Strategic voting (>2 states) long time-scale switching. Partisan voting selfishness vs. collectiveness ultraslow evolution. T. Antal, V.

Size: px
Start display at page:

Download "Strategic voting (>2 states) long time-scale switching. Partisan voting selfishness vs. collectiveness ultraslow evolution. T. Antal, V."

Transcription

1 Dynamics of Heterogeneous Voter Models Sid Redner (physics.bu.edu/~redner) Nonlinear Dynamics of Networks UMD April 5-9, 21 T. Antal (BU Harvard), N. Gibert (ENSTA), N. Masuda (Tokyo), M. Mobilia (BU Leeds), V. Sood (BU NBI), D. Volovik (BU) NSF DMR53553 & DMR9654 The classic voter model 3 basic results Voting on complex networks new conservation law two time-scale route to consensus short consensus time Strategic voting (>2 states) long time-scale switching Partisan voting selfishness vs. collectiveness ultraslow evolution T. Antal, V. Sood M. Mobilia, D. Volovik N. Masuda, N. Gibert

2 Clifford & Sudbury (1973) Classic Voter Model Holley & Liggett (1975) Example update: 3/4. Binary voter variable at each site i 1. Pick a random voter 2. Assume state of randomly-selected neighbor individual has no self-confidence & adopts neighbor s state

3 Clifford & Sudbury (1973) Classic Voter Model Holley & Liggett (1975) Example update: 3/4 1/4. Binary voter variable at each site i 1. Pick a random voter 2. Assume state of randomly-selected neighbor individual has no self-confidence & adopts neighbor s state 3. Repeat 1 & 2 until consensus necessarily occurs in a finite system proportional rule

4 Voter Model Evolution random initial condition: Dornic et al. (21) t=4 t=16 t=64 t=256 droplet initial condition: t=4 t=16 t=64 t=256

5 Lattice Voter Model: 3 Basic Properties 1. Final State (Exit) Probability E(ρ ) = ρ Evolution of a single active link: 1/2 1/2 average magnetization conserved 2. Two-Spin Correlations c(r,t) d>2 1 (a/r) d 2 r c(r,t) c 2 (r,t) t = 2 c 2 (r,t) d<2 Dt r c 2 (r =,t)=1 c 2 (r>,t=) = late time intermediate early 3. Consensus Time dimension consensus time 1 N 2 2 N ln N >2 N

6 Voter Model on Complex Networks C. Castellano, D. Vilon, A. Vespignani, EPL 63, 153 (23) K. Suchecki, V. M. Eguiluz, M. San Miguel, EPL 69, 228 (25) V. Sood, SR, PRL 94, (25); T. Antal, V. Sood, SR, PRE 77, (28) illustrative example: complete bipartite graph a sites degree b b sites degree a dn a = dn b = pick site on a sublattice pick on a pick on b sublattice a [ a Na N b a + b a b N a b N ] b a b b [ b Nb N a a + b b a N b a N ] a b a Subgraph densities: ρ a = N a /a, ρ b = N b /b dt =1/(a + b) ρ a,b (t) = 1 2 [ρ a,b() ρ b,a ()] e 2t [ρ a() + ρ b ()] 1 2 [ρ a() + ρ b ()] magnetization not conserved

7 Voter Model on Complex Networks high degree; few nodes changes rarely low degree; many nodes changes often flow from high degree to low degree

8 New Conservation Law low degree changes often high degree changes rarely to compensate different rates, consider: degree-weighted ω = 1 kn k ρ k conserved! 1st moment: µ 1 k µ 1 = av. degree n k = frac. nodes of degree k ρ k = frac. on nodes of degree k

9 Exit Probability on Complex Graphs E(ω) =ω Extreme case: star graph 1 N nodes: degree 1 1 node: degree N ω = 1 kn k ρ k = 1 µ 1 2 k Final state: all 1 with prob. 1/2!

10 Route to Consensus on Complex Graphs 1.8 t< c =1.6.6 ρ b ρ b c = ρ a ρ a complete bipartite graph two-clique graph a sites degree b b sites degree a c N=1, C links/node

11 Consensus Time Evolution Equation warmup: complete graph T (ρ) av. consensus time starting with density ρ T (ρ) = R(ρ)[T (ρ + dρ)+dt] +L(ρ)[T (ρ dρ)+dt] +[1 R(ρ) L(ρ)][T (ρ)+ dt]

12 Consensus Time Evolution Equation warmup: complete graph T (ρ) av. consensus time starting with density ρ T (ρ) = R(ρ)[T (ρ + dρ)+dt] +L(ρ)[T (ρ dρ)+dt] +[1 R(ρ) L(ρ)][T (ρ)+ dt] ρ R ρ 1 R(ρ) prob( ) = ρ(1 ρ)

13 Consensus Time Evolution Equation warmup: complete graph T (ρ) av. consensus time starting with density ρ T (ρ) = R(ρ)[T (ρ + dρ)+dt] +L(ρ)[T (ρ dρ)+dt] +[1 R(ρ) L(ρ)][T (ρ)+ dt] L ρ R 1 R(ρ) prob( ) L(ρ) prob( ) = ρ(1 ρ)

14 Consensus Time Evolution Equation warmup: complete graph T (ρ) av. consensus time starting with density ρ T (ρ) = R(ρ)[T (ρ + dρ)+dt] +L(ρ)[T (ρ dρ)+dt] +[1 R(ρ) L(ρ)][T (ρ)+ dt] 1 R L L ρ R 1 R(ρ) prob( ) L(ρ) prob( ) = ρ(1 ρ)

