Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Size: px
Start display at page:

Download "Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)"

Transcription

1 Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from:

2 Plan I. Averaging II. Restricted averaging III.Diffusive averaging IV.Orientational averaging

3 Themes 1. Scaling and multiscaling 2. Cascades 3. Pattern formation and bifurcations 4. Phase transitions and synchronization

4 1. Averaging

5 The basic averaging process N identical particles (grains, billiard balls) Each particle carries a number (velocity) v i Particles interact in pairs (collision) Both particles acquire the average (inelastic) (v 1, v 2 ) ( v1 + v 2 2, v 1 + v 2 2 ) Melzak 76

6 Conservation laws & dissipation Total number of particles is conserved Total momentum is conserved N i=1 v i = constant Energy is dissipated in each encounter E i = 1 2 v2 i E = 1 4 (v 1 v 2 ) 2 We expect the velocities to shrink

7 Some details Dynamic treatment Each particle collides once per unit time Random interactions The two colliding particles are chosen randomly Infinite particle limit is implicitly assumed N Process is galilean invariant Set average velocity to zero x x + x 0 x = 0

8 The temperature Definition T = v 2 Time evolution = exponential decay dt dt = λ T λt T = T 0 e λ = 1 2 All energy is eventually dissipated Trivial steady-state P (v) δ(v)

9 The moments Kinetic theory P (v, t) t = dv 1 dv 2 P (v 1, t)p (v 2, t) [ δ ( v v 1 + v 2 2 ) ] δ(v v 1 ) Moments of the distribution M n = dv v n P (v, t) M 0 = 1 M 2n+1 = 0 Closed nonlinear recursion equations dm n dt Asymptotic decay n 2 + λ n M n = 2 n m=2 ( n m ) M m M n m λ n < λ m + λ n m M n e λ nt with λ n = 1 2 (n 1)

10 Multiscaling Nonlinear spectrum of decay constants λ n = 1 2 (n 1) Spectrum is concave, saturates λ n < λ m + λ n m Each moment has a distinct behavior M n M m M n m as t Multiscaling Asymptotic Behavior

11 The Fourier transform The Fourier transform F (k) = Obeys closed, nonlinear, nonlocal equation F (k) t Scaling behavior, scale set by second moment Nonlinear differential equation + F (k) = F 2 (k/2) dv e ikv P (v, t) F (k, t) f ( ke λt) λ = λ 2 2 = 1 4 λ z f (z) + f(z) = f 2 (z/2) f(0) = 1 f (0) = 0 Solution f(z) = (1 + z )e z

12 The velocity distribution Self-similar form P (v, t) e λt p ( ve λt) Obtained by inverse Fourier transform p(w) = 2 π 1 (1 + w 2 ) 2 Power-law tail p(w) w 4 1. Temperature is the characteristic velocity scale 2. Multiscaling is consequence of diverging moments of the power-law similarity function

13 Stationary Solutions Stationary solutions do exist! F (k) = F 2 (k/2) Family of exponential solutions F (k) = exp( kv 0 ) Lorentz/Cauchy distribution P (v) = 1 πv (v/v 0 ) 2 How is a stationary solution consistent with energy dissipation?

14 Extreme Statistics Large velocities, cascade process v ( v 2, v 2 ) (v 1, v 2 ) ( v1 + v 2 2, v 1 + v 2 2 ) Linear evolution equation P (v) t = 4P ( v 2 ) P (v) Steady-state: power-law distribution P (v) v 2 4P ( v 2 ) = P (v) Divergent energy, divergent dissipation rate

15 Injection, Cascade, Dissipation Experiment: rare, powerful energy injections Lottery MC: award one particle all dissipated energy ln P ( v ) v 0 ln v V Injection selects the typical scale!

16 I. Conclusions Moments exhibit multiscaling Distribution function is self-similar Power-law tail Stationary solution with infinite energy exists Driven steady-state Energy cascade

17 1I. Restricted Averaging

18 The compromise process Opinion measured by a continuum variable Compromise: reached by pairwise interactions (x 1, x 2 ) < x < ( x1 + x 2 Conviction: restricted interaction range 2 x 1 x 2 < 1, x 1 + x 2 2 ) Minimal, one parameter model Mimics competition between compromise and conviction Weisbuch 2001

19 Problem set-up Given uniform initial (un-normalized) { distribution P 0 (x) = Find final distribution Multitude of final steady-states P 0 (x) = P (x) =? N i=1 1 x < 0 x > m i δ(x x i ) x i x j > 1 Dynamics selects one (deterministically) Multiple localized clusters

20 Numerical methods, kinetic theory Same master equation, restricted integration P (x, t) t = x 1 x 2 < 1 dx 1 dx 2 P (x 1, t)p (x 2, t) Direct Monte Carlo simulation of stochastic process Numerical integration of rate equations [ δ ( x x 1 + x 2 2 ) δ(x x 1 ]

