizona State University) Hyperbolic Models for Large Supply Chains p. /4 Introduction Topic: Overview of conservation law (traffic - like)

More information

Lattice Boltzmann Method

Lattice Boltzmann Method Chapter 5 Lattice Boltzmann Method 5.1 Pseudo-kinetic computational methods Understanding the flow properties of complex fluids in complex topologies is of importance to technological applications and

More information

Recent advances in kinetic theory for mixtures of polyatomic gases

Recent advances in kinetic theory for mixtures of polyatomic gases Recent advances in kinetic theory for mixtures of polyatomic gases Marzia Bisi Parma University, Italy Conference Problems on Kinetic Theory and PDE s Novi Sad (Serbia), September 25 27, 2014 M. Bisi,

More information

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium

Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Breakdown of Pattern Formation in Activator-Inhibitor Systems and Unfolding of a Singular Equilibrium Izumi Takagi (Mathematical Institute, Tohoku University) joint work with Kanako Suzuki (Institute for

More information

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Jian-Guo Liu Department of Physics and Department of Mathematics, Duke University Collaborators: Pierre

More information

Kinetic theory of gases

Kinetic theory of gases Kinetic theory of gases Toan T. Nguyen Penn State University http://toannguyen.org http://blog.toannguyen.org Graduate Student seminar, PSU Jan 19th, 2017 Fall 2017, I teach a graduate topics course: same

More information

Clusters in granular flows : elements of a non-local rheology

Clusters in granular flows : elements of a non-local rheology CEA-Saclay/SPEC; Group Instabilities and Turbulence Clusters in granular flows : elements of a non-local rheology Olivier Dauchot together with many contributors: D. Bonamy, E. Bertin, S. Deboeuf, B. Andreotti,

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models arxiv: v1 [cond-mat.stat-mech] 12 Apr 2014

Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models arxiv: v1 [cond-mat.stat-mech] 12 Apr 2014 EPJ manuscript No. (will be inserted by the editor) Boltzmann-Ginzburg-Landau approach for continuous descriptions of generic Vicsek-like models arxiv:1404.3275v1 [cond-mat.stat-mech] 12 Apr 2014 Anton

More information

SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD. 1. Dirichlet integral

SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD. 1. Dirichlet integral SOLUTION OF THE DIRICHLET PROBLEM WITH A VARIATIONAL METHOD CRISTIAN E. GUTIÉRREZ FEBRUARY 3, 29. Dirichlet integral Let f C( ) with open and bounded. Let H = {u C ( ) : u = f on } and D(u) = Du(x) 2 dx.

More information

Minimal Surface equations non-solvability strongly convex functional further regularity Consider minimal surface equation.

Minimal Surface equations non-solvability strongly convex functional further regularity Consider minimal surface equation. Lecture 7 Minimal Surface equations non-solvability strongly convex functional further regularity Consider minimal surface equation div + u = ϕ on ) = 0 in The solution is a critical point or the minimizer

More information

Hydrodynamics, Thermodynamics, and Mathematics

Hydrodynamics, Thermodynamics, and Mathematics Hydrodynamics, Thermodynamics, and Mathematics Hans Christian Öttinger Department of Mat..., ETH Zürich, Switzerland Thermodynamic admissibility and mathematical well-posedness 1. structure of equations

More information

Supporting Information

Supporting Information Supporting Information A: Calculation of radial distribution functions To get an effective propagator in one dimension, we first transform 1) into spherical coordinates: x a = ρ sin θ cos φ, y = ρ sin

More information

Exponential methods for kinetic equations

Exponential methods for kinetic equations Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Summer Lecture Notes Thermodynamics: Fundamental Relation, Parameters, and Maxwell Relations

Summer Lecture Notes Thermodynamics: Fundamental Relation, Parameters, and Maxwell Relations Summer Lecture Notes Thermodynamics: Fundamental Relation, Parameters, and Maxwell Relations Andrew Forrester August 4, 2006 1 The Fundamental (Difference or Differential) Relation of Thermodynamics 1

More information

6.2 Governing Equations for Natural Convection

6.2 Governing Equations for Natural Convection 6. Governing Equations for Natural Convection 6..1 Generalized Governing Equations The governing equations for natural convection are special cases of the generalized governing equations that were discussed

More information

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit

Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Prof. dr. A. Achterberg, Astronomical Dept., IMAPP, Radboud Universiteit Rough breakdown of MHD shocks Jump conditions: flux in = flux out mass flux: ρv n magnetic flux: B n Normal momentum flux: ρv n

More information

A stochastic particle system for the Burgers equation.

A stochastic particle system for the Burgers equation. A stochastic particle system for the Burgers equation. Alexei Novikov Department of Mathematics Penn State University with Gautam Iyer (Carnegie Mellon) supported by NSF Burgers equation t u t + u x u

More information