15 Consensus Time on Complete Graph continuum limit: T = N ρ(1 ρ) solution: T (ρ) = R(ρ)[T (ρ + dρ)+dt] +L(ρ)[T (ρ dρ)+dt] +[1 R(ρ) L(ρ)][T (ρ)+ dt] T (ρ) = N [ρ ln ρ + (1 ρ) ln(1 ρ)]

16 Consensus Time on Heterogeneous Networks T ({ρ k }) av. consensus time starting with density ρ k on nodes of degree k T ({ρ k })= k R k ({ρ k })[T ({ρ + k })+dt] + L k ({ρ k })[T ({ρ k })+dt] k + 1 [R k ({ρ k })+L k ({ρ k })] [T ({ρ k })+dt] k R k ({ρ k }) = prob(ρ k ρ + L k ({ρ k })=n k ρ k (1 ω) k ) = 1 1 P (,, ) N k x x = n k ω(1 ρ k ) y

17 Consensus Time on Heterogeneous Networks continuum limit: k (ω ρ k ) T + ω + ρ k 2ωρ k 2 T ρ k 2Nn k ρ 2 k = 1

18 Molloy-Reed Scale-Free Network 1 n k k 2.5, µ 1 =8 ρ ρ.4.2 ρ ω

19 Consensus Time on Heterogeneous Networks continuum limit: k (ω ρ k ) T + ω + ρ k 2ωρ k 2 T ρ k 2Nn k ρ 2 k = 1 now use ρ k ω k and to give ρ k = ω ρ k ω = kn k µ 1 ω 2 T ω 2 = Nµ2 1/µ 2 ω(1 ω) same as T = N ρ(1 ρ) with effective size N eff = Nµ 2 1/µ 2

20 Consensus Time for Power-Law Degree Distribution n k k ν T N N eff = N µ2 1 µ 2 N ν > 3 N/ ln N ν =3 N 2(ν 2)/(ν 1) (ln N) 2 ν =2 O(1) ν<2 2 <ν<3 ] fast (<N) consensus

21 Strategic Voting 6 British election results since 183 Canadian election results since Conservative Liberal NDP/CC % vote 4 2 % of vote 4 2 Liberal Conservative Labor (a) year (b) year

22 D. Volovik, M. Mobilia, SR Strategic Voter Model EPL 85, 481 (29) randomly-selected voter changes to any other state equiprobably (rate T) majority-minority interaction: minority preferentially changes to majority (rate r) rate equations (A, B majority; c minority): A = T (B + c 2A) + r Ac Ḃ = T (c + A 2B) + rbc ċ = T (A + B 2c) r (A + B)c

23 Phase Portrait a c a regular 3-state voter model b b c

24 Phase Portrait a c a strategic 3-state voter model b c < b < b a < c

25 Slow Switching 4 A B C 35 % vote 3 (c) time

26 6 British election results since 183 Canadian election results since Conservative Liberal NDP/CC % vote 4 2 % of vote 4 2 Liberal Conservative Labor (a) year (b) year

27 happy democrat density D h Partisan Voter Model sad democrat density D s partisan voting update: N. Masuda, N. Gibert, SR arxiv: sad republican density R s 1. Pick voter, pick neighbor (as in usual voter model); 2a. If initial voter becomes happy by adopting neighboring state, change occurs with rate 1+ε; 1+ε 2b. If initial voter becomes unhappy by adopting neighboring state, change occurs with rate 1-ε. 1-ε happy republican density R h

28 Partisan Voter Model: Mean-Field Limit rate equations: Ḋ h = 2D h D s + (1 + ) D s R s (1 ) D h R h Ḋ s = 2D h D s + (1 ) D h R h (1 + ) D s R s and R D

29 Symmetric Case: D=R=½ H D h + R h = density of happy voters D h R h = D h ( 1 2 R s)=ρ 1 2 = density democratic voters 1 2 S H 1 C C Δ= 1/2 1/2 H= Δ

30 Consensus Time on Finite Graphs 1 6 ε=.15 ε= d T N 1 4 ε=.15 ε= complete graph N

31 Summary & Outlook Voter model: paradigmatic, soluble, (but hopelessly naive) Voter model on complex networks: new conservation law meandering route to consensus fast consensus for broad degree distributions Extensions: strategic voting minority suppressed partisan voting selfishness forestalls consensus Future: churn rather than consensus heterogeneity of real people positive and negative social interactions social balance

32 Crass Commercialism phenomena in non-equilibrium statistical physics. It focuses on the development and application of theoretical methods to help students develop their problem-solving skills. The book begins with microscopic transport processes: diffusion, collision-driven phenomena, and exclusion. It then presents the basic phenomenology and solution techniques are emphasized. The following chapters cover kinetic spin systems, both from a discrete and a continuum perspective; the role of disorder in nonequilibrium processes; hysteresis from the non-equilibrium perspective; the kinetics of chemical reactions; and the properties of complex networks. The book contains 2 exercises to test students' understanding of the subject. A link to a website hosted by the authors, containing supplementary material including solutions to some of the exercises, can be found at Pavel L. Krapivsky is Research Associate Professor of Physics at Boston University. His current research interests are in strongly interacting many-particle systems and their applications to kinetic spin systems, networks, and biological phenomena. Sidney Redner is a Professor of Physics at Boston University. His current research interests are in non-equilibrium statistical physics, and its applications to reactions, networks, social systems, biological phenomena, and first-passage processes. Eli Ben-Naim is a member of the Theoretical Division and an affiliate of the Center for Nonlinear Studies at Los Alamos National Laboratory. He conducts research in statistical, nonlinear, and soft condensed-matter physics, including the collective dynamics of interacting particle and granular systems. A Kinetic View of S tat i s t i c a l P h y s i c s kinetics of aggregation, fragmentation and adsorption, where the Krapivsky, Redner and Ben-Naim Aimed at graduate students, this book explores some of the core A Kinetic View of Statistical Physics Cover illustration: Snapshot of a collision cascade in a perfectly elastic hardsphere gas in two dimensions due to a single incident particle. Shown are the cloud of moving particles (red) and the stationary particles (blue) that have not yet experienced any collisions. Figure courtesy of Tibor Antal. to appear this October Paul L. Krapivsky, Sid Redner and Eli Ben-Naim TABLE OF CONTENTS 1. Aperitifs 2. Diffusion 3. Collisions 4. Exclusion 5. Aggregation 6. Fragmentation 7. Adsorption 8. Spin Dynamics 9. Coarsening 1. Disorder 11. Hysteresis 12. Population Dynamics 13. Diffusion Reactions 14. Complex Networks

