Thermodynamics of phase transitions

Size: px
Start display at page:

Download "Thermodynamics of phase transitions"

Transcription

1 Thermodynamics of phase transitions Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland 7 Oct 2013, SF-MTPT Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 1 / 25

2 Literature H. B. Callen, Thermodynamics and Introduction to Thermostatistics, John Wiley & Sons, Inc. (1985) J. J. Binney, N. J. Dowrick, A. J. Fisher, and M. E. J. Newman, The Theory of Critical Phenomena. An Introduction to the Renormalization Group, Clarendon Press (1992) H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press (1971) K. Christensen and N. R. Moloney, Complexity and Criticality, Imperial College Press (2005) S. Salinas, Introduction to Statistical Physics (1997) M. Plischke and B. Bergersen, Equilibrium Statistical Physics (1989) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 2 / 25

3 Phase transitions - amazing! Sea level Tibet Ice Water Steam Figure : A part of the phase diagram of water. Source: Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 3 / 25

4 Pressure (bar) Critical Point Phase Diagram: Water - Ice - Steam 1.E+06 1.E+05 Saturation Line Sublimation Line Melting Line (Ice VI) Melting Line (Ice VII) 1.E+04 Ice I Line Ice III Line Ice V Line Melting Line (Ice V) 1.E+03 Ice VI Line Ice VII Line Melting Line (Ice III) Liquid 1.E+02 Melting Line (Ice I) Saturation Line 1.E+01 1.E+00 Solid 1.E-01 1.E-02 Triple Point 1.E-03 1.E-04 1.E-05 Sublimation Line Vapor 1.E-06 1.E Temperature (K) Copyright 1998 ChemicaLogic Corporation. Figure : The complete phase diagram of water. Source: W. Wagner, A. Saul, A. Pru: International Equations for the Pressure along the Melting and along the Sublimation Curve for Ordinary Water Substance, J. Phys. Chem. Ref. Data 23, No 3 (1994) 515 Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 4 / 25

5 Continuous and discontinuous phase transitions Figure : A schematic phase diagram gas-liquid-solid, and the relationship between the heat supplied to the system and the temperature (Cooling Curve). Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 5 / 25

6 Experiments - critical Curie Point and supercritical fluid M.I.T. - Walter Lewin - Ferromagnetic Curie Point [ Poliakoff - Supercritical Fluids [ Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 6 / 25

7 Metastable states and hysteresis Hysteresis the dependence of a system not only on its current environment but also on its past environment. Supercooled and superheated states. In the solid-liquid phase transition hysteresis occurs when the temperature of melting and freezing are different. Agar melts at about 85 0 C and freezes in the range of 32 0 C to 40 0 C. This means that agar melted at 85 0 C remains in a liquid state up to 85 0 C. On the other hand, if it is initially in the solid state it remains in this state up to 85 0 C. Therefore, at temperatures C agar may be in a liquid or a solid state, depending on the history (initial state). Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 7 / 25

8 Hand warmer - how does it work? Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 8 / 25

9 Hand warmer - Supersaturated solution Generate heat through the exothermic crystallisation of supersaturated solutions (typically sodium acetate) The release of heat is triggered by flexing a small metal disk, which generates nucleation centers that initiate crystallization Can be recharged by immersing the hand-warmer in very hot water until the contents are uniformly fluid and then allowing it to cool Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 9 / 25

10 Modern classification of phase transitions Latent heat - heat released or absorbed by a system during a constant-temperature process (phase transition) Latent heat - energy required to transfer a particle from one phase to another Latent heat - allows to distinguish between continuous and discontinuous phase transitions Continuous phase transitions - without latent heat, no phase coexistence, no hysteresis Discontinuous phase transitions - latent heat, phase coexistence, metastable states (hysteresis) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 10 / 25

11 Fluctuations and critical point - critical opalescence Phenomenon which arises in the region of a continuous phase transition At critical point density fluctuations become of a size comparable to the wavelength of light The light is scattered and causes the normally transparent liquid to appear cloudy Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 11 / 25

12 Order parameter Spontaneous symmetry breaking at critical point Order parameter φ a measure of the degree of order in a system φ 0 below the critical point φ = 0 above the critical point Source: prizes/physics/laureates/2008/popularphysicsprize2008.pdf Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 12 / 25

