IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

Size: px
Start display at page:

Download "IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology"

Transcription

1 IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK

2 Biology inspires new physics Biology Physics Physics leads to quantitative biology

3 Phase transitions in biology Amyloid fibrils RNA granules Active matter 200nm Brangwynne [Hyman Lab] mbzusmak8

4 Plan 1. Physics of polymer self-assembly 2. Non-equilibrium phase separation 3. Universality in active matter 4. Summary & Outlook

5 Slyngborg & Fojan (2015) Phys. Chem. Chem. Phys. 1. Physics of polymer self-assembly

6 Toy model Liu, Lee & Huang, in Biophysics and biochemistry of protein aggregation (World Scientific, 2017)

7 Wang et al. (2012) Nature 491, 51 A colloidal example

8 Statistical mechanics Energy of a s-mer: Monomer number conservation: Partition function (dilute limit): Factorial because of indistinguishability by our choice (nothing to do with quantum mechanics!) Liu, Lee & Huang, in Biophysics and biochemistry of protein aggregation (World Scientific, 2017)

9 Mass density Static configuration NOT a thermodynamic phase transition Monomer Critical fibrillar concentraion (CFC) Solute concentration P(l) Length distribution Monomer concentration ~ CFC Cates & Candau (1990) J. Phys.: Condens. Matter Lee (2009) Phys. Rev. E; Lee (2012) J. Phys.: Condens. Matter l

10 Steady-State Kinetics B i j,j A i j,j Thermal equilibrium: ρ k : Concentration of k-mers A ij and B ij are not independent!

11 Breakage rate B ij Over-damped EOM: Breakage rate = (First-passage time) -1

12 Energy U (θ) Asymptotic results 1D Kramers escape problem Quasi-static approximation: P(θ) e Bθ2 Exit rate: Mulitdimensional Kramers escape problem Breakage rate of a s-mer by thermal bending: Lee (2009) Phys. Rev. E; Lee (2015) J. Phys.: Condens. Matter

13 Revisiting the kinetic equation Uniform breakage profile -> B ij = B Steady state configuration -> A ij = A Namely, all joining rates of any pair of polymers are identical, irrespective of the sizes How does this square with the Smoluchowski picture?

14 Smoluchowski reaction kinetics Diffusion-controlled binary association rate: where Considering the rod-like nature as well: What s wrong with this picture? Hill (1983) Biophys. J.

15 Breakage-controlled, NOT diffusion-controlled We can compute the breakage rate from the Smoluchowski picture and compare it to the true breakage rate Therefore, a polymer interacts predominately with its own fragments! Lee (2017) Eprint: arxiv:

16 Spatial correlation Distribution of dimer s center of mass Lee (2017) Eprint: arxiv:

17 2. Non-equilibrium phase separations

18 Formation by phase separation No membrane Rapid turnover Coalescence

19 Phase diagram T Vapour Liquid ε : supersaturation Phase separation region ρ

20

21 Drop growth x ρ x

22 Drop growth x ρ Vapour conc. outside small drop is higher than vapour conc. outside large drop Gibbs-Thomson relation: ρ R = ρ 1 + ν R x

23 Universality of surface-tension driven droplet growth Ostwald coarsening Lifshitz-Slyozov universal growth law: R(t) ~t 1/3 Universal droplet size distribution

24 Chemical reaction-controlled phase separation Wurtz & Lee (2017) E-print: arxiv:

25 Concentration Chemical reactions create R r gradients S SG Cytoplasm P SG R Cytoplasm

26 Wurtz & Lee (2017) E-print: arxiv:

27 3. Universality in active matter

28 Incompressible fluids t v = P + f λ v v a + bv 2 v μ 2 v + cv 4 v + ξ 2 2 v + Symmetries + coarse-graining via renormalisation group transformation t v = P + f v v μ 2 v Parameter-free prediction: v(t) v(0) t d/2 (Long-time tail) Physical systems Translational invariance Rotational invariance c Galilean invariance Fluctuation-dissipation

