Universality in Soft Active Matter

Size: px
Start display at page:

Download "Universality in Soft Active Matter"

Transcription

1 Universality in Soft Active Matter Chiu Fan Lee Department of Bioengineering, Imperial College London, UK M.C. Escher (1938) Day and Night

2 Universality in soft living matter Amyloid fibrils RNA granules Active matter 200nm Equilibrium: length distribution, breakage profile Non-equilibrium universality Brangwynne [Hyman Lab] Equilibrium: Lifshitz-Slyozov scaling & drop size distribution Non-equilibrium universality mbzusmak8 Fundamentally non-equilibrium Universality

3 Universality in soft living matter Amyloid fibrils RNA granules Active matter 200nm Equilibrium: length distribution, breakage profile Non-equilibrium universality Brangwynne [Hyman Lab] Equilibrium: Lifshitz-Slyozov scaling & drop size distribution Non-equilibrium universality mbzusmak8 Fundamentally non-equilibrium Universality

4 Plan Minimal system of active particles Motility-induced phase separation Universality in phase separation kinetics Modern concept of universality Incompressible polar active fluids Universality at criticality Universality in the ordered phase (2D) Summary & Outlook

5 Liquid-gas phase separation

6 Equilibrium phase separation Lennard-Jones liquid: Drag coeff. Gaussian noise Vapour U LJ (r) Liquid a r

7 Equilibrium vapour concentration x [Solute] Vapour conc. outside small drop is higher than vapour conc. outside large drop Gibbs-Thomson relation: ρ R = ρ 1 + ν R Size of drop x

8 Universality of surface-tension driven Oswald ripening droplet growth Lifshitz-Slyozov universal growth law: R(t) ~t 1/3 Universal droplet size distribution Sagui & Grant (1999) PRE

9 Wittkowski et al. (2013) Nat. Comm. Motility-induced phase separation

10 Motility-induced phase separation (MIPS) Active force Vapour U WCA (r) Gaussian noise Liquid Weeks-Chandler-Andersen potential Tailleur & Cates (2008) PRL; Fily & Marchetti (2012) PRL; Redner, Hagan & Baskaran (2013) PRL a r

11 Force balance at the interface in MIPS

12 Confined active point particles

13 Repulsive active point particles Active point particles

14 Forces on the wall Point particles Repulsive particles Force coming from particle repulsion [Swim pressure: Takatori, Yan & Brady (2014) PRL] High active force from the point particles due to orientation anisotropy

15 Sharp interface model Condensed phase: particles with isotropic orientation Vapour phase: point particles Min. force for MIPS: Lee, arxiv:

16 Gibbs-Thomson relation in MIPS

17 Circular drops: Caging effects Escape range 2σ R 2σ R Escape range Caging effect of neighbouring particles leads a curvaturedependent escape range: σ R = A + B R + O R 2

18 Circular drop: numerics ρ R (r) ρ R=20 ρ 60 ρ100 Gibbs-Thomson relation Lee, arxiv:

19 Universality of coarsening in MIPS 1. Active particles move diffusively across long distance 2. Gibbs-Thomson relation at the interface MIPS droplets lead to Lifshitz-Slyozov (LS) equilibrium coarsening: R(t) ~t 1/3 Universal (LS) droplet size distribution

20 Universality

21 Universality in physics Ferromagnetism with an easy axis at criticality Phase separation in multicomponent lipid membrane at criticality P. Colon s homepage Honerkamp-Smith et al. (2009) BBA Ising model: E = J As the measurement is at a larger and larger length scale (l ) <i.j> Proved by renormalisation group methods s i s j Kenneth Wilson, Nobel prize 1982

22 Renormalisation group transformation 1. Coarse grain out short wavelength (k > l 1 ) fluctuations 2. Rescale 3. Renormalise

23 Data from Hugo Duminil-Copin 1. Coarse grain Repeat 2. Rescale 3. Renormalise

24 Renormalisation group transformation 1. Coarse grain out short wavelength (k > l 1 ) fluctuations 2. Rescale 3. Renormalise l goes up further Level of coarse-graining Toy model H becomes the (asymptotically) exact model