21 Rise and fall of central party 0 < < < < Central party may or may not exist!

22 Resurrection of central party < < < < Parties may or may not be equal in size

23 Bifurcations and Patterns

24 Self-similar structure, universality Periodic sequence of bifurcations 1. Nucleation of minor cluster branch 2. Nucleation of major cluster brunch 3. Nucleation of central cluster Alternating major-minor pattern Clusters are equally spaced Period L gives major cluster mass, separation x( ) = x( ) + L L = 2.155

25 How many political parties? frequency number of parties Data: CIA world factbook countries with multi-party parliaments Average=5.8; Standard deviation=2.9

26 Cluster mass Masses are periodic m( ) = m( + L) Major mass M L = Minor mass m Why are the minor clusters so small? gaps?

27 Scaling near bifurcation points Minor mass vanishes m ( c ) α Universal exponent α = { 3 type1 4 type3 L-2 is the small parameter explains small saturation mass

28 Heuristic derivation of exponent Perturbation theory Major cluster Minor cluster Rate of transfer from minor cluster to major cluster dm = 1 + ɛ x( ) = 0 x( ) = ±(1 + ɛ/2) dt = m M Process stops when x e t f /2 ɛ Final mass of minor cluster m ɛ e t x 2 e t m( ) m(t f ) ɛ 3 α = 3

29 Linear stability analysis Fastest growing mode Pattern selection P 1 e i(kx+wt) = w(k) = 8 k sin k 2 2 k sin k 2 dw dk = L = 2π k = Traveling wave (FKPP saddle point analysis) dw dk = Im(w) Im(k) = L = 2π k = Patterns induced by wave propagation from boundary However, emerging period is different < L < Pattern selection is intrinsically nonlinear

30 II. Conclusions Clusters form via bifurcations Periodic structure Alternating major-minor pattern Central party does not always exist Power-law behavior near transitions Nonlinear pattern selection

31 III. Diffusive Averaging

32 Diffusive Forcing Two independent competing processes 1. Averaging (nonlinear) (v 1, v 2 ) ( v1 + v 2 2, v 1 + v 2 2 ) 2. Random uncorrelated white noise (linear) dv j dt = η j(t) η j (t)η j (t ) = 2Dδ(t t ) Add diffusion term to equation (Fourier space) (1 + Dk 2 )F (k) = F 2 (k/2) System reaches a nontrivial steady-state Energy injection balances dissipation

33 Infinite product solution Solution by iteration F (k) = Dk 2 F 2 (k/2) = Dk 2 (1 + D(k/2) 2 ) 2 F 4 (k/4) = Infinite product solution F (k) = [ 1 + D(k/2 i ) 2] 2 i i=0 Exponential tail Also follows from v ( ) P (v) exp v / D D 2 P (v) v 2 = P (v) P (k) Dk 2 1 k i/ D Non-Maxwellian distribution/overpopulated tails

34 Cumulant solution Steady-state equation F (k)(1 + Dk 2 ) = F 2 (k/2) Take the logarithm ψ(k) = ln F (k) ψ(k) + ln(1 + Dk 2 ) = 2ψ(k/2) Cumulant solution [ ] F (k) = exp n=1 ψ n ( Dk 2 ) n /n Generalized fluctuation-dissipation relations ψ n = λ 1 n = [ n] 1

35 Experiment A shaken box of marbles Menon 01 Aronson 05

36 III. Conclusions Nonequilibrium steady-states Energy pumped and dissipated by different mechanisms Overpopulation of high-energy tail with respect to equilibrium distribution

37 IV. Orientational Averaging

38 Orientational Averaging Each rod has an orientation 0 θ π Alignment by pairwise interactions (θ 1, θ 2 ) {( θ1 +θ 2, θ 1+θ ) ( θ1 +θ 2 +2π, θ 1+θ 2 +2π 2 2 ) θ 1 θ 2 < π θ 1 θ 2 > π Diffusive wiggling Kinetic theory P t = D 2 P θ 2 + π dθ j dt = η j(t) π dφ P ( θ φ 2 η j (t)η j (t ) = 2Dδ(t t ) ) ( P θ + φ ) P. 2

39 Fourier analysis Fourier transform P k = e ikθ = π π dθe ikθ P (θ) P (θ) = 1 2π k= P k e ikθ Order parameter Probes state of system R = R = e iθ = P 1 { 0 disordered state 1 perfectly ordered state Closed equation for Fourier modes P k = i+j=k G i,j P i P j G i,j = 0 when i j = 2n

40 Nonequilibrium phase transition Critical diffusion constant Subcritical: ordered phase D c = 4 π 1 R > 0 Supercritical: disordered phase R = 0 Critical behavior R (D c D) 1/2