The Dynamics of Consensus and Clash

The Dynamics of Consensus and Clash The Dynamics of Consensus and Clash Annual CNLS Conference 2006 Question: How do generic opinion dynamics models with (quasi)-ferromagnetic interactions evolve? Models: Voter model on heterogeneous graphs

More information

The Dynamics of Persuasion Sid Redner, Santa Fe Institute (physics.bu.edu/~redner)

The Dynamics of Persuasion Sid Redner, Santa Fe Institute (physics.bu.edu/~redner) The Dynamics of Persuasion Sid Redner, Santa Fe Institute (physics.bu.edu/~redner) CIRM, Luminy France, January 5-9, 2015 T. Antal, E. Ben-Naim, P. Chen, P. L. Krapivsky, M. Mobilia, V. Sood, F. Vazquez,

More information

Collective Phenomena in Complex Social Networks

Collective Phenomena in Complex Social Networks Collective Phenomena in Complex Social Networks Federico Vazquez, Juan Carlos González-Avella, Víctor M. Eguíluz and Maxi San Miguel. Abstract The problem of social consensus is approached from the perspective

More information

Dynamics of latent voters

Dynamics of latent voters PHYSICAL REVIEW E 79, 467 29 Dynamics of latent voters Renaud Lambiotte,,2 Jari Saramäki, 3 and Vincent D. Blondel Department of Mathematical Engineering, Université catholique de Louvain, 4 Avenue Georges

More information

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004

arxiv:cond-mat/ v1 [cond-mat.other] 4 Aug 2004 Conservation laws for the voter model in complex networks arxiv:cond-mat/0408101v1 [cond-mat.other] 4 Aug 2004 Krzysztof Suchecki, 1,2 Víctor M. Eguíluz, 1 and Maxi San Miguel 1 1 Instituto Mediterráneo

More information

Anomalous metastability and fixation properties of evolutionary games on scale-free graphs

Anomalous metastability and fixation properties of evolutionary games on scale-free graphs Anomalous metastability and fixation properties of evolutionary games on scale-free graphs Michael Assaf 1 and Mauro Mobilia 2 1 Racah Institute of Physics, Hebrew University of Jerusalem Jerusalem 9194,

More information

CONNECTING DATA WITH COMPETING OPINION MODELS

CONNECTING DATA WITH COMPETING OPINION MODELS CONNECTING DATA WITH COMPETING OPINION MODELS Keith Burghardt with Prof. Michelle Girvan and Prof. Bill Rand Oct. 31, 2014 OUTLINE Introduction and background Motivation and empirical findings Description

More information

Coarsening process in the 2d voter model

Coarsening process in the 2d voter model Alessandro Tartaglia (LPTHE) Coarsening in the 2d voter model May 8, 2015 1 / 34 Coarsening process in the 2d voter model Alessandro Tartaglia LPTHE, Université Pierre et Marie Curie alessandro.tartaglia91@gmail.com

More information

Conservation laws for the voter model in complex networks

Conservation laws for the voter model in complex networks EUROPHYSICS LETTERS 15 January 2005 Europhys. Lett., 69 (2), pp. 228 234 (2005) DOI: 10.1209/epl/i2004-10329-8 Conservation laws for the voter model in complex networks K. Suchecki( ),V.M.Eguíluz( )andm.

More information

arxiv: v2 [physics.soc-ph] 7 Jul 2014

arxiv: v2 [physics.soc-ph] 7 Jul 2014 Voter model on the two-clique graph Naoki Masuda 1,2 1 Department of Engineering Mathematics, Merchant Venturers Building, University of Bristol, Woodland Road, Clifton, Bristol BS8 1UB, United Kingdom

More information

Oriented majority-vote model in social dynamics

Oriented majority-vote model in social dynamics Author: Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: M. Ángeles Serrano Mass events ruled by collective behaviour are present in our society every day. Some

More information

Social Balance on Networks: The Dynamics of Friendship and Hatred

Social Balance on Networks: The Dynamics of Friendship and Hatred Social Balance on Networks: The Dynamics of Friendship and Hatred T. Antal, (Harvard), P. L. Krapivsky, and S.Redner (Boston University) PRE 72, 036121 (2005), Physica D 224, 130 (2006) Basic question:

More information

Unity and Discord in Opinion Dynamics

Unity and Discord in Opinion Dynamics Unity and Discord in Opinion Dynamics E. Ben-Naim, P. L. Krapivsky, F. Vazquez, and S. Redner Theoretical Division and Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, New Mexico,

More information

Group Formation: Fragmentation Transitions in Network Coevolution Dynamics

Group Formation: Fragmentation Transitions in Network Coevolution Dynamics - Mallorca - Spain Workshop on Challenges and Visions in the Social Sciences, ETH August 08 Group Formation: Fragmentation Transitions in Network Coevolution Dynamics MAXI SAN MIGUEL CO-EVOLUTION Dynamics

More information

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from: http://cnls.lanl.gov/~ebn Plan I.

