January 6, 2015 I. INTRODUCTION FIRST ORDER PHASE TRANSITIONS. A. Basic phenomena

Size: px
Start display at page:

Download "January 6, 2015 I. INTRODUCTION FIRST ORDER PHASE TRANSITIONS. A. Basic phenomena"

Transcription

1 1 January 6, 2015 I. INTRODUCTION If I need to summarize the focus of this coming quarter, I d say it is the topic of phase transitions. Phase transitions, however, are a manifestation of interactions between the particles in the systems we would like to analyze. The previous quarter concentrated on the statistical mechanics of non-interacting quantum particles. It is true, that more often than not, we can get a very good idea of phenomena without considering interactions. The ideal gas law is a great example. But as physicists we are interested in the special rather than the mundane. And in this quarter we will consider the more hard-to-understand phenomena that emerges when we consider many interacting particles. The most dramatic effects, and not uncommon in our nature are due to first order phase transitions. We will start with a discussion of those. We will continue to discuss the more rare, and more beutiful phase transition of higher orders. These are the symmetry breaking transitions which describe magnets, superconductors, and crystaline order. They also describe the universe - with its electro-weak symmetry breaking and the Anderson-Higgs phenomenon. Higher order phase transitions are also named critical phenomena. They are essentially always caused by symmetry breaking. The system chooses a direction although its hamiltonian is insensitive to direction. How could that be? In fact, one can mathematically prove it can not be. But mathematical proofs are not necessarily what describes nature. And nature becomes very beutiful at the points of syummetry breaking. It becomes scale invariant, and therefore can be analyzed with the renormalization group. Also, critical phenomena is universal. It is enough to understand it in one system, and obtain a description that transcends the specifics of the system, and applies very broadly to a large class of physical setups. II. FIRST ORDER PHASE TRANSITIONS The really dramatic phenomena associated with heat and thermodynamics are phase trasitions. Essentially all of our weather related experiences are associated with the fact that the surface temperature of the earth is comparable to the freezing and boiling temperatures of water. Think about it - in places other than california one can experience: fog, drizzle, rain, frozen rain sleet), hail, snow, and the most annoying form of water - slush. In boston, you can have them all on the same day while the sun is shining. On a more small scale - if you forget your coffee pot it may actually explode if the water evaporates too fast. Sweat - that s another thing that we can t really do without, and this is not a statement for you to not use deodorant - but by allowing water from our body to evaporate, we cool ourselves. A. Basic phenomena Let s focus on a very familiar phase transition - liquid gas. During this discussion it is useful to have water in mind. For a given pressure, for temperatures below the critical temperature a substance may be a dense fluid - liquid, while above the critical temperature the substance becomes a rather thin dilute fluid - gas. At the critical temperature, holding the pressure constant, as you try to heat the liquid, you expand it continuously, you hit the transition, and then heating doesn t seem to change the temperature, it just changes the volume: part of the liquid becomes a gas with a completely different density, and eventually the entire substance is gas, and the temperature continues to rise. The heat that went into the expansion is latent heat. If you go up to the mountains, wher the pressure is lower, and you try to cook, cooking pasta takes much longer. When we cook, we essentially boil water, and then wait for the heat from the water to cook our food. But cooking at high altitudes is longer since the boiling temperature of water is lower - DRAW ANOTHER POINT) - in fact, there is a critical line of coexistence the stretches for a while in the p-t graph. To consolidate your impressions with water - water can also freeze - ANOTHER LINE ) - and it also has a triple point, where liquid gas and solid can coexist. below the triple point in pressure or temperature, the substance can only be a gas or a solid, and the transition between the two, along this line, is called - sublimation. For water this is at p = 0.006A, T = 0.01C.

2 2 FIG. 1: phase diagram for water B. an-der-waals equation of state concentrating, as promised, on the liquid-gas phase transition. Let s build a model. So far we worked some with ideal gasses. They didn t have anything like it. But we did have one example of a phase transition - yeah - the Bose gas at high densities. We saw that the bosonic statistics leads to a weak attraction at low densities. This - as the density increases - beocmes more severe, and has to do with the condensation. But let s take the first piece - attraction. What would it do to us? How do we work it in? Well, pretty easy. Remember how we wroked in interactions to a noninteracting magnetic material? We added interactions to the free energy. Let s do that here. The free energy of a gas is: F T,, N) = T N log N If we try to get the pressure, we get: ) ) 2πmT ) d/2 + 1 = T N h d ) F = NT log ) N + log T d/2 + log 2πm)d /2 h d + 1 o.k.but what about interactions? What would interactions be like? If we take the dilute approximation, then the simplest interaction is: ) N 2 U int = a 3) the negative is for attraction - you don t expect anything special to appear with repulsion, do you? The free energy now becomes: F = T N log ) ) 2 N + log T d/2 + log 2πm)d /2 N h d + 1 a 4) and pressure gets an extra contribution: ) F = NT 1) 2) an2 2 5) The attraction reduces the pressure relative to an interacting gas. There is another thing we want to take into account - the interaction may be attractive, but only to a certain extent. Once atoms in a gas come very close together, they start repeling - otherwise all of matter would collapse into a single point. We can capture this by assuming that atoms see a hard wall once they heat other atoms. This is as though an atom has instead of volume to roam in, N 1)b space. This reduces the entropy of the gas. Where should we put it? thats right, in the log: log ) N log N b 6)