41 Distribution of orientation Fourier modes decay exponentially with R P k R k Small number of modes sufficient

42 Partition of Integers Iterate the Fourier equation P k = G i,j P i P j = i+j=k i+j=k l+m=j G i,j G l,m P i P l P m = Series solution R = r 3 R 3 + r 5 R 5 + Partition rules k = i + j i 0 j 0 G i,j 0 r 3 = G 1,2 G 1,

43 Experiments A shaken dish of toothpicks

44 IV. Conclusions Nonequilibrium phase transition Weak noise: ordered phase (nematic) Strong noise: disordered phase Solution relates to iterated partition of integers Only when Fourier spectrum is discrete: exact solution possible for arbitrary averaging rates

First-Passage Statistics of Extreme Values

First-Passage Statistics of Extreme Values First-Passage Statistics of Extreme Values Eli Ben-Naim Los Alamos National Laboratory with: Paul Krapivsky (Boston University) Nathan Lemons (Los Alamos) Pearson Miller (Yale, MIT) Talk, publications

More information

The Inelastic Maxwell Model

The Inelastic Maxwell Model The Inelastic Maxwell Model E. Ben-Naim 1 and P. L. Krapivsky 1 Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 Center for Polymer Studies and

More information

Instantaneous gelation in Smoluchowski s coagulation equation revisited

Instantaneous gelation in Smoluchowski s coagulation equation revisited Instantaneous gelation in Smoluchowski s coagulation equation revisited Colm Connaughton Mathematics Institute and Centre for Complexity Science, University of Warwick, UK Collaborators: R. Ball (Warwick),

More information

Anomalous velocity distributions in inelastic Maxwell gases

Anomalous velocity distributions in inelastic Maxwell gases Anomalous velocity distributions in inelastic Maxwell gases R. Brito M. H. Ernst Published in: Advances in Condensed Matter and Statistical Physics, E. Korutcheva and R. Cuerno (eds.), Nova Science Publishers,

More information

Decline of minorities in stubborn societies

Decline of minorities in stubborn societies EPJ manuscript No. (will be inserted by the editor) Decline of minorities in stubborn societies M. Porfiri 1, E.M. Bollt 2 and D.J. Stilwell 3 1 Department of Mechanical, Aerospace and Manufacturing Engineering,

More information

Unity and Discord in Opinion Dynamics

Unity and Discord in Opinion Dynamics Unity and Discord in Opinion Dynamics E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico,

More information

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is

The dynamics of small particles whose size is roughly 1 µmt or. smaller, in a fluid at room temperature, is extremely erratic, and is 1 I. BROWNIAN MOTION The dynamics of small particles whose size is roughly 1 µmt or smaller, in a fluid at room temperature, is extremely erratic, and is called Brownian motion. The velocity of such particles

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Alignment processes on the sphere

Alignment processes on the sphere Alignment processes on the sphere Amic Frouvelle CEREMADE Université Paris Dauphine Joint works with : Pierre Degond (Imperial College London) and Gaël Raoul (École Polytechnique) Jian-Guo Liu (Duke University)

More information

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation

Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation Center for Turbulence Research Annual Research Briefs 006 363 Magnetic waves in a two-component model of galactic dynamo: metastability and stochastic generation By S. Fedotov AND S. Abarzhi 1. Motivation

More information

Lecture 6: Ideal gas ensembles

Lecture 6: Ideal gas ensembles Introduction Lecture 6: Ideal gas ensembles A simple, instructive and practical application of the equilibrium ensemble formalisms of the previous lecture concerns an ideal gas. Such a physical system

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. small angle approximation. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ small angle approximation θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic

More information

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution

Oscillatory Motion. Simple pendulum: linear Hooke s Law restoring force for small angular deviations. Oscillatory solution Oscillatory Motion Simple pendulum: linear Hooke s Law restoring force for small angular deviations d 2 θ dt 2 = g l θ θ l Oscillatory solution θ(t) =θ 0 sin(ωt + φ) F with characteristic angular frequency

More information

On high energy tails in inelastic gases arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005

On high energy tails in inelastic gases arxiv:cond-mat/ v1 [cond-mat.stat-mech] 5 Oct 2005 On high energy tails in inelastic gases arxiv:cond-mat/0510108v1 [cond-mat.stat-mech] 5 Oct 2005 R. Lambiotte a,b, L. Brenig a J.M. Salazar c a Physique Statistique, Plasmas et Optique Non-linéaire, Université

More information

Coarsening process in the 2d voter model

Coarsening process in the 2d voter model Alessandro Tartaglia (LPTHE) Coarsening in the 2d voter model May 8, 2015 1 / 34 Coarsening process in the 2d voter model Alessandro Tartaglia LPTHE, Université Pierre et Marie Curie alessandro.tartaglia91@gmail.com