29 Incompressible active fluids t v = P + f λ v v a + bv 2 v μ 2 v + cv 4 v + ξ 2 2 v + Symmetries + coarse-grain via renormalisation group transformation t v = P + f λ v v a + bv 2 v μ 2 v Biological systems Translational invariance Rotational invariance c Galilean invariance Fluctuation-dissipation

30 Energy The bottom has become very flat x y Adapted from QuantumDiaries.org Critical order-disorder transition

31 Phase diagram of incompressible active fluids v Critical region

32 Critical incompressible active fluids EOM: t v + P f = λ v v a + bv 2 v μ 2 v + cv 4 v + ξ( 2 ) 2 v + RG transformation t v + P + f l = λ l v v a l + b l v 2 v μ l 2 v Exact hydrodynamic EOM with TWO coefficients governing the model s scale-invariance properties: Level of coarse-graining g 1 (l) ~ D lλ l 2 μ l 3, g 2 l ~ D lb l μ l 2

33 Advective term: g 1 v v Incompressible active matter (Today) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

34 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A Incompressible active matter (Today) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

35 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

36 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A Incompressible active fluids In 3D: v( r) v( r ) ~ r r (1.35±0.08) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

37 Energy y x Adapted from QuantumDiaries.org Ordered phase (2D)

38 Ordered incompressible active fluids v Ordered phase Critical region Universality is more than criticality! Universal behaviour expected in the symmetry-broken phase of a continuous symmetry Belitz, Kirkpatrick, Vojta (2005) Rev. Mod. Phys.

39 Ordered phase of 2D incompressible active fluids EOM: t v + P f = λ v v a + bv 2 v μ 2 v + cv 4 v + ξ( 2 ) 2 v + Ordered phase: RG transformation Level of coarse-graining

40 Active fluids in 2D Chen, Lee, Toner (2016) Nature Comm.

41 M.C. Escher (1938) Day and Night

42 Summary 1. Biopolymer self-assembly Breakage-controlled thermalisation kinetics 2. Chemically active phase separations Coarsening arrested by chemical reactions 3. Universality in active matter Symmetry-based categorisation of nonequilibrium systems

43 Outlook 1 In physics, we (try to) teach principles and derive the predictions for particular examples. In biology, teaching proceeds (mostly) from example to example. Although physics has subfields, to a remarkable extent the physics community clings to the romantic notion that Physics is one subject. [Biophysics: Searching for Principles (2012)] William Bialek

44 Outlook 2 Anthony Zee, Quantum Field Theory in a Nutshell (Princeton University Press, 2003)

45 The Team Amyloids Vaux Group (Dunn School of Pathology, Oxford) Liu Hong (Tsinghua University) Active Matter Leiming Chen (China University of Mining and Technology John Toner (Oregon) Ben Jean David Partridge Wurtz David Nesbitt Andrea Cairoli Alice Spenlauhauer Thank you for your attention!

Universality in Soft Active Matter

Universality in Soft Active Matter Universality in Soft Active Matter Chiu Fan Lee Department of Bioengineering, Imperial College London, UK M.C. Escher (1938) Day and Night Universality in soft living matter Amyloid fibrils RNA granules

More information

Protein amyloid self assembly: nucleation, growth, and breakage

Protein amyloid self assembly: nucleation, growth, and breakage CMMP11, Manchester December 011 Protein amyloid self assembly: nucleation, growth, and breakage Chiu Fan Lee 1, Létitia Jean, and David J. Vaux 1 Max Planck Institute for the Physics of Complex Systems

More information

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Lennon Ó Náraigh and Jean-Luc Thiffeault Department of Mathematics Imperial College London APS-DFD Meeting, 21 November 2006 1 / 12 The classical Cahn

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

Macromolecular Crowding

Macromolecular Crowding Macromolecular Crowding Keng-Hwee Chiam Mathematical and Theoretical Biology Group Goodsell (1994) Macromolecular Crowding, Oct. 15, 2003 p.1/33 Outline What: introduction, definition Why: implications