3 you can see that this is where we want it and not the interactions since the spatial entropy is given by the log term see by differentiating with respect to T), and not by the interaction, which doesn t contribute to entropy at all. Also, the attractive interactions should only depend on the distance between particles. Putting all this together, we calculate the pressure: ) F = T v b a 1 v 2. 7) This is the an der Waals equation, also written as: p + a v 2 ) v b) = T 8) As it turns out, this is an extremely useful equation for describing realistic gasses. It is essentially the first order virial correction to ideal gasses, plus finite volume. It is reproducing something which I m sure you heard about - the Lenard Jones potential of interactions between atoms: [ σ ) 12 σ ) ] 6 ur) = 4ɛ. 9) r r At low r, short distances, the 1/r 12 gives essentially a hard wall repulsion. But at longer distances, the 1/r 6 dominates, and we get a weak attraction. The parameters σ and ɛ determine the parameters a and b of dw equation. This also reproduces the liquid gas phase transition. Let s plot p vs. v. It is easy to see from the first version. At high T the T/v b) dominates, and we get an isothermic p-v curve that looks like this SEE FIGURE) the 1/v 2 gives a small correction, but nothing much. As temperature decreases, in regions where a v T 10) the 1/v 2 may dominate the behavior, and create this kink in the p-v diagram. As v decreases towards b, the pressure would increase again due to the short range repulsion. This kink, though, gets bigger and bigger as T decreases. SEE FIGURE) The outer limit on the kink is set by T, but the lower limit is set mostly buy b. This should look strange to you - pressure dropping as we make something more dense? Rings any bells? yeah! This is violating the stability rule that we derived from the Gibbs potential - 2 G 2 = p This must lead us to one conclusion - the gas can not be in this range of parameters. > 0. 11) 3 C. Liquid-gas phase boundary This forbidden range is exactly where the phase transition takes place. Let s think for a bit. In the forbidden range the gas is unstable. this means it can go to safety either to the right - low density - gas phase - or to the left - high density - liquid phase. Let s go back to the piston narative. Only make it in pressure LOOK AT THE P-T DIAGRAM). We move at constant T, but changing pressure. we start with a luquid under high pressure, we lower the pressure steadily at a constant T, the liquid expands, until at some point, when we hit the coexistence line, as we let the the pressure drop, the pressure freezes, and the gas evaporates, while taking heat out of the environment. v changes from the value here DENOTE ON THE P DIAGRAM) to here. let s call these points v 1 and v 2. now, the gas emerges on the other side, and the pressure can drop again, this time, with the isotherm of the gas, rather than the liquid. Looks okay, so where does it happen? For that we need to really understand the thermodynamics of this process. Thermodynamics - we have pressure, we have temperature, we have number. What is the right thermodynamic potential? Yeah - the Gibbs! Also - remember how we introduce the Gibbs? We always start with the free energy, and we do a legendre transformation: GN, p, T ; ) = F + p 12)

4 now we minimize with respect to. Let s look at the dw free energy with this regards, and let s look at the Gibbs per particles. BTW - remember that the giibs per particle is just the chemical potential. g = pv T lnv b) a 1 + const 13) v Lets plot here on the side the function f = F/N DRAW F) The log diverges at b, but saturates pretty quickly. Then the 1/v kicks in, and if T is low enough, it gives us another dive. Add to that the pv of the Gibbs, and you get this: a double well configuration. DRAW THE G GRAPH). Thermodynamic equilibria we used to find by differentiating the G with respect to, hoping to find a minimum. But here - hell, this way we get three solutions for the volume, one of which is a maximum - definitely unstable. That s exactly what we see with the dw equation, if we just look for extremum of g, we find three. These correspond to the three possible volumes that the DW equation has in teh p-v diagram. But now we can look: Generically, between the two wells, the extremum is a maximum of G, which tehrefore should not be counted towards thermal equilibrium. This is where the compressibility κ = 1 ) 14) p is negative by the naive calculation. Now we can see exactly what unstable means - the system, given the option, won t sit here in the top of the potential, it ll fall to one of the two minimas. DRAW THESE ON THE DW P DIAGRAM) here or here. But another thing - to be completely stable, the system must be in an absolute minimum. When the pressure is high, the density is high, the specific volume is low, we are in the gas phase. And indeed, the F will get translated to a G that looks like this:draw G) The low v minimum is definitely lower.for low p, F is the same, but G - completely different. The minimum that is lower now, is in the far side - hgih v. Indeed- a gas. There is a special point in between, in which the two minima are at the same gibbs level. That is the critical point! In fact - this is straight forward - we have a pahse transition at the point that the Gibbs per particles for the gas and liquid are equals - ie - where the chemical potential of the gas and liquid are equal. T 4 In equations we also have: D. Maxwell construction fv 1, T ) fv 2, T ) = pv 2 v 1 ) 15) This is the condition for the critical point in volumes. This has a very simple geometric interpretation, called the Maxwell construction. We can write the above is: F 1, T, N) F 2, T, N) = 2 1 ) v F 2 = p dw )d = p 2 1 ) 16) v 1 This requires an explanation. We follow an isotherm, and we need to know when the gibbs is equal here, and on the other side of the volume divide. It happens when the area under the dw curve, is the same as the area under the constant-p curver. Or, alternatively, when the between the dw and the constant-p cancel exactly. This is the Maxwell construction. E. Clausius-Clayperon Equation This is great - we can now understand how a gas - liquid phase transition comes about. An interaction gives an instability, the Gibbs develops two minimas, rather than one, and at any temperature there is a pressure such that the two are with the same Gibbs, the same chemical potential. At that point there is a phase transition between the two phases. But at which pressure does it happen for each temperature? For this we have the maxwell construction, or, more directly, the phase equilibrium condition: Gp, N, T ; 1 ) p, N, T ; 2 ) = 0 17)