13 Order parameter - examples Phase transition Order parameter liquid-gas density ferro-paramagnetic magnetization antyferro-paramagnetic sublattice magnetization Bose-Einstein condensate wave function superfluidity wave function of He 4 superconductivity wave function of Cooper pair ω Universe + ω ω ++ω Life ω L ω R ω L +ω R Table : Broken symmetry ω ± denotes the number of particles and antiparticles, ω L,R the number of left-handed and right-handed amino acids. The proteins in living creatures consist only of left-handed amino acids. Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 13 / 25

14 Correlation function Correlation function: φ(r i ) = φ + δφ(r i ). (1) G(r i, r j ) = φ(r i )φ(r j ) = φ 2 + δφ(r i )δφ(r j ). (2) First term i.e. φ 2 describes long-range order and the second term describes short-range order G f (r i, r j ) = δφ(r i )δφ(r j ) (3) For T = T c : G f (r) 1. (4) r d 2 η Beyond the critical point: ( G f (r) exp r ). (5) ξ Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 14 / 25

15 Critical point and correlations In general ( ) exp r ξ G f (r). (6) r d 2 η Correlation length ξ characteristic length of a correlated region (very important in modern theory of phase transition!!!). Critical state: T T c ξ. (7) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 15 / 25

16 Critical exponents and universality classes critical exponent dependence value for Fe α c T T c α 0.03 β φ T T c β 0.37 γ κ T T T c γ 1.33 η G(r) r 2 d η 0.07 ν ξ T T c ν 0.69 Table : Critical exponents Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 16 / 25

17 Universality Source: H. E. Stanley, Introduction to Phase Transitions and Critical Phenomena, Oxford University Press (1971) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 17 / 25

18 Phase transitions can be studied at two levels: Macroscopic - Thermodynamics (How?) Microscopic - Statistical Physics (Why?) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 18 / 25

19 Equilibrium Macroscopic phenomenon refers to a time scale much larger than the scale of the microscopic movement The particular state of motion (microscopic) during observation the macroscopic state is constant Thermodynamics is based on the assumption that under given environmental conditions the system has clearly defined the equilibrium properties External conditions are determined by external parameters such as temperature, pressure, magnetic field, etc. Different environmental conditions different equilibrium properties of the system State function describes the equilibrium state of a system (a property of a system that depends only on the current state of the system) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 19 / 25

20 What is the equilibrium state for...? Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 20 / 25

21 Properties of equilibrium Macroscopic state is independent of time Independent on the history, unequivocal May be described by small number of macroscopic parameters Macroscopic state in equilibrium - the most random state under the circumstances (from microscopic point of view) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 21 / 25

22 The energy of the system can be changed by external forces that perform work Work dw performed by tension f that extends a metal rod by the length dx : dw = fdx. (8) External magnetic field h does the work (an increase of magnetization): dw = hdm. (9) Pressure p is the force that changes the volume by dv, and a corresponding work: dw = pdv (10) Chemical potential is the force that changes the number of particles N: dw = µdn (11) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 22 / 25

23 Thermodynamic (macroscopic) parameters Generalized coordinates defining the state of the system: distance X, magnetization M, volume V, the number of particles N Generalized external forces: tension f, magnetic field h, pressure p, chemical potential µ Can you find some common property of generalized coordinates? Can you find some common property of generalized forces? Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 23 / 25

24 Extensive and intensive parameters 1 Extensive (additive) the value of such a parameter for the whole system is equal to the sum of the parameters for subsystems making up the system. Examples of such parameters are distance X, magnetization M, volume V, the number of particles N 2 Intensive the value for the whole system is equal to the value of that parameter for each of the identical subsystems making up a given system. Examples of such parameters are temperature T, pressure p, chemical potential µ and... Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 24 / 25

25 Is the change of energy possible without work (change in the macroscopic coordinates)? Heat - the result of changes in microscopic motion Do we need all microscopic coordinates (coordinates of all particles) to describe these changes? We introduce a new generalized coordinate to describe the microscopic motion in a collective way Entropy S is a new generalized coordinate and corresponding generalized force? dq = TdS (12) Katarzyna Sznajd-Weron (WUT) Thermodynamics of phase transitions 7 Oct 2013, SF-MTPT 25 / 25

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

Overview of phase transition and critical phenomena

Overview of phase transition and critical phenomena Overview of phase transition and critical phenomena Aims: Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic

More information

Physical Chemistry Physical chemistry is the branch of chemistry that establishes and develops the principles of Chemistry in terms of the underlying concepts of Physics Physical Chemistry Main book: Atkins

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

ELECTRONICS DEVICES AND MATERIALS

ELECTRONICS DEVICES AND MATERIALS 2-2-2 ELECTRONICS DEVICES AND MATERIALS Atsunori KAMEGAWA SYLLABUS! Introduction to materials structure and dielectric physics (04/27)! Ferroelectricity involved in structural phase transitions (05/25)

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Physics Nov Phase Transitions

Physics Nov Phase Transitions Physics 301 11-Nov-1999 15-1 Phase Transitions Phase transitions occur throughout physics. We are all familiar with melting ice and boiling water. But other kinds of phase transitions occur as well. Some

More information

Phase transitions and critical phenomena

Phase transitions and critical phenomena Phase transitions and critical phenomena Classification of phase transitions. Discontinous (st order) transitions Summary week -5 st derivatives of thermodynamic potentials jump discontinously, e.g. (

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

The International Association for the Properties of Water and Steam

The International Association for the Properties of Water and Steam IAPWS R14-08(011) The International Association for the Properties of Water and Steam Plzeň, Czech Republic September 011 Revised Release on the Pressure along the Melting and Sublimation Curves of Ordinary

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4

Chapter 4 Phase Transitions. 4.1 Phenomenology Basic ideas. Partition function?!?! Thermodynamic limit Statistical Mechanics 1 Week 4 Chapter 4 Phase Transitions 4.1 Phenomenology 4.1.1 Basic ideas Partition function?!?! Thermodynamic limit 4211 Statistical Mechanics 1 Week 4 4.1.2 Phase diagrams p S S+L S+G L S+G L+G G G T p solid triple

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Chapter 4. The Physical transformations of pure substances Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 4. The Physical transformations of pure substances Fall Semester Physical Chemistry 1 (CHM2201) Chapter 4. The Physical transformations of pure substances 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents Phase Diagrams 4.1 The stabilities of phases 4.2 Phase boundaries 4.3 Three representative

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

CHAPTER 4 Physical Transformations of Pure Substances.

CHAPTER 4 Physical Transformations of Pure Substances. I. Generalities. CHAPTER 4 Physical Transformations of Pure Substances. A. Definitions: 1. A phase of a substance is a form of matter that is uniform throughout in chemical composition and physical state.

More information

Lecture Phase transformations. Fys2160,

Lecture Phase transformations. Fys2160, Lecture 12 01.10.2018 Phase transformations Fys2160, 2018 1 A phase transformation Discontinuous change in the properties of substance when the environent is changed infinitesimaly. Change between phases

More information

Statistical Mechanics

Statistical Mechanics Franz Schwabl Statistical Mechanics Translated by William Brewer Second Edition With 202 Figures, 26 Tables, and 195 Problems 4u Springer Table of Contents 1. Basic Principles 1 1.1 Introduction 1 1.2

More information

Ginzburg-Landau Theory of Phase Transitions

Ginzburg-Landau Theory of Phase Transitions Subedi 1 Alaska Subedi Prof. Siopsis Physics 611 Dec 5, 008 Ginzburg-Landau Theory of Phase Transitions 1 Phase Transitions A phase transition is said to happen when a system changes its phase. The physical

More information

Matter changes phase when energy is added or removed

Matter changes phase when energy is added or removed Section 12.4 Phase Changes Explain how the addition and removal of energy can cause a phase change. Interpret a phase diagram. Matter changes phase when energy is added or removed Energy Changes Accompanying

More information

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India Phase Diagrams 1 Increasing the temperature isobarically T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures numerical values are for water. 2 Temperature -

More information

Equilibrium, out of equilibrium and consequences

Equilibrium, out of equilibrium and consequences Equilibrium, out of equilibrium and consequences Katarzyna Sznajd-Weron Institute of Physics Wroc law University of Technology, Poland SF-MTPT Katarzyna Sznajd-Weron (WUT) Equilibrium, out of equilibrium

More information

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes)