More information

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010) NATURAL SCIENCES TRIPOS Part III Past questions EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics (27 February 21) 1 In one-dimension, the q-state Potts model is defined by the lattice Hamiltonian βh =

More information

Brownian motion and the Central Limit Theorem

Brownian motion and the Central Limit Theorem Brownian motion and the Central Limit Theorem Amir Bar January 4, 3 Based on Shang-Keng Ma, Statistical Mechanics, sections.,.7 and the course s notes section 6. Introduction In this tutorial we shall

More information

CHAPTER V. Brownian motion. V.1 Langevin dynamics

CHAPTER V. Brownian motion. V.1 Langevin dynamics CHAPTER V Brownian motion In this chapter, we study the very general paradigm provided by Brownian motion. Originally, this motion is that a heavy particle, called Brownian particle, immersed in a fluid

More information

Chaotic motion. Phys 420/580 Lecture 10

Chaotic motion. Phys 420/580 Lecture 10 Chaotic motion Phys 420/580 Lecture 10 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle CEREMADE Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre

More information

F n = F n 1 + F n 2. F(z) = n= z z 2. (A.3)

F n = F n 1 + F n 2. F(z) = n= z z 2. (A.3) Appendix A MATTERS OF TECHNIQUE A.1 Transform Methods Laplace transforms for continuum systems Generating function for discrete systems This method is demonstrated for the Fibonacci sequence F n = F n

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

VIII.B Equilibrium Dynamics of a Field

VIII.B Equilibrium Dynamics of a Field VIII.B Equilibrium Dynamics of a Field The next step is to generalize the Langevin formalism to a collection of degrees of freedom, most conveniently described by a continuous field. Let us consider the

More information

Metropolis Monte Carlo simulation of the Ising Model

Metropolis Monte Carlo simulation of the Ising Model Metropolis Monte Carlo simulation of the Ising Model Krishna Shrinivas (CH10B026) Swaroop Ramaswamy (CH10B068) May 10, 2013 Modelling and Simulation of Particulate Processes (CH5012) Introduction The Ising

More information

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008

arxiv: v1 [cond-mat.stat-mech] 6 Mar 2008 CD2dBS-v2 Convergence dynamics of 2-dimensional isotropic and anisotropic Bak-Sneppen models Burhan Bakar and Ugur Tirnakli Department of Physics, Faculty of Science, Ege University, 35100 Izmir, Turkey

More information

Stochastic equations for thermodynamics

Stochastic equations for thermodynamics J. Chem. Soc., Faraday Trans. 93 (1997) 1751-1753 [arxiv 1503.09171] Stochastic equations for thermodynamics Roumen Tsekov Department of Physical Chemistry, University of Sofia, 1164 Sofia, ulgaria The

More information

The Dynamics of Consensus and Clash

The Dynamics of Consensus and Clash The Dynamics of Consensus and Clash Annual CNLS Conference 2006 Question: How do generic opinion dynamics models with (quasi)-ferromagnetic interactions evolve? Models: Voter model on heterogeneous graphs

More information

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma

Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Solution of time-dependent Boltzmann equation for electrons in non-thermal plasma Z. Bonaventura, D. Trunec Department of Physical Electronics Faculty of Science Masaryk University Kotlářská 2, Brno, CZ-61137,

More information

Kinetic models of opinion

Kinetic models of opinion Kinetic models of opinion formation Department of Mathematics University of Pavia, Italy Porto Ercole, June 8-10 2008 Summer School METHODS AND MODELS OF KINETIC THEORY Outline 1 Introduction Modeling

More information

1 What s the big deal?

1 What s the big deal? This note is written for a talk given at the graduate student seminar, titled how to solve quantum mechanics with x 4 potential. What s the big deal? The subject of interest is quantum mechanics in an

More information

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011

Numerical Analysis of 2-D Ising Model. Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Numerical Analysis of 2-D Ising Model By Ishita Agarwal Masters in Physics (University of Bonn) 17 th March 2011 Contents Abstract Acknowledgment Introduction Computational techniques Numerical Analysis

More information

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany

Langevin Methods. Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 10 D Mainz Germany Langevin Methods Burkhard Dünweg Max Planck Institute for Polymer Research Ackermannweg 1 D 55128 Mainz Germany Motivation Original idea: Fast and slow degrees of freedom Example: Brownian motion Replace

More information

The existence of Burnett coefficients in the periodic Lorentz gas

The existence of Burnett coefficients in the periodic Lorentz gas The existence of Burnett coefficients in the periodic Lorentz gas N. I. Chernov and C. P. Dettmann September 14, 2006 Abstract The linear super-burnett coefficient gives corrections to the diffusion equation