5 1, 2 here are dummy variables, only denoting which one of the two minimas we want to consider. Otherwise, it is a function of p and T which is double valued at the phase transition. Now, we want to knwo how p c and T c at the coexistence line depend on eachother. So we take a differential: ) Gp, N, T ; 1 ) p NT ) Gp, N, T ; 2 ) p NT ) + dt Gp, ) N, T ; 1 ) T Np ) Gp, N, T ; 2 ) T but phase-transitions or no phase-transitions, we know what these are. the natural derivatives of G, therefore: Np ) = ) 1 2 ) = dt S 1 S 2 ) 19) where S 1 and S 2 are the entropies in the two phases. Since they are at completely different volumes, no wonder that they are different - just look at F, the volume is different between the two phases, even though the temperature and the number are the same. The difference in the entropy is exactly the latent heat over T : and putting things together, we get the C-C equation: S 1 S 2 ) = L 12 T dt = L 12 T 1 2 ) 20) 21) 1=G, 2=L. This applies not only for gas and liquid, but for any First order phase transition. And here is a definition for first order phase transitions: A TD process in which a first derivative of a TD potential such as gibbs or helmholtz free-energy) changes discontinuously - has a jump. By extension - second order - a second derivative of a potential has a jump. etc. An example for the use of the C-C equation is the water-ice phase transition at atmospheric pressure. We know that we need to give ice heat to make it melt. But ice also is less dense than water. So: and so: L water ice > 0 22) water ice < 0 23) dt < 0 24) As is indeed the case. Higher pressure - lower freezing temperature. This implies that by increasing pressure on ice, you can melt it.

Physics Nov Phase Transitions

Physics Nov Phase Transitions Physics 301 11-Nov-1999 15-1 Phase Transitions Phase transitions occur throughout physics. We are all familiar with melting ice and boiling water. But other kinds of phase transitions occur as well. Some

More information

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture No 16

Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur. Lecture No 16 Basic Thermodynamics Prof. S. K. Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture No 16 Properties of Pure Substances-I Good afternoon. In the last class, we were

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

Chapter 6. Phase transitions. 6.1 Concept of phase

Chapter 6. Phase transitions. 6.1 Concept of phase Chapter 6 hase transitions 6.1 Concept of phase hases are states of matter characterized by distinct macroscopic properties. ypical phases we will discuss in this chapter are liquid, solid and gas. Other

More information

Lecture Notes 2: Physical Equilibria Phase Diagrams

Lecture Notes 2: Physical Equilibria Phase Diagrams Lecture Notes 2: Physical Equilibria Phase Diagrams There are number of graphical means to help to understand the relationships between the different phases of a particular substance. The first thing we

More information

Condensation, Evaporation, Weather, and the Water Cycle

Condensation, Evaporation, Weather, and the Water Cycle Last name: First name: Date: Period: COM INC COM* Condensation, Evaporation, Weather, and the Water Cycle Evaporation and boiling are both types of vaporization, in which a liquid changes into a gas. The

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Talk Science Professional Development

Talk Science Professional Development Talk Science Professional Development Transcript for Grade 5 Scientist Case: The Water to Ice Investigations 1. The Water to Ice Investigations Through the Eyes of a Scientist We met Dr. Hugh Gallagher

More information

Thermodynamics I. Properties of Pure Substances

Thermodynamics I. Properties of Pure Substances Thermodynamics I Properties of Pure Substances Dr.-Eng. Zayed Al-Hamamre 1 Content Pure substance Phases of a pure substance Phase-change processes of pure substances o Compressed liquid, Saturated liquid,

More information

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13.