More information

Instantaneous gelation in Smoluchowski s coagulation equation revisited

Instantaneous gelation in Smoluchowski s coagulation equation revisited Instantaneous gelation in Smoluchowski s coagulation equation revisited Colm Connaughton Mathematics Institute and Centre for Complexity Science, University of Warwick, UK Collaborators: R. Ball (Warwick),

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9

Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Physics 562: Statistical Mechanics Spring 2002, James P. Sethna Prelim, due Wednesday, March 13 Latest revision: March 22, 2002, 10:9 Open Book Exam Work on your own for this exam. You may consult your

More information

arxiv: v1 [cond-mat.soft] 7 Jun 2018

arxiv: v1 [cond-mat.soft] 7 Jun 2018 Incompressible polar active fluids in the moving phase Leiming Chen,, Chiu Fan Lee, 2, and John Toner 3, School of Physical Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu,

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease

An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease An elementary qualitative model for diffusion and aggregation of β-amyloid in Alzheimer s disease Maria Carla Tesi (University of Bologna) Connections for Women: Discrete Lattice Models in Mathematics,

More information

NPTEL

NPTEL NPTEL Syllabus Nonequilibrium Statistical Mechanics - Video course COURSE OUTLINE Thermal fluctuations, Langevin dynamics, Brownian motion and diffusion, Fokker-Planck equations, linear response theory,

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997 Depletion forces between two spheres in a rod solution. K. Yaman, C. Jeppesen, C. M. Marques arxiv:cond-mat/9708069v1 [cond-mat.soft] 9 Aug 1997 Department of Physics, U.C.S.B., CA 93106 9530, U.S.A. Materials

More information

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge

Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Mathematical Structures of Statistical Mechanics: from equilibrium to nonequilibrium and beyond Hao Ge Beijing International Center for Mathematical Research and Biodynamic Optical Imaging Center Peking

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009

Fluctuation theorems. Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Fluctuation theorems Proseminar in theoretical physics Vincent Beaud ETH Zürich May 11th 2009 Outline Introduction Equilibrium systems Theoretical background Non-equilibrium systems Fluctuations and small

More information

Amyloid fibril polymorphism is under kinetic control. Supplementary Information

Amyloid fibril polymorphism is under kinetic control. Supplementary Information Amyloid fibril polymorphism is under kinetic control Supplementary Information Riccardo Pellarin Philipp Schütz Enrico Guarnera Amedeo Caflisch Department of Biochemistry, University of Zürich, Winterthurerstrasse

More information

Microfluidic crystals: Impossible order

Microfluidic crystals: Impossible order Microfluidic crystals: Impossible order Tsevi Beatus, Roy Bar-Ziv, T. T. Weizmann Institute International Symposium on Non-Equilibrium Soft Matter Kyoto 2008 1 Outline Micro-fluidic droplets: micron sized

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Caustics & collision velocities in turbulent aerosols

Caustics & collision velocities in turbulent aerosols Caustics & collision velocities in turbulent aerosols B. Mehlig, Göteborg University, Sweden Bernhard.Mehlig@physics.gu.se based on joint work with M. Wilkinson and K. Gustavsson. log Ku log St Formulation

More information

arxiv: v1 [cond-mat.stat-mech] 15 Sep 2007

arxiv: v1 [cond-mat.stat-mech] 15 Sep 2007 Current in a three-dimensional periodic tube with unbiased forces Bao-quan Ai a and Liang-gang Liu b a School of Physics and Telecommunication Engineering, South China Normal University, 56 GuangZhou,

More information

Anomalous Transport and Fluctuation Relations: From Theory to Biology

Anomalous Transport and Fluctuation Relations: From Theory to Biology Anomalous Transport and Fluctuation Relations: From Theory to Biology Aleksei V. Chechkin 1, Peter Dieterich 2, Rainer Klages 3 1 Institute for Theoretical Physics, Kharkov, Ukraine 2 Institute for Physiology,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Mean-field Master Equations for Multi-stage Amyloid Formation 1. Mean-field Master Equations for Multi-stage Amyloid Formation. Blake C.