25 Incompressible polar active fluids

26 Wound healing assay

27 Navier-Stokes description t v + v v = μ 2 v ρ 1 P Not enough!

28 Navier-Stokes description t v + v v = a + bv 2 v + μ 2 v ρ 1 P Missing elements: Not enough! Cells are motile -> Need active terms like a + bv 2 v

29 Navier-Stokes description t v + v v = a + bv 2 v + μ 2 v ρ 1 P + f Not enough! Missing elements: Cells are motile -> Need active terms like a + bv 2 v Fluctuations can be important -> Gaussian noise f

30 Navier-Stokes description t v + λ v v = a + bv 2 v + μ 2 v ρ 1 P + f Not enough! Missing elements: Cells are motile -> Need active terms like a + bv 2 v Fluctuations can be important -> Gaussian noise f No Galilean invariance -> prefactor of v v may not be 1

31 In fact, to be completely general There can be infinitely many more red terms t v + ρ 1 P f = λ v v a + bv 2 v μ 2 v +cv 4 v + ξ( 2 ) 2 v + With so many parameters, can we ever say something universal about the system

32 Energy The bottom has become very flat x y Adapted from QuantumDiaries.org Incompressible active fluids at criticality

33 Phase behaviour of incompressible active fluids v Critical region

34 Critical incompressible polar active fluids EOM: t v + P f = λ v v a + bv 2 v μ 2 v + cv 4 v + ξ( 2 ) 2 v + RG transformation t v + P + f l = λ l v v a l + b l v 2 v μ l 2 v Exact hydrodynamic EOM with TWO coefficients governing the model s scale-invariance properties: Level of coarse-graining g 1 (l) ~ D 2 lλ l, g μ 3 2 l ~ D lb l l μ 2 l

35 Advective term: g 1 v v Incompressible active matter (Today) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

36 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A Incompressible active matter (Today) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

37 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

38 Randomly stirred fluids (Model B) Forster, Nelson & Stephen (1977) Phys. Rev. A Incompressible polar active fluids In 3D: v(r) v(r ) ~ r r (1.35±0.08) g 1 l ~ D 2 lλ l μ ; g 3 2 l ~ D lb l l μ 2 l Chen, Toner, Lee (2015) New J. Phys. 17, Ferromagnets with dipolar interactions Aharony and Fisher (1973) Phys. Rev. Lett.

39 Energy y x Adapted from QuantumDiaries.org Incompressible active fluids in the ordered phase

40 Ordered incompressible polar active fluids v Ordered phase Critical region Universality is more than criticality! Universal behaviour expected in the symmetry-broken phase of a continuous symmetry Belitz, Kirkpatrick, Vojta (2005) Rev. Mod. Phys.

41 EOM: Ordered phase of 2D incompressible active fluids 1. RG transformation Ordered phase: 2. Use streaming function h to enforce Incompressibility: 3. Equal-time (static) correlations in 2D active fluids are mapped onto the 2D smectic model: Chen, Lee, Toner, arxiv:

42 Universality of Kardar-Parisi-Zhang y Incompressible flock (living) Smectic layers (equilibrium) Kardar-Parisi-Zhang surface growth (nonequilibrium) Chen, Lee, Toner, arxiv: Time 2D Smectics = (1+1) KPZ [Golubović & Wang (1992) PRL] x

43 KPZ model:

44 2D incompressible active fluids in the ordered phase [Chen, Lee & Toner (2016) arxiv: ] Slide from J. Quastel (Toronto)

45 M.C. Escher (1938) Day and Night

46 Outlook

47 Periodic table of universality classes Equilibrium Hohenberg and Halperin (1977) Theory of dynamic critical phenomena Rev. Mod. Phys.

48 Periodic table of universality classes Equilibrium Non-equilibrium Randomly stirred fluids [Forster, Nelson & Stephen (1977) Phys. Rev. A] Directed percolation [Kinzel (1983)] Kardar-Parisi-Zhang [KPZ (1983) Phys. Rev. Lett.] Living matter Incompressible active polar fluids [Chen, Toner, Lee (2015) New J. Phys.] Hohenberg and Halperin (1977) Theory of dynamic critical phenomena Rev. Mod. Phys.