Chapter 11 part 2. Properties of Liquids Viscosity Surface Tension Capillary Action. Phase Changes (energy of phase changes) Chapter 11 part 2 Properties of Liquids Viscosity Surface Tension Capillary Action Phase Changes (energy of phase changes) Dynamic Equilibrium Vapor pressure Phase diagram 1 Structure Affects Function

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

3. General properties of phase transitions and the Landau theory

3. General properties of phase transitions and the Landau theory 3. General properties of phase transitions and the Landau theory In this Section we review the general properties and the terminology used to characterise phase transitions, which you will have already

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Unit 7 (B) Solid state Physics

Unit 7 (B) Solid state Physics Unit 7 (B) Solid state Physics hermal Properties of solids: Zeroth law of hermodynamics: If two bodies A and B are each separated in thermal equilibrium with the third body C, then A and B are also in

More information

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas

Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Chapter 8 Phase Diagram, Relative Stability of Solid, Liquid, and Gas Three states of matter: solid, liquid, gas (plasma) At low T: Solid is most stable. At high T: liquid or gas is most stable. Ex: Most

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 13 I. PHASE DIAGRAMS The different phases of substances are characterized by different ranges of thermodynamic variables in which these phasesarethestablephases.

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Chapter 3 PROPERTIES OF PURE SUBSTANCES PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Air is a mixture of several gases, but it is considered to be a pure

More information

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces

Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces Remember Chapter 12.1 Introduction to Kinetic Molecular Theory and Intermolecular forces 1 To understand properties, we want to connect what we see to what is happening on a molecular level. Start with

More information

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state.

Thermochemistry. The study of energy changes that occur during chemical reactions and changes in state. Energy Thermochemistry The study of energy changes that occur during chemical reactions and changes in state. The Nature of Energy Energy - the ability to do work or produce heat Energy is stored in the

More information

The Direction of Spontaneous Change: Entropy and Free Energy

The Direction of Spontaneous Change: Entropy and Free Energy The Direction of Spontaneous Change: Entropy and Free Energy Reading: from Petrucci, Harwood and Herring (8th edition): Required for Part 1: Sections 20-1 through 20-4. Recommended for Part 1: Sections

More information

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of

Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of Physical transformations of pure substances Boiling, freezing, and the conversion of graphite to diamond examples of phase transitions changes of phase without change of chemical composition. In this chapter

More information

Phase Transitions and the Renormalization Group

Phase Transitions and the Renormalization Group School of Science International Summer School on Topological and Symmetry-Broken Phases Phase Transitions and the Renormalization Group An Introduction Dietmar Lehmann Institute of Theoretical Physics,

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

2. THE STATES OF MATTER

2. THE STATES OF MATTER 2. THE STATES OF MATTER 2.1. THE THREE STATES OF MATTER Every substance can take on several distinct forms called phases or states of aggregation of matter. Four states of matter are observable in everyday

More information

The Gibbs Phase Rule F = 2 + C - P

The Gibbs Phase Rule F = 2 + C - P The Gibbs Phase Rule The phase rule allows one to determine the number of degrees of freedom (F) or variance of a chemical system. This is useful for interpreting phase diagrams. F = 2 + C - P Where F

More information

General Physics (PHY 2130)

General Physics (PHY 2130) General Physics (PHY 2130) Lecture 34 Heat Heat transfer Conduction Convection Radiation http://www.physics.wayne.edu/~apetrov/phy2130/ Lightning Review Last lecture: 1. Thermal physics Heat. Specific

More information

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition

MME 2010 METALLURGICAL THERMODYNAMICS II. Fundamentals of Thermodynamics for Systems of Constant Composition MME 2010 METALLURGICAL THERMODYNAMICS II Fundamentals of Thermodynamics for Systems of Constant Composition Thermodynamics addresses two types of problems: 1- Computation of energy difference between two

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS

CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE, PHASE CHANGES, AND PHASE DIAGRAMS CRYSTAL STRUCTURE CRYSTALLINE AND AMORPHOUS SOLIDS Crystalline solids have an ordered arrangement. The long range order comes about from an underlying

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Chapter 14 Temperature and Heat

Chapter 14 Temperature and Heat Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 14 Temperature and Heat Thermodynamics Starting a different area of physics called thermodynamics Thermodynamics focuses on energy rather than

More information

Section 2: Changes of State (p. 68) 20 HOLT SCIENCE AND TECHNOLOGY

Section 2: Changes of State (p. 68) 20 HOLT SCIENCE AND TECHNOLOGY Plasmas (p. 67) 24. More than 99 percent of the known matter in the universe is in the plasma state. 25. Plasmas are made up of particles that have broken apart. 26. Plasmas have a definite shape and volume.