Lecture 20. Phase Transitions. Phase diagrams. Latent heats. Phase-transition fun. Reading for this Lecture: Elements Ch 13. Lecture 20 Phase ransitions Phase diagrams Latent heats Phase-transition fun Reading for this Lecture: Elements Ch 13 Lecture 20, p 1 Solid-gas equilibrium: vapor pressure Consider solid-gas equilibrium

More information

At this point, we've developed the tools and basic concepts necessary to apply

At this point, we've developed the tools and basic concepts necessary to apply 18 Lecture 0 At this point, we've developed the tools and basic concepts necessary to apply thermodynamics to a number of different systems, with the ultimate goal of describing chemically reacting systems.

More information

The Clausius-Clapeyron and the Kelvin Equations

The Clausius-Clapeyron and the Kelvin Equations PhD Environmental Fluid Mechanics Physics of the Atmosphere University of Trieste International Center for Theoretical Physics The Clausius-Clapeyron and the Kelvin Equations by Dario B. Giaiotti and Fulvio

More information

Lecture 4: The First Law of Thermodynamics

Lecture 4: The First Law of Thermodynamics Lecture 4: The First Law of Thermodynamics Latent Heat Last lecture, we saw that adding heat to an object does not always change the temperature of the object In some cases, the heat causes a phase change

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY

Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY Chapter 3 PROPERTIES OF PURE SUBSTANCES SUMMARY PURE SUBSTANCE Pure substance: A substance that has a fixed chemical composition throughout. Compressed liquid (sub-cooled liquid): A substance that it is

More information

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp

df dz = dp dt Essentially, this is just a statement of the first law in one of the forms we derived earlier (expressed here in W m 3 ) dq p dt dp A problem with using entropy as a variable is that it is not a particularly intuitive concept. The mechanics of using entropy for evaluating system evolution is well developed, but it sometimes feels a

More information

CHEM Introduction to Thermodynamics Fall Entropy and the Second Law of Thermodynamics

CHEM Introduction to Thermodynamics Fall Entropy and the Second Law of Thermodynamics CHEM2011.03 Introduction to Thermodynamics Fall 2003 Entropy and the Second Law of Thermodynamics Introduction It is a matter of everyday observation that things tend to change in a certain direction.

More information

Lecture Phase transformations. Fys2160,

Lecture Phase transformations. Fys2160, Lecture 12 01.10.2018 Phase transformations Fys2160, 2018 1 A phase transformation Discontinuous change in the properties of substance when the environent is changed infinitesimaly. Change between phases

More information

How Does the Sun s Energy Cause Rain?

How Does the Sun s Energy Cause Rain? 1.2 Investigate 3.3 Read How Does the Sun s Energy Cause Rain? In the water-cycle simulation, you observed water change from a liquid to a gas, and then back to a liquid falling to the bottom of the container.

More information

Exercises Evaporation (page 451) 23.2 Condensation (pages )

Exercises Evaporation (page 451) 23.2 Condensation (pages ) Exercises 23.1 Evaporation (page 451) 1. The four forms in which matter exists solid, liquid, gas, and plasma are called. 2. Water that is left out in an open container will eventually. 3. Is the following

More information

Physics 360 Review 3

Physics 360 Review 3 Physics 360 Review 3 The test will be similar to the second test in that calculators will not be allowed and that the Unit #2 material will be divided into three different parts. There will be one problem

More information

Changing States of Matter By Cindy Grigg

Changing States of Matter By Cindy Grigg By Cindy Grigg 1 On Earth, almost all matter exists in just three states. Matter is usually a solid, a liquid, or a gas. Plasma, the fourth state of matter, is rare on Earth. It sometimes can be found

More information

Overview of phase transition and critical phenomena

Overview of phase transition and critical phenomena Overview of phase transition and critical phenomena Aims: Phase transitions are defined, and the concepts of order parameter and spontaneously broken symmetry are discussed. Simple models for magnetic

More information

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Applied Thermodynamics for Marine Systems Prof. P. K. Das Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture 2 First Law of Thermodynamics (Closed System) In the last

More information

Chapter 2, Lesson 5: Changing State Melting

Chapter 2, Lesson 5: Changing State Melting Chapter 2, Lesson 5: Changing State Melting Key Concepts Melting is a process that causes a substance to change from a solid to a liquid. Melting occurs when the molecules of a solid speed up enough that

More information

Boiling Ice Lab. D) Materials A thermometer A beaker A stopwatch A hot plate Ice

Boiling Ice Lab. D) Materials A thermometer A beaker A stopwatch A hot plate Ice IP 644 Name: Date: Block: Boiling Ice Lab A) Introduction All matter can exist as a solid, liquid, or gas. The phase in which a substance exists depends on its temperature. The solid phase exists at a

More information

CHEM-UA 652: Thermodynamics and Kinetics

CHEM-UA 652: Thermodynamics and Kinetics 1 CHEM-UA 652: Thermodynamics and Kinetics Notes for Lecture 13 I. PHASE DIAGRAMS The different phases of substances are characterized by different ranges of thermodynamic variables in which these phasesarethestablephases.