More information

Chaotic motion. Phys 750 Lecture 9

Chaotic motion. Phys 750 Lecture 9 Chaotic motion Phys 750 Lecture 9 Finite-difference equations Finite difference equation approximates a differential equation as an iterative map (x n+1,v n+1 )=M[(x n,v n )] Evolution from time t =0to

More information

Dynamical modelling of systems of coupled oscillators

Dynamical modelling of systems of coupled oscillators Dynamical modelling of systems of coupled oscillators Mathematical Neuroscience Network Training Workshop Edinburgh Peter Ashwin University of Exeter 22nd March 2009 Peter Ashwin (University of Exeter)

More information

Kinetic Models for Granular Flow

Kinetic Models for Granular Flow Journal of Statistical Physics, Vol. 97, Nos. 12, 1999 Kinetic Models for Granular Flow J. Javier Brey, 1 James W. Dufty, 2 and Andre s Santos 3 Received September 28, 1998; final March 29, 1999 The generalization

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

Continuum Modeling of Transportation Networks with Differential Equations

Continuum Modeling of Transportation Networks with Differential Equations with Differential Equations King Abdullah University of Science and Technology Thuwal, KSA Examples of transportation networks The Silk Road Examples of transportation networks Painting by Latifa Echakhch

More information

Fluctuation theorem in systems in contact with different heath baths: theory and experiments.

Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Fluctuation theorem in systems in contact with different heath baths: theory and experiments. Alberto Imparato Institut for Fysik og Astronomi Aarhus Universitet Denmark Workshop Advances in Nonequilibrium

More information

Dynamics of net-baryon density correlations near the QCD critical point

Dynamics of net-baryon density correlations near the QCD critical point Dynamics of net-baryon density correlations near the QCD critical point Marcus Bluhm and Marlene Nahrgang The work of M.B. is funded by the European Union s Horizon 22 research and innovation programme

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Collective and Stochastic Effects in Arrays of Submicron Oscillators

Collective and Stochastic Effects in Arrays of Submicron Oscillators DYNAMICS DAYS: Long Beach, 2005 1 Collective and Stochastic Effects in Arrays of Submicron Oscillators Ron Lifshitz (Tel Aviv), Jeff Rogers (HRL, Malibu), Oleg Kogan (Caltech), Yaron Bromberg (Tel Aviv),

More information

Looking Through the Vortex Glass

Looking Through the Vortex Glass Looking Through the Vortex Glass Lorenz and the Complex Ginzburg-Landau Equation Igor Aronson It started in 1990 Project started in Lorenz Kramer s VW van on the way back from German Alps after unsuccessful

More information

Connection to Laplacian in spherical coordinates (Chapter 13)

Connection to Laplacian in spherical coordinates (Chapter 13) Connection to Laplacian in spherical coordinates (Chapter 13) We might often encounter the Laplace equation and spherical coordinates might be the most convenient 2 u(r, θ, φ) = 0 We already saw in Chapter

More information

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or

This is a Gaussian probability centered around m = 0 (the most probable and mean position is the origin) and the mean square displacement m 2 = n,or Physics 7b: Statistical Mechanics Brownian Motion Brownian motion is the motion of a particle due to the buffeting by the molecules in a gas or liquid. The particle must be small enough that the effects

More information

Path Integral methods for solving stochastic problems. Carson C. Chow, NIH

Path Integral methods for solving stochastic problems. Carson C. Chow, NIH Path Integral methods for solving stochastic problems Carson C. Chow, NIH Why? Often in neuroscience we run into stochastic ODEs of the form dx dt = f(x)+g(x)η(t) η(t) =0 η(t)η(t ) = δ(t t ) Examples Integrate-and-fire

More information

Nonintegrability and the Fourier heat conduction law

Nonintegrability and the Fourier heat conduction law Nonintegrability and the Fourier heat conduction law Giuliano Benenti Center for Nonlinear and Complex Systems, Univ. Insubria, Como, Italy INFN, Milano, Italy In collaboration with: Shunda Chen, Giulio

More information

5 Applying the Fokker-Planck equation

5 Applying the Fokker-Planck equation 5 Applying the Fokker-Planck equation We begin with one-dimensional examples, keeping g = constant. Recall: the FPE for the Langevin equation with η(t 1 )η(t ) = κδ(t 1 t ) is = f(x) + g(x)η(t) t = x [f(x)p

More information

Statistical Mechanics and Thermodynamics of Small Systems

Statistical Mechanics and Thermodynamics of Small Systems Statistical Mechanics and Thermodynamics of Small Systems Luca Cerino Advisors: A. Puglisi and A. Vulpiani Final Seminar of PhD course in Physics Cycle XXIX Rome, October, 26 2016 Outline of the talk 1.