More information

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition

INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition INTRODUCTION TO о JLXJLA Из А lv-/xvj_y JrJrl Y üv_>l3 Second Edition Kerson Huang CRC Press Taylor & Francis Croup Boca Raton London New York CRC Press is an imprint of the Taylor & Francis Group an Informa

More information

Thermodynamic Properties

Thermodynamic Properties Thermodynamic Properties (TP) Thermodynamic Properties Define and articulate some of the critical language and concepts of Thermodynamics Distinguish between the universe, system, surroundings, and boundary

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

Pure Substance Properties and Equation of State

Pure Substance Properties and Equation of State Pure Substance Properties and Equation of State Pure Substance Content Pure Substance A substance that has a fixed chemical composition throughout is called a pure substance. Water, nitrogen, helium, and

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. A phase is a homogeneous part of the system in contact

More information

1 Phase Transitions. 1.1 Introductory Phenomenology

1 Phase Transitions. 1.1 Introductory Phenomenology 1 Phase Transitions 1.1 Introductory Phenomenology Consider a single-component system in thermodynamic equilibrium. Let us describe the system with the set of (independent) variables T, p, and N. The appropriate

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

Spontaneous Symmetry Breaking

Spontaneous Symmetry Breaking Spontaneous Symmetry Breaking Second order phase transitions are generally associated with spontaneous symmetry breaking associated with an appropriate order parameter. Identifying symmetry of the order

More information

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy

Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Unit 7: Energy Outline Types of Energy Calorimetry q = mc T Thermochemical Equations Hess s Law Spontaneity, Entropy, Gibb s Free energy Energy Energy is the ability to do work or produce heat. The energy

More information

Evaluating properties of pure substances

Evaluating properties of pure substances Evaluating properties of pure substances Pure substance A pure substance has the same chemical composition throughout. Are the following confined in a fixed volume pure substances: Ice (single component,

More information

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Thermodynamics of solids 5. Unary systems Kwangheon ark Kyung Hee University Department of Nuclear Engineering 5.1. Unary heterogeneous system definition Unary system: one component system. Unary heterogeneous

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

PART ONE TWO-PHASE FLOW

PART ONE TWO-PHASE FLOW PART ONE TWO-PHASE FLOW 1 Thermodynamic and Single-Phase Flow Fundamentals 1.1 States of Matter and Phase Diagrams f Pure Substances 1.1.1 Equilibrium States Recall from thermodynamics that f a system

More information

THERMODYNAMICS NOTES. These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley.

THERMODYNAMICS NOTES. These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley. THERMODYNAMICS NOTES These notes give a brief overview of engineering thermodynamics. They are based on the thermodynamics text by Black & Hartley. Topics covered include: concepts; properties; conservation

More information

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS KEY CONCEPTS : [ *rating as per the significance of concept] 1. Particle nature of Matter *** 2. States of Matter **** 3. Interchange in states of Matter

More information

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes

Chapter 13 States of Matter Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes Chapter 13 States of Matter 13.2 Forces of Attraction 13.3 Liquids and Solids 13.4 Phase Changes I. Forces of Attraction (13.2) Intramolecular forces? (forces within) Covalent Bonds, Ionic Bonds, and metallic

More information

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas

solid IMF>liquid IMF>gas IMF Draw a diagram to represent the 3 common states of matter of a given substance: solid liquid gas Thermochemistry Part 1 Notes States of Matter and Intermolecular Forces (IMF) Chemistry HP At the end of this unit, students should be able to: Describe the various states of matter in terms of kinetic

More information

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass Matter Matter: anything that takes up space and has mass Can you think of anything that is not made of matter? Energy- which is a property of matter!! Matter is made up of moving particles! Instead of

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

18.13 Review & Summary

18.13 Review & Summary 5/2/10 10:04 PM Print this page 18.13 Review & Summary Temperature; Thermometers Temperature is an SI base quantity related to our sense of hot and cold. It is measured with a thermometer, which contains

More information

Section 16.3 Phase Changes

Section 16.3 Phase Changes Section 16.3 Phase Changes Solid Liquid Gas 3 Phases of Matter Density of Matter How packed matter is (The amount of matter in a given space) Solid: Liquid: Gas: High Density Medium Density Low Density

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 A phase is a homogeneous part of the system in contact

More information

Chapter 23 Changes of Phase. Conceptual Physics Chapter 23 1

Chapter 23 Changes of Phase. Conceptual Physics Chapter 23 1 Chapter 23 Changes of Phase Conceptual Physics Chapter 23 1 Kinetic Theory Matter exists in three common states or phases solid, liquid and gas. A fourth state plasma makes up over 90% of our universe.