More information

Phases of matter and phase diagrams

Phases of matter and phase diagrams Phases of matter and phase diagrams Transition to Supercritical CO2 Water Ice Vapor Pressure and Boiling Point Liquids boil when the external pressure equals the vapor pressure. Temperature of boiling

More information

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2 8.044 Lecture Notes Chapter 5: hermodynamcs, Part 2 Lecturer: McGreevy 5.1 Entropy is a state function............................ 5-2 5.2 Efficiency of heat engines............................. 5-6 5.3

More information

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together.

Liquids & Solids. For the condensed states the ave KE is less than the attraction between molecules so they are held together. Liquids & Solids Intermolecular Forces Matter exists in 3 states. The state of matter is influenced by the physical properties of a substance. For liquids & solids, the condensed states, many of the physical

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition in SI Units Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc.

More information

Atoms and molecules are in motion and have energy

Atoms and molecules are in motion and have energy Atoms and molecules are in motion and have energy By now you know that substances are made of atoms and molecules. These atoms and molecules are always in motion and have attractions to each other. When

More information

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering

Thermodynamics of solids 5. Unary systems. Kwangheon Park Kyung Hee University Department of Nuclear Engineering Thermodynamics of solids 5. Unary systems Kwangheon ark Kyung Hee University Department of Nuclear Engineering 5.1. Unary heterogeneous system definition Unary system: one component system. Unary heterogeneous

More information

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A.

PROPERTIES OF PURE SUBSTANCES. Chapter 3. Mehmet Kanoglu. Thermodynamics: An Engineering Approach, 6 th Edition. Yunus A. Cengel, Michael A. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Mehmet Kanoglu Copyright The McGraw-Hill Companies, Inc.

More information

Unit 2. Phases of Matter and Density

Unit 2. Phases of Matter and Density Name Pd Unit 2 Phases of Matter and Density Name Pd Name Pd Homework for Unit 2 1. Vocab for Unit 2; due: 2. Pg 17 (1-5), pg 19 (1-5), pg21 (1-5) complete sentences; due: 3. Pg 23 (1-6), pg 27 (1-6) complete

More information

Data Provided: A formula sheet and table of physical constants are attached to this paper.

Data Provided: A formula sheet and table of physical constants are attached to this paper. Data Provided: A formula sheet and table of physical constants are attached to this paper. DEPARTMENT OF PHYSICS AND ASTRONOMY Spring Semester (2016-2017) From Thermodynamics to Atomic and Nuclear Physics

More information

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India

Phase Diagrams. Department of Mechanical Engineering Indian Institute of Technology Kanpur Kanpur India Phase Diagrams 1 Increasing the temperature isobarically T-v diagram of constant-pressure phase-change processes of a pure substance at various pressures numerical values are for water. 2 Temperature -

More information

Physics Nov Cooling by Expansion

Physics Nov Cooling by Expansion Physics 301 19-Nov-2004 25-1 Cooling by Expansion Now we re going to change the subject and consider the techniques used to get really cold temperatures. Of course, the best way to learn about these techniques

More information

Weather Tanks. NC Standards 5.E.1, 5.P.2.1 Page 3. Grade 5 Earth Science, Physical Science. Activity Description & Estimated Class Time.

Weather Tanks. NC Standards 5.E.1, 5.P.2.1 Page 3. Grade 5 Earth Science, Physical Science. Activity Description & Estimated Class Time. Weather Tanks NC Standards 5.E.1, 5.P.2.1 Page 3 Grade 5 Earth Science, Physical Science Throughout the guide, teaching tips are in red. Activity Description & Estimated Class Time Objectives This activity

More information

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur

Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Basic Thermodynamics Prof. S.K Som Department of Mechanical Engineering Indian Institute of Technology, Kharagpur Lecture - 17 Properties of Pure Substances-I Good morning to all of you. We were discussing

More information

Introduction to Thermodynamic States Gases

Introduction to Thermodynamic States Gases Chapter 1 Introduction to Thermodynamic States Gases We begin our study in thermodynamics with a survey of the properties of gases. Gases are one of the first things students study in general chemistry.

More information

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire

ASTRO 114 Lecture Okay. We re now gonna continue discussing and conclude discussing the entire ASTRO 114 Lecture 55 1 Okay. We re now gonna continue discussing and conclude discussing the entire universe. So today we re gonna learn about everything, everything that we know of. There s still a lot

More information

Chapter 3. Preview. Section 1 Three States of Matter. Section 2 Behavior of Gases. Section 3 Changes of State. States of Matter.

Chapter 3. Preview. Section 1 Three States of Matter. Section 2 Behavior of Gases. Section 3 Changes of State. States of Matter. States of Matter Preview Section 1 Three States of Matter Section 2 Behavior of Gases Section 3 Changes of State Concept Mapping Section 1 Three States of Matter Bellringer In the kitchen, you might find

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only.