More information

arxiv: v1 [physics.soc-ph] 27 May 2016

arxiv: v1 [physics.soc-ph] 27 May 2016 The Role of Noise in the Spatial Public Goods Game Marco Alberto Javarone 1, and Federico Battiston 2 1 Department of Mathematics and Computer Science, arxiv:1605.08690v1 [physics.soc-ph] 27 May 2016 University

More information

Latent voter model on random regular graphs

Latent voter model on random regular graphs Latent voter model on random regular graphs Shirshendu Chatterjee Cornell University (visiting Duke U.) Work in progress with Rick Durrett April 25, 2011 Outline Definition of voter model and duality with

More information

Rate Equation Approach to Growing Networks

Rate Equation Approach to Growing Networks Rate Equation Approach to Growing Networks Sidney Redner, Boston University Motivation: Citation distribution Basic Model for Citations: Barabási-Albert network Rate Equation Analysis: Degree and related

More information

arxiv: v1 [cond-mat.dis-nn] 10 Feb 2009

arxiv: v1 [cond-mat.dis-nn] 10 Feb 2009 Conservation laws for voter-lie models on directed networs M. Ángeles Serrano, Konstantin Klemm,, 2 Federico Vazquez, Víctor M. Eguíluz, and Maxi San Miguel IFISC (CSIC-UIB) Instituto de Física Interdisciplinar

More information

APERITIFS. Chapter Diffusion

APERITIFS. Chapter Diffusion Chapter 1 APERITIFS Broadly speaking, non-equilibrium statistical physics describes the time-dependent evolution of many-particle systems. The individual particles are elemental interacting entities which,

More information

First-Passage Statistics of Extreme Values

First-Passage Statistics of Extreme Values First-Passage Statistics of Extreme Values Eli Ben-Naim Los Alamos National Laboratory with: Paul Krapivsky (Boston University) Nathan Lemons (Los Alamos) Pearson Miller (Yale, MIT) Talk, publications

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Ultimate fate of constrained voters

Ultimate fate of constrained voters Home Search Collections Journals About Contact us My IOPscience Ultimate fate of constrained voters This article has been downloaded from IOPscience. Please scroll down to see the full text article. 24

More information

Social consensus and tipping points with opinion inertia

Social consensus and tipping points with opinion inertia Physcia A, vol. 443 (2016) pp. 316-323 Social consensus and tipping points with opinion inertia C. Doyle 1,2, S. Sreenivasan 1,2,3, B. K. Szymanski 2,3, G. Korniss 1,2 1 Dept. of Physics, Applied Physics

More information

BOUNDED CONFIDENCE WITH REJECTION: THE INFINITE POPULATION LIMIT WITH PERFECT UNIFORM INITIAL DENSITY

BOUNDED CONFIDENCE WITH REJECTION: THE INFINITE POPULATION LIMIT WITH PERFECT UNIFORM INITIAL DENSITY BOUNDED CONFIDENCE WITH REJECTION: THE INFINITE POPULATION LIMIT WITH PERFECT UNIFORM INITIAL DENSITY Huet S., Deffuant G. Cemagref, Laboratoire d'ingénierie des Systèmes Complexes 63172 Aubière, France

More information

Damon Centola.

Damon Centola. http://www.imedea.uib.es/physdept Konstantin Klemm Victor M. Eguíluz Raúl Toral Maxi San Miguel Damon Centola Nonequilibrium transitions in complex networks: a model of social interaction, Phys. Rev. E

More information

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence

ECS 289 F / MAE 298, Lecture 15 May 20, Diffusion, Cascades and Influence ECS 289 F / MAE 298, Lecture 15 May 20, 2014 Diffusion, Cascades and Influence Diffusion and cascades in networks (Nodes in one of two states) Viruses (human and computer) contact processes epidemic thresholds

More information

Self-Organization and Collective Decision Making in Animal and Human Societies

Self-Organization and Collective Decision Making in Animal and Human Societies Self-Organization and Collective Decision Making... Frank Schweitzer SYSS Dresden 31 March 26 1 / 23 Self-Organization and Collective Decision Making in Animal and Human Societies Frank Schweitzer fschweitzer@ethz.ch

More information

Instantaneous gelation in Smoluchowski s coagulation equation revisited

Instantaneous gelation in Smoluchowski s coagulation equation revisited Instantaneous gelation in Smoluchowski s coagulation equation revisited Colm Connaughton Mathematics Institute and Centre for Complexity Science, University of Warwick, UK Collaborators: R. Ball (Warwick),

More information

Online Social Networks and Media. Opinion formation on social networks

Online Social Networks and Media. Opinion formation on social networks Online Social Networks and Media Opinion formation on social networks Diffusion of items So far we have assumed that what is being diffused in the network is some discrete item: E.g., a virus, a product,

More information

Errata to: A Guide to First-Passage Processes

Errata to: A Guide to First-Passage Processes Errata to: A Guide to First-Passage Processes Cambridge University Press, 00 Sidney Redner August, 04 Chapter :. Page. The second paragraph should read: To make these questions precise and then answer

More information

Lecture VI Introduction to complex networks. Santo Fortunato

Lecture VI Introduction to complex networks. Santo Fortunato Lecture VI Introduction to complex networks Santo Fortunato Plan of the course I. Networks: definitions, characteristics, basic concepts in graph theory II. III. IV. Real world networks: basic properties

More information

arxiv: v2 [cond-mat.stat-mech] 24 Oct 2007

arxiv: v2 [cond-mat.stat-mech] 24 Oct 2007 arxiv:0707434v2 [cond-matstat-mech] 24 Oct 2007 Matrix Product Steady States as Superposition of Product Shock Measures in D Driven Systems F H Jafarpour and S R Masharian 2 Bu-Ali Sina University, Physics

More information

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours.