More information

models (three-dimensional representation containing essential structure of

models (three-dimensional representation containing essential structure of Unit 2 Matter The universe consists of matter and energy. Chemistry is the branch of science the studies matter as well as the changes it undergoes and the energy changes that accompany such transformations.

More information

Phase Transitions. Phys112 (S2012) 8 Phase Transitions 1

Phase Transitions. Phys112 (S2012) 8 Phase Transitions 1 Phase Transitions cf. Kittel and Krömer chap 10 Landau Free Energy/Enthalpy Second order phase transition Ferromagnetism First order phase transition Van der Waals Clausius Clapeyron coexistence curve

More information

6 Physical transformations of pure substances

6 Physical transformations of pure substances 6 Physical transformations of pure substances E6.b E6.2b E6.3b E6.4b Solutions to exercises Discussion questions Refer to Fig. 6.8. The white lines represent the regions of superheating and supercooling.

More information

The Thermodynamics of. The rst law ofthermodynamics relates the change in internal energy to the

The Thermodynamics of. The rst law ofthermodynamics relates the change in internal energy to the Lecture 7 The Thermodynamics of Electric, Magnetic and Other Systems The rst law ofthermodynamics relates the change in internal energy to the heat supplied and the work done. So far we have included only

More information

Thermodynamics, Part 2

Thermodynamics, Part 2 hermodynamics, art November 1, 014 1 hase equilibria Consider the three phase diagrams in Fig.(6.1) (a) CO, (b) water; and (c) helium. CO is a normal material with a typical and simple phase diagram. At

More information

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113

Chapter 10 Liquids and Solids. Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, , 113 Chapter 10 Liquids and Solids Problems: 14, 15, 18, 21-23, 29, 31-35, 37, 39, 41, 43, 46, 81-83, 87, 88, 90-93, 99, 104-106, 113 Recall: Intermolecular vs. Intramolecular Forces Intramolecular: bonds between

More information

ENTROPY

ENTROPY ENTROPY 6.2.8 6.2.11 ENTHALPY VS. ENTROPY ENTROPY (S) the disorder of a system - solid liquid gas = entropy - gas liquid solid = entropy - mixing substances always = entropy SPONTANEOUS VS. NONSPONTANEOUS

More information

Bell Ringer. What are the two types of mixtures? What is an element? What is a compound?

Bell Ringer. What are the two types of mixtures? What is an element? What is a compound? Bell Ringer What are the two types of mixtures? What is an element? What is a compound? MATTER Solids, Liquids, & Gases States of Matter & Kinetic Molecular Theory Kinetic Molecular Theory KMT Tiny, constantly

More information

8.21 The Physics of Energy Fall 2009

8.21 The Physics of Energy Fall 2009 MIT OpenCourseWare http://ocw.mit.edu 8.21 The Physics of Energy Fall 2009 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 8.21 Lecture 10 Phase Change

More information

Chemical, Biochemical, and Engineering Thermodynamics

Chemical, Biochemical, and Engineering Thermodynamics Chemical, Biochemical, and Engineering Thermodynamics Fourth Edition Stanley I. Sandler University of Delaware John Wiley & Sons, Inc. Contents CHAPTER 1 INTRODUCTION 1 1.1 The Central Problems of Thermodynamics

More information

Chemical and Engineering Thermodynamics

Chemical and Engineering Thermodynamics Chemical and Engineering Thermodynamics Third Edition Stanley I. Sandler University of Delaware John Wiley & Sons, Inc. New York Chichester Weinheim Brisbane Singapore Toronto Contents NOTATION xv CHAPTER1

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012)