ENERGY IN CHEMISTRY. R. Ashby Duplication by permission only. CH 11 TOPIC 28 CHANGING STATES OF MATTER 1 You have mastered this topic when you can: 1) define or describe: ENERGY, POTENTIAL ENERGY, KINETIC ENERGY & KINETIC MOLECULAR THEORY 2) define or describe HEAT

More information

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013

Temperature and Heat. Ken Intriligator s week 4 lectures, Oct 21, 2013 Temperature and Heat Ken Intriligator s week 4 lectures, Oct 21, 2013 This week s subjects: Temperature and Heat chapter of text. All sections. Thermal properties of Matter chapter. Omit the section there

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES

Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach Seventh Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2011 Chapter 3 PROPERTIES OF PURE SUBSTANCES Copyright The McGraw-Hill Companies, Inc. Permission

More information

Chapter 2: The Physical Properties of Pure Compounds

Chapter 2: The Physical Properties of Pure Compounds Chapter 2: The Physical Properties of Pure Compounds 2-10. The boiler is an important unit operation in the Rankine cycle. This problem further explores the phenomenon of boiling. A. When you are heating

More information

Kinetic Theory of Matter

Kinetic Theory of Matter 1 Temperature and Thermal Energy Kinetic Theory of Matter The motion of the particles in matter is described by kinetic theory of matter. Matter is composed of particles that are atoms, molecules, or ions

More information

12. Heat of melting and evaporation of water

12. Heat of melting and evaporation of water VS 12. Heat of melting and evaporation of water 12.1 Introduction The change of the physical state of a substance in general requires the absorption or release of heat. In this case, one speaks of a first

More information

Section 16.3 Phase Changes

Section 16.3 Phase Changes Section 16.3 Phase Changes Solid Liquid Gas 3 Phases of Matter Density of Matter How packed matter is (The amount of matter in a given space) Solid: Liquid: Gas: High Density Medium Density Low Density

More information

Temperature, Heat, and Expansion

Temperature, Heat, and Expansion Thermodynamics (Based on Chapters 21-24) Temperature, Heat, and Expansion (Ch 21) Warmth is the kinetic energy of atoms and molecules. Temperature (21.1) The measure of how hot and cold things are is temperature.

More information

The lower the energy of a substance, the interaction between its atoms and molecules.

The lower the energy of a substance, the interaction between its atoms and molecules. PHYSICAL STATES OF MATTER Kinetic Molecular Theory To understand the different states in which matter can exist, we need to understand something called the Kinetic Molecular Theory of Matter. Kinetic Molecular

More information

Unit 1 Lesson 6 Changes of State. Copyright Houghton Mifflin Harcourt Publishing Company

Unit 1 Lesson 6 Changes of State. Copyright Houghton Mifflin Harcourt Publishing Company The Fact of the Matter What happens when matter changes state? The three most familiar states of matter are solid, liquid, and gas. A change of state is the change of a substance from one physical form

More information

Heat, Temperature and the First Law of Thermodynamics

Heat, Temperature and the First Law of Thermodynamics Heat, Temperature and the First Law of Thermodynamics Stephen R. Addison January 22, 2003 Introduction The object of our studies is thermal physics. Thermal physics is a combination of two historic disciplines:

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Matter changes phase when energy is added or removed

Matter changes phase when energy is added or removed Section 12.4 Phase Changes Explain how the addition and removal of energy can cause a phase change. Interpret a phase diagram. Matter changes phase when energy is added or removed Energy Changes Accompanying

More information

This activity has been used in an introductory chemistry course (prep chemistry or GOB course) Learning Goals: Prerequisite knowledge

This activity has been used in an introductory chemistry course (prep chemistry or GOB course) Learning Goals: Prerequisite knowledge This activity has been used in an introductory chemistry course (prep chemistry or GOB course) Learning Goals: Name phase changes Identify phase changes at molecular (particulate) level Name intermolecular

More information

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A

ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A ENTHALPY, INTERNAL ENERGY, AND CHEMICAL REACTIONS: AN OUTLINE FOR CHEM 101A PART 1: KEY TERMS AND SYMBOLS IN THERMOCHEMISTRY System and surroundings When we talk about any kind of change, such as a chemical

More information

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008

Chapter 3 PROPERTIES OF PURE SUBSTANCES. Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Chapter 3 PROPERTIES OF PURE SUBSTANCES Thermodynamics: An Engineering Approach, 6 th Edition Yunus A. Cengel, Michael A. Boles McGraw-Hill, 2008 Objectives Introduce the concept of a pure substance. Discuss

More information

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1

Chapter 19 Entropy Pearson Education, Inc. Slide 20-1 Chapter 19 Entropy Slide 20-1 Ch 19 & 20 material What to focus on? Just put out some practice problems Ideal gas how to find P/V/T changes. E.g., gas scaling, intro to the ideal gas law, pressure cooker,

More information

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

Thermal Properties Of Matter

Thermal Properties Of Matter Thermal Properties Of Matter 3.2.2 Explain why different substances have different specific heat capacities. Heat two same size objects of different materials for the same amount of time they will not

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Chapter 8. Chapter 8. Preview. Bellringer. Chapter 8. Particles of Matter. Objectives. Chapter 8. Particles of Matter, continued

Chapter 8. Chapter 8. Preview. Bellringer. Chapter 8. Particles of Matter. Objectives. Chapter 8. Particles of Matter, continued States of Matter Preview Bellringer Section 2 Behavior of Gases In the kitchen, you might find three different forms of water. What are these three forms of water, and where exactly in the kitchen would