More information

From Newton s law to the linear Boltzmann equation without cut-off

From Newton s law to the linear Boltzmann equation without cut-off From Newton s law to the linear Boltzmann equation without cut-off Nathalie Ayi (1) (1) Université Pierre et Marie Curie 27 Octobre 217 Nathalie AYI Séminaire LJLL 27 Octobre 217 1 / 35 Organisation of

More information

Phase Synchronization

Phase Synchronization Phase Synchronization Lecture by: Zhibin Guo Notes by: Xiang Fan May 10, 2016 1 Introduction For any mode or fluctuation, we always have where S(x, t) is phase. If a mode amplitude satisfies ϕ k = ϕ k

More information

Strategic voting (>2 states) long time-scale switching. Partisan voting selfishness vs. collectiveness ultraslow evolution. T. Antal, V.

Strategic voting (>2 states) long time-scale switching. Partisan voting selfishness vs. collectiveness ultraslow evolution. T. Antal, V. Dynamics of Heterogeneous Voter Models Sid Redner (physics.bu.edu/~redner) Nonlinear Dynamics of Networks UMD April 5-9, 21 T. Antal (BU Harvard), N. Gibert (ENSTA), N. Masuda (Tokyo), M. Mobilia (BU Leeds),

More information

Avalanches, transport, and local equilibrium in self-organized criticality

Avalanches, transport, and local equilibrium in self-organized criticality PHYSICAL REVIEW E VOLUME 58, NUMBER 5 NOVEMBER 998 Avalanches, transport, and local equilibrium in self-organized criticality Afshin Montakhab and J. M. Carlson Department of Physics, University of California,

More information

Anomalous Collective Diffusion in One-Dimensional Driven Granular Media

Anomalous Collective Diffusion in One-Dimensional Driven Granular Media Typeset with jpsj2.cls Anomalous Collective Diffusion in One-Dimensional Driven Granular Media Yasuaki Kobayashi and Masaki Sano Department of Physics, University of Tokyo, Hongo, Tokyo 113-0033

More information

Time-reversal symmetry relation for nonequilibrium flows ruled by the fluctuating Boltzmann equation

Time-reversal symmetry relation for nonequilibrium flows ruled by the fluctuating Boltzmann equation Physica A 392 (2013 639-655 Time-reversal symmetry relation for nonequilibrium flows ruled by the fluctuating Boltzmann equation Pierre Gaspard Center for Nonlinear Phenomena and Complex Systems Department

More information

Physics 5A Final Review Solutions

Physics 5A Final Review Solutions Physics A Final Review Solutions Eric Reichwein Department of Physics University of California, Santa Cruz November 6, 0. A stone is dropped into the water from a tower 44.m above the ground. Another stone

More information

16. Working with the Langevin and Fokker-Planck equations

16. Working with the Langevin and Fokker-Planck equations 16. Working with the Langevin and Fokker-Planck equations In the preceding Lecture, we have shown that given a Langevin equation (LE), it is possible to write down an equivalent Fokker-Planck equation

More information

Tunneling via a barrier faster than light

Tunneling via a barrier faster than light Tunneling via a barrier faster than light Submitted by: Evgeniy Kogan Numerous theories contradict to each other in their predictions for the tunneling time. 1 The Wigner time delay Consider particle which

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

A scaling limit from Euler to Navier-Stokes equations with random perturbation

A scaling limit from Euler to Navier-Stokes equations with random perturbation A scaling limit from Euler to Navier-Stokes equations with random perturbation Franco Flandoli, Scuola Normale Superiore of Pisa Newton Institute, October 208 Newton Institute, October 208 / Subject of

More information

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson

36. TURBULENCE. Patriotism is the last refuge of a scoundrel. - Samuel Johnson 36. TURBULENCE Patriotism is the last refuge of a scoundrel. - Samuel Johnson Suppose you set up an experiment in which you can control all the mean parameters. An example might be steady flow through

More information

4 Evolution of density perturbations

4 Evolution of density perturbations Spring term 2014: Dark Matter lecture 3/9 Torsten Bringmann (torsten.bringmann@fys.uio.no) reading: Weinberg, chapters 5-8 4 Evolution of density perturbations 4.1 Statistical description The cosmological

More information

Finite Temperature Field Theory

Finite Temperature Field Theory Finite Temperature Field Theory Dietrich Bödeker, Universität Bielefeld 1. Thermodynamics (better: thermo-statics) (a) Imaginary time formalism (b) free energy: scalar particles, resummation i. pedestrian

More information

Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach

Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach Approximation of Top Lyapunov Exponent of Stochastic Delayed Turning Model Using Fokker-Planck Approach Henrik T. Sykora, Walter V. Wedig, Daniel Bachrathy and Gabor Stepan Department of Applied Mechanics,