UNIVERSITY OF YORK. MSc Examinations 2004 MATHEMATICS Networks. Time Allowed: 3 hours. UNIVERSITY OF YORK MSc Examinations 2004 MATHEMATICS Networks Time Allowed: 3 hours. Answer 4 questions. Standard calculators will be provided but should be unnecessary. 1 Turn over 2 continued on next

More information

Holme and Newman (2006) Evolving voter model. Extreme Cases. Community sizes N =3200, M =6400, γ =10. Our model: continuous time. Finite size scaling

Holme and Newman (2006) Evolving voter model. Extreme Cases. Community sizes N =3200, M =6400, γ =10. Our model: continuous time. Finite size scaling Evolving voter model Rick Durrett 1, James Gleeson 5, Alun Lloyd 4, Peter Mucha 3, Bill Shi 3, David Sivakoff 1, Josh Socolar 2,andChris Varghese 2 1. Duke Math, 2. Duke Physics, 3. UNC Math, 4. NC State

More information

Knots and Random Walks in Vibrated Granular Chains

Knots and Random Walks in Vibrated Granular Chains Los Alamos National Laboratory From the SelectedWorks of Eli Ben-Naim February, 2 Knots and Random Walks in Vibrated Granular Chains E. Ben-Naim, Los Alamos National Laboratory Z.A. Daya, Los Alamos National

More information

arxiv: v2 [physics.soc-ph] 7 Sep 2015

arxiv: v2 [physics.soc-ph] 7 Sep 2015 Diffusion of innovations in Axelrod s model Paulo F. C. Tilles and José F. Fontanari Instituto de Física de São Carlos, Universidade de São Paulo, Caixa Postal 369, 13560-970 São Carlos SP, Brazil arxiv:1506.08643v2

More information

Equilibrium, out of equilibrium and consequences

Equilibrium, out of equilibrium and consequences Equilibrium, out of equilibrium and consequences Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland SF-MTPT Katarzyna Sznajd-Weron (WUT) Equilibrium, out of equilibrium

More information

arxiv: v1 [physics.soc-ph] 9 Jan 2010

arxiv: v1 [physics.soc-ph] 9 Jan 2010 arxiv:1001.1441v1 [physics.soc-ph] 9 Jan 2010 Spontaneous reorientations in a model of opinion dynamics with anticonformists Grzegorz Kondrat and Katarzyna Sznajd-Weron Institute of Theoretical Physics,

More information

How opinion dynamics generates group hierarchies

How opinion dynamics generates group hierarchies Author-produced version of the paper presented at ECCS'0 European Conference on Complex Systems, 3-7 septembre 200 - Lisbonne, Portugal How opinion dynamics generates group hierarchies F. Gargiulo, S.

More information

Lecture 11 October 11, Information Dissemination through Social Networks

Lecture 11 October 11, Information Dissemination through Social Networks CS 284r: Incentives and Information in Networks Fall 2013 Prof. Yaron Singer Lecture 11 October 11, 2013 Scribe: Michael Tingley, K. Nathaniel Tucker 1 Overview In today s lecture we will start the second

More information

Limiting shapes of Ising droplets, fingers, and corners

Limiting shapes of Ising droplets, fingers, and corners Limiting shapes of Ising droplets, fingers, and corners Pavel Krapivsky Boston University Plan and Motivation Evolving limiting shapes in the context of Ising model endowed with T=0 spin-flip dynamics.

More information

Universality class of triad dynamics on a triangular lattice

Universality class of triad dynamics on a triangular lattice Universality class of triad dynamics on a triangular lattice Filippo Radicchi,* Daniele Vilone, and Hildegard Meyer-Ortmanns School of Engineering and Science, International University Bremen, P. O. Box

More information

Opinion Dynamics and Influencing on Random Geometric Graphs

Opinion Dynamics and Influencing on Random Geometric Graphs Opinion Dynamics and Influencing on Random Geometric Graphs Weituo Zhang 1,, Chjan Lim 1, G. Korniss 2 and B. K. Szymanski 3 May 17, 2014 1 Department of Mathematical Sciences, Rensselaer Polytechnic Institute,

More information

Analytic Treatment of Tipping Points for Social Consensus in Large Random Networks

Analytic Treatment of Tipping Points for Social Consensus in Large Random Networks 2 3 4 5 6 7 8 9 Analytic Treatment of Tipping Points for Social Consensus in Large Random Networks W. Zhang and C. Lim Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 8th Street,

More information

Learning to Predict Opinion Share in Social Networks

Learning to Predict Opinion Share in Social Networks Proceedings of the Twenty-Fourth AAAI Conference on Artificial Intelligence AAAI-10 Learning to Predict Opinion Share in Social Networks Masahiro Kimura Department of Electronics and Informatics Ryukoku