Mean-field Master Equations for Multi-stage Amyloid Formation 1. Mean-field Master Equations for Multi-stage Amyloid Formation. Blake C. Mean-field Master Equations for Multi-stage myloid Formation 1 Mean-field Master Equations for Multi-stage myloid Formation lake C. ntos Department of Physics, Drexel University, Philadelphia, P 19104,

More information

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich

Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes. G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Randomly Triangulated Surfaces as Models for Fluid and Crystalline Membranes G. Gompper Institut für Festkörperforschung, Forschungszentrum Jülich Motivation: Endo- and Exocytosis Membrane transport of

More information

Continuum Model of Avalanches in Granular Media

Continuum Model of Avalanches in Granular Media Continuum Model of Avalanches in Granular Media David Chen May 13, 2010 Abstract A continuum description of avalanches in granular systems is presented. The model is based on hydrodynamic equations coupled

More information

Long-time behavior and different shear regimes in quenched binary mixtures

Long-time behavior and different shear regimes in quenched binary mixtures PHYSICAL REVIEW E 75, 011501 2007 Long-time behavior and different shear regimes in quenched binary mixtures G. Gonnella* Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Phase Transitions in the Cell Cytoplasm: A Theoretical Investigation

Phase Transitions in the Cell Cytoplasm: A Theoretical Investigation Phase Transitions in the Cell Cytoplasm: A Theoretical Investigation Jean-David Wurtz Thesis submitted for the degree of Doctor of Philosophy PhD Department of Bioengineering Imperial College London September

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

Pressure and forces in active matter

Pressure and forces in active matter 1 Pressure and forces in active matter Alex Solon (MIT) University of Houston, February 8th 2018 Active matter 2 Stored energy Mechanical energy Self-propelled particles Found at all scales in living systems

More information

Simulations of Self-Assembly of Polypeptide-Based Copolymers

Simulations of Self-Assembly of Polypeptide-Based Copolymers East China University of Science and Technology Theory, Algorithms and Applications of Dissipative Particle Dynamics Simulations of Self-Assembly of Polypeptide-Based Copolymers Jiaping LIN ( 林嘉平 ) East

More information

ACADEMIC CAREER INDEPENDENT FELLOWSHIPS

ACADEMIC CAREER INDEPENDENT FELLOWSHIPS Chiu Fan Lee Department of Bioengineering, Imperial College London South Kensington Campus, London SW7 2AZ, United Kingdom Tel: +44 (0)20 759 46493 Email: c.lee@imperial.ac.uk Website: www.bg.ic.ac.uk/research/c.lee/index.html

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti)

Field Theory Description of Topological States of Matter. Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Field Theory Description of Topological States of Matter Andrea Cappelli INFN, Florence (w. E. Randellini, J. Sisti) Topological States of Matter System with bulk gap but non-trivial at energies below

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States

Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Trapping Centers at the Superfluid-Mott-Insulator Criticality: Transition between Charge-quantized States Boris Svistunov University of Massachusetts, Amherst DIMOCA 2017, Mainz Institute for Theoretical

More information

PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model

PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model Purba Chatterjee May 4, 2017 Abstract This essay reviews important results from studies on the Vicsek model, which describes a

More information

Selected Publications of Prof. Dr. Wenjian Liu

Selected Publications of Prof. Dr. Wenjian Liu Selected Publications of Prof. Dr. Wenjian Liu College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, China 1 Fundamentals of relativistic molecular quantum mechanics 1. Handbook

More information

Phase Diagram, Density, And Current Density Profiles Of Totally Asymmetric Simple Exclusion Process For A Junction With Two Entrances and Two Exits

Phase Diagram, Density, And Current Density Profiles Of Totally Asymmetric Simple Exclusion Process For A Junction With Two Entrances and Two Exits Jurnal Materi dan Pembelajaran Fisika (JMPF) 38 Phase Diagram, Density, And Current Density Profiles Of Totally Asymmetric Simple Exclusion Process For A Junction With Two Entrances and Two Exits M. Za