More information

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition Effect of Diffusing Disorder on an Absorbing-State Phase Transition Ronald Dickman Universidade Federal de Minas Gerais, Brazil Support: CNPq & Fapemig, Brazil OUTLINE Introduction: absorbing-state phase

More information

ANTICORRELATIONS AND SUBDIFFUSION IN FINANCIAL SYSTEMS. K.Staliunas Abstract

ANTICORRELATIONS AND SUBDIFFUSION IN FINANCIAL SYSTEMS. K.Staliunas   Abstract ANICORRELAIONS AND SUBDIFFUSION IN FINANCIAL SYSEMS K.Staliunas E-mail: Kestutis.Staliunas@PB.DE Abstract Statistical dynamics of financial systems is investigated, based on a model of a randomly coupled

More information

A Model of Evolutionary Dynamics with Quasiperiodic Forcing

A Model of Evolutionary Dynamics with Quasiperiodic Forcing paper presented at Society for Experimental Mechanics (SEM) IMAC XXXIII Conference on Structural Dynamics February 2-5, 205, Orlando FL A Model of Evolutionary Dynamics with Quasiperiodic Forcing Elizabeth

More information

Table of Contents [ntc]

Table of Contents [ntc] Table of Contents [ntc] 1. Introduction: Contents and Maps Table of contents [ntc] Equilibrium thermodynamics overview [nln6] Thermal equilibrium and nonequilibrium [nln1] Levels of description in statistical

More information

Scaling and crossovers in activated escape near a bifurcation point

Scaling and crossovers in activated escape near a bifurcation point PHYSICAL REVIEW E 69, 061102 (2004) Scaling and crossovers in activated escape near a bifurcation point D. Ryvkine, M. I. Dykman, and B. Golding Department of Physics and Astronomy, Michigan State University,

More information

Stochastic Simulation.

Stochastic Simulation. Stochastic Simulation. (and Gillespie s algorithm) Alberto Policriti Dipartimento di Matematica e Informatica Istituto di Genomica Applicata A. Policriti Stochastic Simulation 1/20 Quote of the day D.T.

More information

A Reflexive toy-model for financial market

A Reflexive toy-model for financial market A Reflexive toy-model for financial market An alternative route towards intermittency. Luigi Palatella Dipartimento di Fisica, Università del Salento via Arnesano, I-73100 Lecce, Italy SM&FT 2011 - The

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II

Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Stochastic Wilson-Cowan equations for networks of excitatory and inhibitory neurons II Jack Cowan Mathematics Department and Committee on Computational Neuroscience University of Chicago 1 A simple Markov

More information

J07M.1 - Ball on a Turntable

J07M.1 - Ball on a Turntable Part I - Mechanics J07M.1 - Ball on a Turntable J07M.1 - Ball on a Turntable ẑ Ω A spherically symmetric ball of mass m, moment of inertia I about any axis through its center, and radius a, rolls without

More information

Entropic structure of the Landau equation. Coulomb interaction

Entropic structure of the Landau equation. Coulomb interaction with Coulomb interaction Laurent Desvillettes IMJ-PRG, Université Paris Diderot May 15, 2017 Use of the entropy principle for specific equations Spatially Homogeneous Kinetic equations: 1 Fokker-Planck:

More information

Theory of fractional Lévy diffusion of cold atoms in optical lattices

Theory of fractional Lévy diffusion of cold atoms in optical lattices Theory of fractional Lévy diffusion of cold atoms in optical lattices, Erez Aghion, David Kessler Bar-Ilan Univ. PRL, 108 230602 (2012) PRX, 4 011022 (2014) Fractional Calculus, Leibniz (1695) L Hospital:

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond

More information

Week 5-6: Lectures The Charged Scalar Field

Week 5-6: Lectures The Charged Scalar Field Notes for Phys. 610, 2011. These summaries are meant to be informal, and are subject to revision, elaboration and correction. They will be based on material covered in class, but may differ from it by

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

SPDEs, criticality, and renormalisation

SPDEs, criticality, and renormalisation SPDEs, criticality, and renormalisation Hendrik Weber Mathematics Institute University of Warwick Potsdam, 06.11.2013 An interesting model from Physics I Ising model Spin configurations: Energy: Inverse

More information

Conservation of Momentum. Last modified: 08/05/2018

Conservation of Momentum. Last modified: 08/05/2018 Conservation of Momentum Last modified: 08/05/2018 Links Momentum & Impulse Momentum Impulse Conservation of Momentum Example 1: 2 Blocks Initial Momentum is Not Enough Example 2: Blocks Sticking Together

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

C12 Power, Collisions, and Impacts. General Physics 1

C12 Power, Collisions, and Impacts. General Physics 1 C12 Power, Collisions, and Impacts General Physics 1 Power The magnitude of the rate at which energy flows into or out of a given form P! dk dt or dv dt or du dt We select the formula based on the which