More information

Spreading and Opinion Dynamics in Social Networks

Spreading and Opinion Dynamics in Social Networks Spreading and Opinion Dynamics in Social Networks Gyorgy Korniss Rensselaer Polytechnic Institute 05/27/2013 1 Simple Models for Epidemiological and Social Contagion Susceptible-Infected-Susceptible (SIS)

More information

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK Biology inspires new physics Biology Physics

More information

arxiv: v1 [cond-mat.stat-mech] 18 Dec 2008

arxiv: v1 [cond-mat.stat-mech] 18 Dec 2008 preprintaps/13-qed Updating schemes in zero-temperature single-spin flip dynamics Sylwia Krupa and Katarzyna Sznajd Weron Institute of Theoretical Physics, University of Wroc law, pl. Maxa Borna 9, 50-04

More information

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam

Nonequilibrium transitions in glassy flows II. Peter Schall University of Amsterdam Nonequilibrium transitions in glassy flows II Peter Schall University of Amsterdam Flow of glasses 1st Lecture Glass Phenomenology Basic concepts: Free volume, Dynamic correlations Apply Shear Glass? Soft

More information

3.320 Lecture 18 (4/12/05)

3.320 Lecture 18 (4/12/05) 3.320 Lecture 18 (4/12/05) Monte Carlo Simulation II and free energies Figure by MIT OCW. General Statistical Mechanics References D. Chandler, Introduction to Modern Statistical Mechanics D.A. McQuarrie,

More information

arxiv: v2 [cond-mat.stat-mech] 23 Sep 2017

arxiv: v2 [cond-mat.stat-mech] 23 Sep 2017 Phase transition and power-law coarsening in Ising-doped voter model Adam Lipowski, Dorota Lipowska, 2 and António Luis Ferreira 3 Faculty of Physics, Adam Mickiewicz University, Poznań, Poland 2 Faculty

More information

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions

ECS 253 / MAE 253, Lecture 13 May 15, Diffusion, Cascades and Influence Mathematical models & generating functions ECS 253 / MAE 253, Lecture 13 May 15, 2018 Diffusion, Cascades and Influence Mathematical models & generating functions Last week: spatial flows and game theory on networks Optimal location of facilities

More information

Micro-bias and macro-performance

Micro-bias and macro-performance Eur. Phys. J. B 67, 369 375 (2009) DOI: 10.1140/epb/e2008-00406-4 Regular Article THE EUROPEAN PHYSICAL JOURNAL B Micro-bias and macro-performance S.M.D. Seaver 1,2,A.A.Moreira 3,M.Sales-Pardo 1,2,4,a,R.D.Malmgren

More information

MASTER OF SCIENCE IN PHYSICS

MASTER OF SCIENCE IN PHYSICS MASTER OF SCIENCE IN PHYSICS The Master of Science in Physics program aims to develop competent manpower to fill the demands of industry and academe. At the end of the program, the students should have

More information

Tipping Points of Diehards in Social Consensus on Large Random Networks

Tipping Points of Diehards in Social Consensus on Large Random Networks Tipping Points of Diehards in Social Consensus on Large Random Networks W. Zhang, C. Lim, B. Szymanski Abstract We introduce the homogeneous pair approximation to the Naming Game (NG) model, establish

More information

Community detection in time-dependent, multiscale, and multiplex networks

Community detection in time-dependent, multiscale, and multiplex networks Community detection in time-dependent, multiscale, and multiplex networks P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela Jukka-Pekka Onnela Harvard University MERSIH, November 13, 2009

More information

Multislice community detection

Multislice community detection Multislice community detection P. J. Mucha, T. Richardson, K. Macon, M. A. Porter, J.-P. Onnela Jukka-Pekka JP Onnela Harvard University NetSci2010, MIT; May 13, 2010 Outline (1) Background (2) Multislice

More information

Sampling. Everything Data CompSci Spring 2014

Sampling. Everything Data CompSci Spring 2014 Sampling Everything Data CompSci 290.01 Spring 2014 2 Announcements (Thu. Mar 26) Homework #11 will be posted by noon tomorrow. 3 Outline Simple Random Sampling Means & Proportions Importance Sampling

More information

Political Cycles and Stock Returns. Pietro Veronesi

Political Cycles and Stock Returns. Pietro Veronesi Political Cycles and Stock Returns Ľuboš Pástor and Pietro Veronesi University of Chicago, National Bank of Slovakia, NBER, CEPR University of Chicago, NBER, CEPR Average Excess Stock Market Returns 30

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 May 2005

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 13 May 2005 arxiv:cond-mat/0505350v1 [cond-mat.stat-mech] 13 May 2005 Voter model on Sierpinski fractals Krzysztof Suchecki and Janusz A. Ho lyst Faculty of Physics and Center of Excellence for Complex Systems Research,

More information

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4

Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Magnetic-field-tuned superconductor-insulator transition in underdoped La 2-x Sr x CuO 4 Dragana Popović National High Magnetic Field Laboratory Florida State University, Tallahassee, FL, USA Collaborators

More information

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes

Exercise Set 4. D s n ds + + V. s dv = V. After using Stokes theorem, the surface integral becomes Exercise Set Exercise - (a) Let s consider a test volum in the pellet. The substract enters the pellet by diffusion and some is created and disappears due to the chemical reaction. The two contribute to

More information

Globalization-polarization transition, cultural drift, co-evolution and group formation

Globalization-polarization transition, cultural drift, co-evolution and group formation - Mallorca - Spain CABDyN, Reference Saïdof Business research School, project Oxford, &/or name November of conference 7 Globalization-polarization transition, cultural drift, co-evolution and group formation