More information

Name: Date: Period: Phase Diagrams

Name: Date: Period: Phase Diagrams Phase Diagrams Directions: Use the information in the box below to help you answer the information in this packet. You do NOT need to use complete sentences for this packet. A phase diagram is a graph

More information

Homework Hint. Last Time

Homework Hint. Last Time Homework Hint Problem 3.3 Geometric series: ωs τ ħ e s= 0 =? a n ar = For 0< r < 1 n= 0 1 r ωs τ ħ e s= 0 1 = 1 e ħω τ Last Time Boltzmann factor Partition Function Heat Capacity The magic of the partition

More information

THERMODYNAMICS. Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer.

THERMODYNAMICS. Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer. THERMODYNAMICS Thermodynamics is the study of energy relationships that involve heat, mechanical work, and other aspects of energy and heat transfer. Central Heating Objectives: After finishing this unit,

More information

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air

Precipitation Processes METR σ is the surface tension, ρ l is the water density, R v is the Gas constant for water vapor, T is the air Precipitation Processes METR 2011 Introduction In order to grow things on earth, they need water. The way that the earth naturally irrigates is through snowfall and rainfall. Therefore, it is important

More information

l g vaporization, H+, S+ g l condensation, H-, S-

l g vaporization, H+, S+ g l condensation, H-, S- 8.4 8.7 Phase Diagrams It is particularly instructive to assemble graphs and diagrams that contrast the properties of a compound's phases. For example, the phase diagram that is most famous is a plot of

More information

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras

Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Thermodynamics (Classical) for Biological Systems Prof. G. K. Suraishkumar Department of Biotechnology Indian Institute of Technology Madras Module No. # 02 Additional Thermodynamic Functions Lecture No.

More information

Lecture 24. Ideal Gas Law and Kinetic Theory

Lecture 24. Ideal Gas Law and Kinetic Theory Lecture 4 Ideal Gas Law and Kinetic Theory Today s Topics: Ideal Gas Law Kinetic Theory of Gases Phase equilibria and phase diagrams Ideal Gas Law An ideal gas is an idealized model for real gases that

More information

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering

Introduction to Aerospace Propulsion. Prof. Bhaskar Roy. Prof. A. M. Pradeep. Department of Aerospace Engineering Introduction to Aerospace Propulsion Prof. Bhaskar Roy Prof. A. M. Pradeep Department of Aerospace Engineering Indian Institute of Technology, Bombay Module No. # 01 Lecture No. # 11 Reversible and irreversible

More information

Basic Thermodynamics Module 1

Basic Thermodynamics Module 1 Basic Thermodynamics Module 1 Lecture 9: Thermodynamic Properties of Fluids Thermodynamic Properties of fluids Most useful properties: Properties like pressure, volume and temperature which can be measured

More information

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras

Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Mechanics, Heat, Oscillations and Waves Prof. V. Balakrishnan Department of Physics Indian Institute of Technology, Madras Lecture - 21 Central Potential and Central Force Ready now to take up the idea

More information

3.3 Phase Changes Charactaristics of Phase Changes phase change

3.3 Phase Changes Charactaristics of Phase Changes phase change A large iceberg contains enough fresh water to supply millions of people with water for a year. As it moves into warmer areas, the ice changes to liquid water and eventually disappears. What happens when

More information

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 8. Given Gibbs generals condition of equilibrium as derived in the notes,

MSE 201A Thermodynamics and Phase Transformations Fall, 2008 Problem Set No. 8. Given Gibbs generals condition of equilibrium as derived in the notes, MSE 201A hermodynamics and Phase ransformations Fall, 2008 Problem Set No. 8 Problem 1: (a) Let a homogeneous fluid with composition, {x}, be surrounded by an impermeable wall and in contact with a reservoir

More information

MITOCW ocw-5_60-s08-lec19_300k

MITOCW ocw-5_60-s08-lec19_300k MITOCW ocw-5_60-s08-lec19_300k The following content is provided under a Creative Commons license. Your support will help MIT OpenCourseWare continue to offer high quality educational resources for free.

More information

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:-

UNIVERSITY COLLEGE LONDON. University of London EXAMINATION FOR INTERNAL STUDENTS. For The Following Qualifications:- UNIVERSITY COLLEGE LONDON University of London EXAMINATION FOR INTERNAL STUDENTS For The Following Qualifications:- B.Sc. M.Sci. Physics 1B28: Thermal Physics COURSE CODE : PHYSIB28 UNIT VALUE : 0.50 DATE

More information

Efficiency of the Carnot Cycle at Maximum Power Output. Introduction. Module 3, Lesson 2

Efficiency of the Carnot Cycle at Maximum Power Output. Introduction. Module 3, Lesson 2 Module 3, Lesson 2 Efficiency of the Carnot Cycle at Maximum Power Output Objective: Be the end of this lesson you will be able to identify and describe some of the basic thermodynamic processes. To facilitate

More information

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc.