More information

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska

Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method. Justyna Czerwinska Modeling of Micro-Fluidics by a Dissipative Particle Dynamics Method Justyna Czerwinska Scales and Physical Models years Time hours Engineering Design Limit Process Design minutes Continious Mechanics

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland 7 Oct 2013, SF-MTPT Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions

More information

Critical Exponents. From P. Chaikin and T Lubensky Principles of Condensed Matter Physics

Critical Exponents. From P. Chaikin and T Lubensky Principles of Condensed Matter Physics Critical Exponents From P. Chaikin and T Lubensky Principles of Condensed Matter Physics Notice that convention allows for different exponents on either side of the transition, but often these are found

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 1, 17 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Collective

More information

Van der Waals Fluid Deriving the Fundamental Relation. How do we integrate the differential above to get the fundamental relation?

Van der Waals Fluid Deriving the Fundamental Relation. How do we integrate the differential above to get the fundamental relation? Van der Waals Fluid Deriving the Fundamental Relation How do we integrate the differential above to get the fundamental relation? Pitfalls of Integration of Functions of Multiple Variables ds = cr u +

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics 1 Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 1, 17 March 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Collective

More information

TEAM MEMBERS. Europe World Industry. Understanding Diffusion in Complex Fluids. Univ. Pau/CNES (FR) Fabrizio Croccolo, coordinator Henri Bataller

TEAM MEMBERS. Europe World Industry. Understanding Diffusion in Complex Fluids. Univ. Pau/CNES (FR) Fabrizio Croccolo, coordinator Henri Bataller Univ. Milano (IT) Alberto Vailati, coordinator Marina Carpineti Roberto Cerbino COLLAGEX, GRADFLEX Univ. Complutense (ES) José M. Ortiz de Zárate SCCO, DCMIX TEAM MEMBERS Europe World Industry Univ. Pau/CNES

More information

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS

COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS Vol. 44 (2013) ACTA PHYSICA POLONICA B No 5 COARSE-GRAINING AND THERMODYNAMICS IN FAR-FROM-EQUILIBRIUM SYSTEMS J. Miguel Rubí, A. Pérez-Madrid Departament de Física Fonamental, Facultat de Física, Universitat

More information

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers

Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Supplementary Information for: Controlling Cellular Uptake of Nanoparticles with ph-sensitive Polymers Hong-ming Ding 1 & Yu-qiang Ma 1,2, 1 National Laboratory of Solid State Microstructures and Department

More information

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour

Mohamed Daoud Claudine E.Williams Editors. Soft Matter Physics. With 177 Figures, 16 of them in colour Mohamed Daoud Claudine E.Williams Editors Soft Matter Physics With 177 Figures, 16 of them in colour Contents 1. Droplets: CapiUarity and Wetting 1 By F. Brochard-Wyart (With 35 figures) 1.1 Introduction

More information

Suriyanarayanan Vaikuntanathan

Suriyanarayanan Vaikuntanathan Suriyanarayanan Vaikuntanathan Postdoctoral Fellow svaikunt@berkeley.edu University of California, Berkeley 240-274-3192 Google Scholar citations: http://scholar.google.com/citations?user=qws4178aaaaj

More information

Molecular-Level Description of Reaction Equilibrium

Molecular-Level Description of Reaction Equilibrium Molecular-Level Description of Reaction Equilibrium CBE 450: Reactor Engineering Fundamentals Fall, 2009 Prof. David Keffer dkeffer@utk.edu Thermodynamic Properties Quantum Mechanics can be combined with

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

Effects of interaction between nanopore and polymer on translocation time

Effects of interaction between nanopore and polymer on translocation time Effects of interaction between nanopore and polymer on translocation time Mohammadreza Niknam Hamidabad and Rouhollah Haji Abdolvahab Physics Department, Iran University of Science and Technology (IUST),

More information

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence

2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 2D Spinodal Decomposition in Forced Turbulence: Structure Formation in a Challenging Analogue of 2D MHD Turbulence 1 Xiang Fan 1, P H Diamond 1, Luis Chacon 2, Hui Li 2 1 University of California,San Diego

More information

Simulating Quantum Simulators. Rosario Fazio

Simulating Quantum Simulators. Rosario Fazio Simulating Quantum Simulators Rosario Fazio Critical Phenomena in Open Many-Body systems Rosario Fazio In collaboration with J. Jin A. Biella D. Rossini J. Keeling Dalian Univ. SNS - Pisa St. Andrews J.