49 Periodic table of universality classes Equilibrium Non-equilibrium Directed percolation [Kinzel (1983)] Kardar-Parisi-Zhang [KPZ (1983) Phys. Rev. Lett.] Living matter Randomly stirred fluids [Forster, Nelson & Stephen (1977) Phys. Rev. A] Incompressible active polar fluids [Chen, Toner, Lee (2015) New J. Phys.] Hohenberg and Halperin (1977) Theory of dynamic critical phenomena Rev. Mod. Phys.

50 Periodic table of universality classes Equilibrium Non-equilibrium Transition New Universality class Ordered phase LSW KPZ Hohenberg and Halperin (1977) Theory of dynamic critical phenomena Rev. Mod. Phys.

51 Universalities in Biology Biological Motile bacteria Epithelial tissue Birds Biology Transition Ordered phase LSW New Universality class KPZ

52 Summary Universality is everywhere in biology Universal coarsening kinetics (LSW) in motility-induced phase separation [Lee, arxiv: ] Universal behaviour of incompressible polar active fluids At criticality (New universality class) [Chen, Toner, Lee (2015) New J. Phys.] Ordered phase in 2D (KPZ) [Chen, Lee, Toner, arxiv:1601:01924] Future direction: Categorisation of universality of living matter

53 Acknowledgement My group at Imperial College David Nesbitt (1 st yr PhD, EPSRC) Alice Spenlehauer (2 nd yr PhD, BBSRC) Jean David Wurtz (3 rd yr PhD, ICL) External collaborators Leiming Chen (China University of Mining and Technology) John Toner (Oregon) Thank you for your Attention!

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology

IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology IPLS Retreat Bath, Oct 17, 2017 Novel Physics arising from phase transitions in biology Chiu Fan Lee Department of Bioengineering, Imperial College London, UK Biology inspires new physics Biology Physics

More information

arxiv: v1 [cond-mat.soft] 7 Jun 2018

arxiv: v1 [cond-mat.soft] 7 Jun 2018 Incompressible polar active fluids in the moving phase Leiming Chen,, Chiu Fan Lee, 2, and John Toner 3, School of Physical Science and Technology, China University of Mining and Technology, Xuzhou Jiangsu,

More information

Pressure and phase separation in active matter

Pressure and phase separation in active matter 1/33 Pressure and phase separation in active matter Alex Solon Technion, November 13th 2016 Active matter 2/33 Stored energy Mechanical energy Self-propelled particles Active matter 2/33 Stored energy

More information

Pressure and forces in active matter

Pressure and forces in active matter 1 Pressure and forces in active matter Alex Solon (MIT) University of Houston, February 8th 2018 Active matter 2 Stored energy Mechanical energy Self-propelled particles Found at all scales in living systems

More information

Driven-dissipative polariton quantum fluids in and out of equilibrium

Driven-dissipative polariton quantum fluids in and out of equilibrium Driven-dissipative polariton quantum fluids in and out of equilibrium Marzena Szymańska Designer Quantum Systems Out of Equilibrium KITP, November 2016 Acknowledgements Group: A. Zamora G. Dagvadorj In

More information

Long-range forces and phase separation in simple active fluids

Long-range forces and phase separation in simple active fluids 1/21 Long-range forces and phase separation in simple active fluids Alex Solon, PLS fellow, MIT Harvard Kid s seminar, September 19th 2017 Active matter 2/21 Stored energy Mechanical energy Self-propelled

More information

Statistical Mechanics of Jamming

Statistical Mechanics of Jamming Statistical Mechanics of Jamming Lecture 1: Timescales and Lengthscales, jamming vs thermal critical points Lecture 2: Statistical ensembles: inherent structures and blocked states Lecture 3: Example of

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

FRACTAL CONCEPT S IN SURFACE GROWT H

FRACTAL CONCEPT S IN SURFACE GROWT H FRACTAL CONCEPT S IN SURFACE GROWT H Albert-Läszlö Barabäs i H. Eugene Stanley Preface Notation guide x v xi x PART 1 Introduction 1 1 Interfaces in nature 1 1.1 Interface motion in disordered media 3

More information

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces

Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces * This is a simplified ppt intended for public opening Exploring Geometry Dependence of Kardar-Parisi-Zhang Interfaces Kazumasa A. Takeuchi (Tokyo Tech) Joint work with Yohsuke T. Fukai (Univ. Tokyo &