More information

NMR Dynamics and Relaxation

NMR Dynamics and Relaxation NMR Dynamics and Relaxation Günter Hempel MLU Halle, Institut für Physik, FG Festkörper-NMR 1 Introduction: Relaxation Two basic magnetic relaxation processes: Longitudinal relaxation: T 1 Relaxation Return

More information

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash

CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash CS 781 Lecture 9 March 10, 2011 Topics: Local Search and Optimization Metropolis Algorithm Greedy Optimization Hopfield Networks Max Cut Problem Nash Equilibrium Price of Stability Coping With NP-Hardness

More information

3. The Voter Model. David Aldous. June 20, 2012

3. The Voter Model. David Aldous. June 20, 2012 3. The Voter Model David Aldous June 20, 2012 We now move on to the voter model, which (compared to the averaging model) has a more substantial literature in the finite setting, so what s written here

More information

arxiv:comp-gas/ v1 28 Apr 1993

arxiv:comp-gas/ v1 28 Apr 1993 Lattice Boltzmann Thermohydrodynamics arxiv:comp-gas/9304006v1 28 Apr 1993 F. J. Alexander, S. Chen and J. D. Sterling Center for Nonlinear Studies and Theoretical Division Los Alamos National Laboratory

More information

Biased Voting and the Democratic Primary Problem

Biased Voting and the Democratic Primary Problem Biased Voting and the Democratic Primary Problem Michael Kearns and Jinsong Tan Department of Computer and Information Science University of Pennsylvania {mkearns@cis, jinsong@seas}.upenn.edu Abstract.

More information

Clustering and asymptotic behavior in opinion formation

Clustering and asymptotic behavior in opinion formation Clustering and asymptotic behavior in opinion formation Pierre-Emmanuel Jabin, Sebastien Motsch December, 3 Contents Introduction Cluster formation 6. Convexity................................ 6. The Lyapunov

More information

Kinetic Monte Carlo. Heiko Rieger. Theoretical Physics Saarland University Saarbrücken, Germany

Kinetic Monte Carlo. Heiko Rieger. Theoretical Physics Saarland University Saarbrücken, Germany Kinetic Monte Carlo Heiko Rieger Theoretical Physics Saarland University Saarbrücken, Germany DPG school on Efficient Algorithms in Computational Physics, 10.-14.9.2012, Bad Honnef Intro Kinetic Monte

More information

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: ,

Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv: , Magnetic-Field-Induced insulator-conductor transition in quenched lattice gauge theory ArXiv:0907.0494, 1003.2180 Pavel Buividovich Lattice 2010 Magnetic phenomena in hadronic matter Magnetic phenomena

More information

Reaction-Diffusion Problems

Reaction-Diffusion Problems Field Theoretic Approach to Reaction-Diffusion Problems at the Upper Critical Dimension Ben Vollmayr-Lee and Melinda Gildner Bucknell University Göttingen, 30 November 2005 Reaction-Diffusion Models Doi

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

Local versus global interactions in nonequilibrium transitions: A model of social dynamics

Local versus global interactions in nonequilibrium transitions: A model of social dynamics Local versus global interactions in nonequilibrium transitions: A model of social dynamics J. C. González-Avella, 1 V. M. Eguíluz, 1 M. G. Cosenza, 1,2 K. Klemm, 3 J. L. Herrera, 2 and M. San Miguel 1

More information

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain*

Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* Dynamics of Solitary Waves Induced by Shock Impulses in a Linear Atomic Chain* PHUOC X. TRAN, DONALD W. BRENNER, and C. T. WHITE Naval Research Laboratory, Washington, DC 20375-5000 Abstract The propagation

More information

Epidemics in Complex Networks and Phase Transitions

Epidemics in Complex Networks and Phase Transitions Master M2 Sciences de la Matière ENS de Lyon 2015-2016 Phase Transitions and Critical Phenomena Epidemics in Complex Networks and Phase Transitions Jordan Cambe January 13, 2016 Abstract Spreading phenomena

More information

Myopic Models of Population Dynamics on Infinite Networks

Myopic Models of Population Dynamics on Infinite Networks Myopic Models of Population Dynamics on Infinite Networks Robert Carlson Department of Mathematics University of Colorado at Colorado Springs rcarlson@uccs.edu June 30, 2014 Outline Reaction-diffusion

More information

Social Choice and Networks

Social Choice and Networks Social Choice and Networks Elchanan Mossel UC Berkeley All rights reserved Logistics 1 Different numbers for the course: Compsci 294 Section 063 Econ 207A Math C223A Stat 206A Room: Cory 241 Time TuTh

More information

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

Nuclear structure III: Nuclear and neutron matter. National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016 Nuclear structure III: Nuclear and neutron matter Stefano Gandolfi Los Alamos National Laboratory (LANL) National Nuclear Physics Summer School Massachusetts Institute of Technology (MIT) July 18-29, 2016

More information

SPIN DYNAMICS. Chapter The Voter Model

SPIN DYNAMICS. Chapter The Voter Model Chapter 7 SPIN DYNAMICS Kinetic spin systems play a crucial role in the development of non-equilibrium statistical physics. The prototypical example is the appealing-simple kinetic Ising model, in which

More information

BAE 820 Physical Principles of Environmental Systems

BAE 820 Physical Principles of Environmental Systems BAE 820 Physical Principles of Environmental Systems Estimation of diffusion Coefficient Dr. Zifei Liu Diffusion mass transfer Diffusion mass transfer refers to mass in transit due to a species concentration