Superfluidity. v s. E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN University of Oulu, Finland (Dated: June 8, 2012) Superfluidity E. V. Thuneberg Department of Physical Sciences, P.O.Box 3000, FIN-90014 University of Oulu, Finland (Dated: June 8, 01) PACS numbers: 67.40.-w, 67.57.-z, 74., 03.75.-b I. INTRODUCTION Fluids

More information

Suggestions for Further Reading

Suggestions for Further Reading Contents Preface viii 1 From Microscopic to Macroscopic Behavior 1 1.1 Introduction........................................ 1 1.2 Some Qualitative Observations............................. 2 1.3 Doing

More information

CHAPTER THREE: MATTER, PROPERTY, AND CHANGE

CHAPTER THREE: MATTER, PROPERTY, AND CHANGE CHAPTER THREE: MATTER, PROPERTY, AND CHANGE CLASSIFICATION OF MATTER! A sample of matter can be a gas, a liquid, or a solid. These three forms of matter are called the states of matter. STATES OF MATTER!

More information

GFD 2006 Lecture 2: Diffusion-controlled solidification

GFD 2006 Lecture 2: Diffusion-controlled solidification GFD 2006 Lecture 2: Diffusion-controlled solidification Grae Worster; notes by Victor Tsai and Dan Goldberg March 15, 2007 1 Finishing off Lecture 1 As shown in Lecture 1, an approximation for the diffusion

More information

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered:

So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Entropy So far changes in the state of systems that occur within the restrictions of the first law of thermodynamics were considered: Energy is transferred from one state to another by any possible forms,

More information

Melting of ice particles:

Melting of ice particles: Melting of ice particles: When ice particles fall below 0 C they begin to melt, but the process takes some time since heat transfer needs to occur (heat from ambient environment has to supply the latent

More information

Homework - Lecture 11.

Homework - Lecture 11. Homework - Lecture 11. Name: Topic: Heat Capacity and Specific Heat Type: Numerical 1. Two liquids, A and B, are mixed together, and the resulting temperature is 22 C. If liquid A has mass m and was initially

More information

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Liquids and Solids. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Liquids and Solids Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. 1 Gases, Liquids and Solids Gases are compressible fluids. They have no proper volume and proper

More information

Thermodynamics Free E and Phase D. J.D. Price

Thermodynamics Free E and Phase D. J.D. Price Thermodynamics Free E and Phase D J.D. Price Force - the acceleration of matter (N, kg m/s 2 ) Pressure (P)( ) - a force applied over an area (N/m 2 ) Work (W) - force multiplied by distance (kg( m 2 /s

More information

January 6, 2015 I. INTRODUCTION FIRST ORDER PHASE TRANSITIONS. A. Basic phenomena

January 6, 2015 I. INTRODUCTION FIRST ORDER PHASE TRANSITIONS. A. Basic phenomena 1 January 6, 2015 I. INTRODUCTION If I need to summarize the focus of this coming quarter, I d say it is the topic of phase transitions. Phase transitions, however, are a manifestation of interactions

More information

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11

Energy, Temperature, & Heat. Energy, Temperature, & Heat. Temperature Scales 1/17/11 Energy, Temperature, & Heat Energy is the ability to do work (push, pull, lift) on some form of matter. Chapter 2 Potential energy is the potential for work (mass x gravity x height) Kinetic energy is

More information

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES The particle model of a gas A gas has no fixed shape or volume, but always spreads out to fill any container. There are

More information

01. Equilibrium Thermodynamics I: Introduction

01. Equilibrium Thermodynamics I: Introduction University of Rhode Island DigitalCommons@URI Equilibrium Statistical Physics Physics Course Materials 2015 01. Equilibrium Thermodynamics I: Introduction Gerhard Müller University of Rhode Island, gmuller@uri.edu

More information

Intermolecular Forces and Liquids and Solids

Intermolecular Forces and Liquids and Solids PowerPoint Lecture Presentation by J. David Robertson University of Missouri Intermolecular Forces and Liquids and Solids Chapter 11 Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4)

Phase Transitions. µ a (P c (T ), T ) µ b (P c (T ), T ), (3) µ a (P, T c (P )) µ b (P, T c (P )). (4) Phase Transitions A homogeneous equilibrium state of matter is the most natural one, given the fact that the interparticle interactions are translationally invariant. Nevertheless there is no contradiction

More information