More information

Quantum Hydrodynamics models derived from the entropy principle

Quantum Hydrodynamics models derived from the entropy principle 1 Quantum Hydrodynamics models derived from the entropy principle P. Degond (1), Ch. Ringhofer (2) (1) MIP, CNRS and Université Paul Sabatier, 118 route de Narbonne, 31062 Toulouse cedex, France degond@mip.ups-tlse.fr

More information

Complex systems: Self-organization vs chaos assumption

Complex systems: Self-organization vs chaos assumption 1 Complex systems: Self-organization vs chaos assumption P. Degond Institut de Mathématiques de Toulouse CNRS and Université Paul Sabatier pierre.degond@math.univ-toulouse.fr (see http://sites.google.com/site/degond/)

More information

1. Introductory Examples

1. Introductory Examples 1. Introductory Examples We introduce the concept of the deterministic and stochastic simulation methods. Two problems are provided to explain the methods: the percolation problem, providing an example

More information

Statistical mechanics of random billiard systems

Statistical mechanics of random billiard systems Statistical mechanics of random billiard systems Renato Feres Washington University, St. Louis Banff, August 2014 1 / 39 Acknowledgements Collaborators: Timothy Chumley, U. of Iowa Scott Cook, Swarthmore

More information

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm

Anomalous Lévy diffusion: From the flight of an albatross to optical lattices. Eric Lutz Abteilung für Quantenphysik, Universität Ulm Anomalous Lévy diffusion: From the flight of an albatross to optical lattices Eric Lutz Abteilung für Quantenphysik, Universität Ulm Outline 1 Lévy distributions Broad distributions Central limit theorem

More information

Natalia Tronko S.V.Nazarenko S. Galtier

Natalia Tronko S.V.Nazarenko S. Galtier IPP Garching, ESF Exploratory Workshop Natalia Tronko University of York, York Plasma Institute In collaboration with S.V.Nazarenko University of Warwick S. Galtier University of Paris XI Outline Motivations:

More information

Adaptive evolution : a population approach Benoît Perthame

Adaptive evolution : a population approach Benoît Perthame Adaptive evolution : a population approach Benoît Perthame 30 20 t 50 t 10 x 0 1 0.5 0 0.5 1 x 0 1 0.5 0 0.5 1 OUTLINE OF THE LECTURE DIRECT COMPETITION AND POLYMORPHIC CONCENTRATIONS I. Direct competition

More information

Large Deviations for Small-Noise Stochastic Differential Equations

Large Deviations for Small-Noise Stochastic Differential Equations Chapter 21 Large Deviations for Small-Noise Stochastic Differential Equations This lecture is at once the end of our main consideration of diffusions and stochastic calculus, and a first taste of large

More information

1 Geometry of high dimensional probability distributions

1 Geometry of high dimensional probability distributions Hamiltonian Monte Carlo October 20, 2018 Debdeep Pati References: Neal, Radford M. MCMC using Hamiltonian dynamics. Handbook of Markov Chain Monte Carlo 2.11 (2011): 2. Betancourt, Michael. A conceptual

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

FRACTAL CONCEPT S IN SURFACE GROWT H

FRACTAL CONCEPT S IN SURFACE GROWT H FRACTAL CONCEPT S IN SURFACE GROWT H Albert-Läszlö Barabäs i H. Eugene Stanley Preface Notation guide x v xi x PART 1 Introduction 1 1 Interfaces in nature 1 1.1 Interface motion in disordered media 3

More information

14. Energy transport.

14. Energy transport. Phys780: Plasma Physics Lecture 14. Energy transport. 1 14. Energy transport. Chapman-Enskog theory. ([8], p.51-75) We derive macroscopic properties of plasma by calculating moments of the kinetic equation

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

Quantitative trait evolution with mutations of large effect

Quantitative trait evolution with mutations of large effect Quantitative trait evolution with mutations of large effect May 1, 2014 Quantitative traits Traits that vary continuously in populations - Mass - Height - Bristle number (approx) Adaption - Low oxygen

More information

Heating and current drive: Radio Frequency

Heating and current drive: Radio Frequency Heating and current drive: Radio Frequency Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 13 th February 2012 Dr Ben Dudson Magnetic Confinement Fusion (1 of 26)

More information

The Distribution Function

The Distribution Function The Distribution Function As we have seen before the distribution function (or phase-space density) f( x, v, t) d 3 x d 3 v gives a full description of the state of any collisionless system. Here f( x,

More information

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC)

Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Kinetic Monte Carlo (KMC) Molecular Dynamics (MD): high-frequency motion dictate the time-step (e.g., vibrations). Time step is short: pico-seconds. Direct Monte Carlo (MC): stochastic (non-deterministic)

More information