More information

Transport of single molecules along the periodic parallel lattices with coupling

Transport of single molecules along the periodic parallel lattices with coupling THE JOURNAL OF CHEMICAL PHYSICS 124 204901 2006 Transport of single molecules along the periodic parallel lattices with coupling Evgeny B. Stukalin The James Franck Institute The University of Chicago

More information

Suriyanarayanan Vaikuntanathan

Suriyanarayanan Vaikuntanathan Assistant Professor University of Chicago Suriyanarayanan Vaikuntanathan Google Scholar citations: http://scholar.google.com/citations?user=qws4178aaaaj Personal Information Address Department of Chemistry

More information

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function?!?! Thermodynamic limit 4211 Statistical Mechanics 1 Week 4 4.1.2 Phase diagrams p S S+L S+G L S+G L+G G G T p solid triple

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T.

EQUATION LANGEVIN. Physics, Chemistry and Electrical Engineering. World Scientific. With Applications to Stochastic Problems in. William T. SHANGHAI HONG WorlrfScientific Series krtonttimfjorary Chemical Physics-Vol. 27 THE LANGEVIN EQUATION With Applications to Stochastic Problems in Physics, Chemistry and Electrical Engineering Third Edition

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Optimal quantum driving of a thermal machine

Optimal quantum driving of a thermal machine Optimal quantum driving of a thermal machine Andrea Mari Vasco Cavina Vittorio Giovannetti Alberto Carlini Workshop on Quantum Science and Quantum Technologies ICTP, Trieste, 12-09-2017 Outline 1. Slow

More information

INTRODUCTION TO MODERN THERMODYNAMICS

INTRODUCTION TO MODERN THERMODYNAMICS INTRODUCTION TO MODERN THERMODYNAMICS Dilip Kondepudi Thurman D Kitchin Professor of Chemistry Wake Forest University John Wiley & Sons, Ltd CONTENTS Preface xiii PART I THE FORMALIS1VI OF MODERN THER1VIODYNAMICS

More information

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids

Smoothed Dissipative Particle Dynamics: theory and applications to complex fluids 2015 DPD Workshop September 21-23, 2015, Shanghai University Smoothed Dissipative Particle Dynamics: Dynamics theory and applications to complex fluids Marco Ellero Zienkiewicz Centre for Computational

More information

Time-Dependent Statistical Mechanics 1. Introduction

Time-Dependent Statistical Mechanics 1. Introduction Time-Dependent Statistical Mechanics 1. Introduction c Hans C. Andersen Announcements September 24, 2009 Lecture 1 9/22/09 1 Topics of concern in the course We shall be concerned with the time dependent

More information

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics The Monte Carlo Method in Condensed Matter Physics Edited by K. Binder With Contributions by A. Baumgärtner K. Binder A.N. Burkitt D.M. Ceperley H. De Raedt A.M. Ferrenberg D.W. Heermann H.J. Herrmann

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

FLOW-NORDITA Spring School on Turbulent Boundary Layers1

FLOW-NORDITA Spring School on Turbulent Boundary Layers1 Jonathan F. Morrison, Ati Sharma Department of Aeronautics Imperial College, London & Beverley J. McKeon Graduate Aeronautical Laboratories, California Institute Technology FLOW-NORDITA Spring School on

More information

Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics. Matteo Lostaglio Imperial College London

Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics. Matteo Lostaglio Imperial College London Thermodynamics beyond free energy relations or Quantum Quantum Thermodynamics Matteo Lostaglio Imperial College London David Jennings Kamil Korzekwa This is wind, he is actually slim Terry Rudolph What

More information

Protein Dynamics, Allostery and Function

Protein Dynamics, Allostery and Function Protein Dynamics, Allostery and Function Lecture 3. Protein Dynamics Xiaolin Cheng UT/ORNL Center for Molecular Biophysics SJTU Summer School 2017 1 Obtaining Dynamic Information Experimental Approaches

More information

Many-body open quantum systems: transport and localization

Many-body open quantum systems: transport and localization Many-body open quantum systems: transport and localization Bath 2 L, J L R, J R Bath 1 SPICE Quantum thermodynamics and transport 2018 Mainz Dario Poletti Singapore University of Technology and Design

More information

Breakdown of classical nucleation theory in nucleation kinetics

Breakdown of classical nucleation theory in nucleation kinetics Chapter 6 Breakdown of classical nucleation theory in nucleation kinetics In this chapter we present results of a study of nucleation of nematic droplets from the metastable isotropic phase. To the best

More information

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS

PHASE TRANSITIONS IN SOFT MATTER SYSTEMS OUTLINE: Topic D. PHASE TRANSITIONS IN SOFT MATTER SYSTEMS Definition of a phase Classification of phase transitions Thermodynamics of mixing (gases, polymers, etc.) Mean-field approaches in the spirit

More information

KOROSH TORABI. Ph.D. Chemical Engineering, Purdue University, West Lafayette, IN Dec. 2011

KOROSH TORABI. Ph.D. Chemical Engineering, Purdue University, West Lafayette, IN Dec. 2011 KOROSH TORABI 2 7 2 5 C E N T R A L S T. A P T 2 S E V A N S T O N, I L 6 0 2 0 1 P H O N E ( 3 1 2 ) 3 3 9-0 6 6 5 E - M A I L : K O R O S H. T O R A B I @ N O R T H W E S T E R N. E D U W E B P A G E

More information

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles

A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles A Fluctuating Immersed Boundary Method for Brownian Suspensions of Rigid Particles Aleksandar Donev Courant Institute, New York University APS DFD Meeting San Francisco, CA Nov 23rd 2014 A. Donev (CIMS)

More information

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A.

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A. Physics 6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ In Class Exercises Last correction at March 25, 2017, 1:37 pm c 2017, James Sethna, all rights reserved 1. Detailed

More information

Network formation in viscoelastic phase separation

Network formation in viscoelastic phase separation INSTITUTE OF PHYSICSPUBLISHING JOURNAL OFPHYSICS: CONDENSED MATTER J. Phys.: Condens. Matter 15 (2003) S387 S393 PII: S0953-8984(03)54761-0 Network formation in viscoelastic phase separation Hajime Tanaka,

More information

1 st Law Analysis of Control Volume (open system) Chapter 6

1 st Law Analysis of Control Volume (open system) Chapter 6 1 st Law Analysis of Control Volume (open system) Chapter 6 In chapter 5, we did 1st law analysis for a control mass (closed system). In this chapter the analysis of the 1st law will be on a control volume

More information

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts)

Random Averaging. Eli Ben-Naim Los Alamos National Laboratory. Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Random Averaging Eli Ben-Naim Los Alamos National Laboratory Paul Krapivsky (Boston University) John Machta (University of Massachusetts) Talk, papers available from: http://cnls.lanl.gov/~ebn Plan I.