More information

Opinion Dynamics of Modified Hegselmann-Krause Model with Group-based Bounded Confidence

Opinion Dynamics of Modified Hegselmann-Krause Model with Group-based Bounded Confidence Preprints of the 9th World Congress The International Federation of Automatic Control Cape Town, South Africa. August 24-29, 24 Opinion Dynamics of Modified Hegselmann-Krause Model with Group-based Bounded

More information

3.320 Lecture 23 (5/3/05)

3.320 Lecture 23 (5/3/05) 3.320 Lecture 23 (5/3/05) Faster, faster,faster Bigger, Bigger, Bigger Accelerated Molecular Dynamics Kinetic Monte Carlo Inhomogeneous Spatial Coarse Graining 5/3/05 3.320 Atomistic Modeling of Materials

More information

The Turbulent Universe

The Turbulent Universe The Turbulent Universe WMAP Science Team J. Berges ALICE/CERN Universität Heidelberg JILA/NIST Festkolloquium der Karl Franzens Universität Graz FWF Doktoratskolleg Hadrons in Vacuum, Nuclei and Stars

More information

arxiv:physics/ v1 [physics.soc-ph] 14 Dec 2006

arxiv:physics/ v1 [physics.soc-ph] 14 Dec 2006 Europhysics Letters PREPRINT Growing network with j-redirection arxiv:physics/0612148v1 [physics.soc-ph] 14 Dec 2006 R. Lambiotte 1 and M. Ausloos 1 1 SUPRATECS, Université de Liège, B5 Sart-Tilman, B-4000

More information

Self-Organization in Nonequilibrium Systems

Self-Organization in Nonequilibrium Systems Self-Organization in Nonequilibrium Systems From Dissipative Structures to Order through Fluctuations G. Nicolis Universite Libre de Bruxelles Belgium I. Prigogine Universite Libre de Bruxelles Belgium

More information

Consensus formation in the Deffuant model

Consensus formation in the Deffuant model THESIS FOR THE DEGREE OF LICENCIATE OF PHILOSOPHY Consensus formation in the Deffuant model TIMO HIRSCHER Division of Mathematics Department of Mathematical Sciences CHALMERS UNIVERSITY OF TECHNOLOGY AND

More information

Network diffusion 2.0? Anna Scaglione Bellair workshop 2012

Network diffusion 2.0? Anna Scaglione Bellair workshop 2012 Network diffusion 2.0? Anna Scaglione Bellair workshop 2012 1 Network Gossiping 1.0 Two main research threads in networking and systems Broadcasting as rumor-mongering Born out of epidemic models, studied

More information

Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions

Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions Agent Based Models of Language Competition: Macroscopic descriptions and Order-Disorder transitions F. Vazquez, X. Castelló and M. San Miguel IFISC, Institut de Física Interdisciplinària i Sistemes Complexos

More information

Chemical Kinetics. Topic 7

Chemical Kinetics. Topic 7 Chemical Kinetics Topic 7 Corrosion of Titanic wrec Casón shipwrec 2Fe(s) + 3/2O 2 (g) + H 2 O --> Fe 2 O 3.H 2 O(s) 2Na(s) + 2H 2 O --> 2NaOH(aq) + H 2 (g) Two examples of the time needed for a chemical

More information

Kinetic models of opinion

Kinetic models of opinion Kinetic models of opinion formation Department of Mathematics University of Pavia, Italy Porto Ercole, June 8-10 2008 Summer School METHODS AND MODELS OF KINETIC THEORY Outline 1 Introduction Modeling

More information

Critical phenomena in complex networks

Critical phenomena in complex networks Critical phenomena in complex networks S. N. Dorogovtsev* and A. V. Goltsev Departamento de Física, Universidade de Aveiro, 3810-193 Aveiro, Portugal and A. F. Ioffe Physico-Technical Institute, 194021

More information

arxiv: v2 [cond-mat.stat-mech] 5 Jan 2009

arxiv: v2 [cond-mat.stat-mech] 5 Jan 2009 Fixation and consensus times on a network: a unified approach arxiv:0801.3083v2 [cond-mat.stat-mech] 5 Jan 2009 G. J. Baxter, 1 R. A. Blythe, 2 and A. J. McKane 3 1 School of Mathematics, Statistics and

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

arxiv: v1 [math.pr] 6 Jan 2016

arxiv: v1 [math.pr] 6 Jan 2016 Stochastic spatial model for the division of labor in social insects arxiv:60.0023v [math.pr] 6 Jan 206. Introduction Alesandro Arcuri and Nicolas Lanchier Abstract Motivated by the study of social insects,

More information

Mini course on Complex Networks

Mini course on Complex Networks Mini course on Complex Networks Massimo Ostilli 1 1 UFSC, Florianopolis, Brazil September 2017 Dep. de Fisica Organization of The Mini Course Day 1: Basic Topology of Equilibrium Networks Day 2: Percolation

More information

Plan of the lectures

Plan of the lectures Plan of the lectures 1. Introductory remarks on metallic nanostructures Relevant quantities and typical physical parameters Applications. Linear electron response: Mie theory and generalizations 3. Nonlinear

More information

Joint Iterative Decoding of LDPC Codes and Channels with Memory

Joint Iterative Decoding of LDPC Codes and Channels with Memory Joint Iterative Decoding of LDPC Codes and Channels with Memory Henry D. Pfister and Paul H. Siegel University of California, San Diego 3 rd Int l Symposium on Turbo Codes September 1, 2003 Outline Channels

More information