Lecture Outline Chapter 17. Physics, 4 th Edition James S. Walker. Copyright 2010 Pearson Education, Inc. Lecture Outline Chapter 17 Physics, 4 th Edition James S. Walker Chapter 17 Phases and Phase Changes Ideal Gases Kinetic Theory Units of Chapter 17 Solids and Elastic Deformation Phase Equilibrium and

More information

Heat Engines and the Second Law of Thermodynamics

Heat Engines and the Second Law of Thermodynamics Heat Engines and the Second Law of hermodynamics here are three equivalent forms of the second law of thermodynamics; will state all three, discuss: I. (Kelvin-Planck) It is impossible to construct an

More information

Transformation of Matter: Physical and Chemical Changes

Transformation of Matter: Physical and Chemical Changes Transformation of Matter: Physical and Chemical Changes What does it mean to transform? Transform: change in form, appearance, or makeup What kinds of things transform? How can it be transformed? How

More information

Chapter 5: Weather. Only Section 1: What is Weather?

Chapter 5: Weather. Only Section 1: What is Weather? Chapter 5: Weather Only Section 1: What is Weather? Find the definitions of: Meteorology, meteorologist, weather, climate Not in book? Use the dictionaries **Meteorology - Meteorology is the study of the

More information

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck!

Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! 1 Physics 4230 Final Exam, Spring 2004 M.Dubson This is a 2.5 hour exam. Budget your time appropriately. Good luck! For all problems, show your reasoning clearly. In general, there will be little or no

More information

Chapter 14 Heat and Temperature Notes

Chapter 14 Heat and Temperature Notes Chapter 14 Heat and Temperature Notes Section 1: Temperature The degree of or of an object. Related to the of an object s atoms or molecules What makes something hot? o Particles that make up o They have

More information

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli

Lecture PowerPoints. Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli Lecture PowerPoints Chapter 13 Physics: Principles with Applications, 7 th edition Giancoli This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching

More information

The OTHER TWO states of matter

The OTHER TWO states of matter ` The OTHER TWO states of matter LIQUIDS A decrease in the average kinetic energy of gas particles causes the temperature to decrease. As it cools, the particles tend to move more slowly if they slow down

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

Chemistry for the gifted and talented 51

Chemistry for the gifted and talented 51 Chemistry for the gifted and talented 51 Mixing drinks Mixing drinks A metacognitive activity PowerPoint presentation (Student worksheet): CDROM index 26SW see Use below. Discussion of answers: CDROM index

More information

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania

THERMODYNAMICS THERMOSTATISTICS AND AN INTRODUCTION TO SECOND EDITION. University of Pennsylvania THERMODYNAMICS AND AN INTRODUCTION TO THERMOSTATISTICS SECOND EDITION HERBERT B. University of Pennsylvania CALLEN JOHN WILEY & SONS New York Chichester Brisbane Toronto Singapore CONTENTS PART I GENERAL

More information

Lecture Notes 1: Physical Equilibria Vapor Pressure

Lecture Notes 1: Physical Equilibria Vapor Pressure Lecture Notes 1: Physical Equilibria Vapor Pressure Our first exploration of equilibria will examine physical equilibria (no chemical changes) in which the only changes occurring are matter changes phases.

More information

1 Phase Transitions. 1.1 Introductory Phenomenology

1 Phase Transitions. 1.1 Introductory Phenomenology 1 Phase Transitions 1.1 Introductory Phenomenology Consider a single-component system in thermodynamic equilibrium. Let us describe the system with the set of (independent) variables T, p, and N. The appropriate

More information

Ch 18. Kinetic Theory of Gases

Ch 18. Kinetic Theory of Gases Physics 5D: Heat, Thermo, Kinetics Ch 18. Kinetic Theory of Gases Prof. Joel Primack 318 ISB 459-2580 joel@physics.ucsc.edu Text Copyright Text 2009 Pearson Text Education, Text Inc. Neuschwanstein Bavaria

More information

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram.

A thermodynamic system is taken from an initial state X along the path XYZX as shown in the PV-diagram. AP Physics Multiple Choice Practice Thermodynamics 1. The maximum efficiency of a heat engine that operates between temperatures of 1500 K in the firing chamber and 600 K in the exhaust chamber is most

More information

Unit 13: Thermodynamics

Unit 13: Thermodynamics SUPERCHARGED SCIENCE Unit 13: Thermodynamics www.sciencelearningspace.com Appropriate for Grades: K-12 (see notes on each project) Duration: 5-15 hours, depending on how many activities you do! Objects

More information

V.E Mean Field Theory of Condensation

V.E Mean Field Theory of Condensation V.E Mean Field heory of Condensation In principle, all properties of the interacting system, including phase separation, are contained within the thermodynamic potentials that can be obtained by evaluating

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

WEEK 6. Multiphase systems

WEEK 6. Multiphase systems WEEK 6 Multiphase systems Multiphase systems P 237. Processes usually deal with material being transferred from one phase (gas, liquid, or solid) to another. 6.1a Phase diagrams F = force on piston Water

More information