More information

Effective Field Theory of Dissipative Fluids

Effective Field Theory of Dissipative Fluids Effective Field Theory of Dissipative Fluids Hong Liu Paolo Glorioso Michael Crossley arxiv: 1511.03646 Conserved quantities Consider a long wavelength disturbance of a system in thermal equilibrium non-conserved

More information

3. General properties of phase transitions and the Landau theory

3. General properties of phase transitions and the Landau theory 3. General properties of phase transitions and the Landau theory In this Section we review the general properties and the terminology used to characterise phase transitions, which you will have already

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Thermodynamics and kinetics of competing aggregation processes in a simple model system

Thermodynamics and kinetics of competing aggregation processes in a simple model system THE JOURNAL OF CHEMICAL PHYSICS 27, 84503 2007 Thermodynamics and kinetics of competing aggregation processes in a simple model system Ambarish Nag a and R. Stephen Berry b Department of Chemistry, The

More information

AGuideto Monte Carlo Simulations in Statistical Physics

AGuideto Monte Carlo Simulations in Statistical Physics AGuideto Monte Carlo Simulations in Statistical Physics Second Edition David P. Landau Center for Simulational Physics, The University of Georgia Kurt Binder Institut für Physik, Johannes-Gutenberg-Universität

More information

Experimental Soft Matter (M. Durand, G. Foffi)

Experimental Soft Matter (M. Durand, G. Foffi) Master 2 PCS/PTSC 2016-2017 10/01/2017 Experimental Soft Matter (M. Durand, G. Foffi) Nota Bene Exam duration : 3H ecture notes are not allowed. Electronic devices (including cell phones) are prohibited,

More information

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate

Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Direct observation of aggregative nanoparticle growth: Kinetic modeling of the size distribution and growth rate Taylor J. Woehl, * Chiwoo Park, James E. Evans, Ilke Arslan, William D. Ristenpart, and

More information

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry

Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles. Srikanth Sastry JNCASR August 20, 21 2009 Understanding Molecular Simulation 2009 Monte Carlo and Molecular Dynamics in different ensembles Srikanth Sastry Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore

More information

Physics of Cellular materials: Filaments

Physics of Cellular materials: Filaments Physics of Cellular materials: Filaments Tom Chou Dept. of Biomathematics, UCLA, Los Angeles, CA 995-766 (Dated: December 6, ) The basic filamentary structures in a cell are reviewed. Their basic structures

More information

Introduction Efficiency bounds Source dependence Saturation Shear Flows Conclusions STIRRING UP TROUBLE

Introduction Efficiency bounds Source dependence Saturation Shear Flows Conclusions STIRRING UP TROUBLE STIRRING UP TROUBLE Multi-scale mixing measures for steady scalar sources Charles Doering 1 Tiffany Shaw 2 Jean-Luc Thiffeault 3 Matthew Finn 3 John D. Gibbon 3 1 University of Michigan 2 University of

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool

Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase. Andy Long Kridsanaphong Limtragool Modeling the Free Energy Landscape for Janus Particle Self-Assembly in the Gas Phase Andy Long Kridsanaphong Limtragool Motivation We want to study the spontaneous formation of micelles and vesicles Applications

More information

Theoretical Perspectives on Biomolecular Condensates

Theoretical Perspectives on Biomolecular Condensates JBB 2026H Lecture 7 (2nd half) Hue Sun Chan Department of Biochemistry October 26, 2018 University of Toronto Theoretical Perspectives on Biomolecular Condensates Intracellular Biomolecular Condensates

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 29 Nov 2006

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 29 Nov 2006 NOVEL TYPE OF PHASE TRANSITION IN A SYSTEM arxiv:cond-mat/0611743v1 [cond-mat.stat-mech] 9 Nov 006 OF SELF-DRIVEN PARTICLES Tamás Vicsek, a,b András Czirók, a Eshel Ben-Jacob, c Inon Cohen, c and Ofer

More information

Anatoly B. Kolomeisky Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The

Anatoly B. Kolomeisky Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The Anatoly B. Kolomeisy Department of Chemistry Center for Theoretical Biological Physics How to Understand Molecular Transport through Channels: The Role of Interactions Transport Through Channels Oil pumping

More information

Question 1: Axiomatic Newtonian mechanics

Question 1: Axiomatic Newtonian mechanics February 9, 017 Cornell University, Department of Physics PHYS 4444, Particle physics, HW # 1, due: //017, 11:40 AM Question 1: Axiomatic Newtonian mechanics In this question you are asked to develop Newtonian

More information