More information

Diffusive Transport Enhanced by Thermal Velocity Fluctuations

Diffusive Transport Enhanced by Thermal Velocity Fluctuations Diffusive Transport Enhanced by Thermal Velocity Fluctuations Aleksandar Donev 1 Courant Institute, New York University & Alejandro L. Garcia, San Jose State University John B. Bell, Lawrence Berkeley

More information

Mesoscale fluid simulation of colloidal systems

Mesoscale fluid simulation of colloidal systems Mesoscale fluid simulation of colloidal systems Mingcheng Yang Institute of Physics, CAS Outline (I) Background (II) Simulation method (III) Applications and examples (IV) Summary Background Soft matter

More information

(Crystal) Nucleation: The language

(Crystal) Nucleation: The language Why crystallization requires supercooling (Crystal) Nucleation: The language 2r 1. Transferring N particles from liquid to crystal yields energy. Crystal nucleus Δµ: thermodynamic driving force N is proportional

More information

FLOCKS, COLLECTIVE MOTION

FLOCKS, COLLECTIVE MOTION FLOCKS, COLLECTIVE MOTION AND DRY ACTIVE MATTER Gareth Alexander Department of Physics and Centre for Complexity Science, University of Warwick Nonequilibrium statistical mechanics & active matter school

More information

Interface Roughening in a Hydrodynamic Lattice- Gas Model with Surfactant

Interface Roughening in a Hydrodynamic Lattice- Gas Model with Surfactant Wesleyan University WesScholar Division III Faculty Publications Natural Sciences and Mathematics 1996 Interface Roughening in a Hydrodynamic Lattice- Gas Model with Surfactant Francis Starr Wesleyan University

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model

PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model PHYS 563 term Paper The Flocking Transition : A Review of The Vicsek Model Purba Chatterjee May 4, 2017 Abstract This essay reviews important results from studies on the Vicsek model, which describes a

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

Universal phenomena in random systems

Universal phenomena in random systems Tuesday talk 1 Page 1 Universal phenomena in random systems Ivan Corwin (Clay Mathematics Institute, Columbia University, Institute Henri Poincare) Tuesday talk 1 Page 2 Integrable probabilistic systems

More information

Part VII. Miscellaneous topics Module 3. Coarsening

Part VII. Miscellaneous topics Module 3. Coarsening Part VII. Miscellaneous topics Module 3. Coarsening 3 Coarsening 3.1 Motivation Consider a precipitation hardenable alloy. As a function of aging time, after peak aging the strength reduces. It is found

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 3, 3 March 2006 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

The Monte Carlo Method in Condensed Matter Physics

The Monte Carlo Method in Condensed Matter Physics The Monte Carlo Method in Condensed Matter Physics Edited by K. Binder With Contributions by A. Baumgärtner K. Binder A.N. Burkitt D.M. Ceperley H. De Raedt A.M. Ferrenberg D.W. Heermann H.J. Herrmann

More information

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai

Mesoscale Simulation Methods. Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Mesoscale Simulation Methods Ronojoy Adhikari The Institute of Mathematical Sciences Chennai Outline What is mesoscale? Mesoscale statics and dynamics through coarse-graining. Coarse-grained equations

More information

Microfluidic crystals: Impossible order

Microfluidic crystals: Impossible order Microfluidic crystals: Impossible order Tsevi Beatus, Roy Bar-Ziv, T. T. Weizmann Institute International Symposium on Non-Equilibrium Soft Matter Kyoto 2008 1 Outline Micro-fluidic droplets: micron sized

More information

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms --

Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- 12/08/2015, YITP, Kyoto Emergence of collective dynamics in active biological systems -- Swimming micro-organisms -- Norihiro Oyama John J. Molina Ryoichi Yamamoto* Department of Chemical Engineering,

More information

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid

Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Bubbles and Filaments: Stirring a Cahn Hilliard Fluid Lennon Ó Náraigh and Jean-Luc Thiffeault Department of Mathematics Imperial College London APS-DFD Meeting, 21 November 2006 1 / 12 The classical Cahn

More information

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes

Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Phase Transitions in Nonequilibrium Steady States and Power Laws and Scaling Functions of Surface Growth Processes Term-paper for PHY563 Xianfeng Rui, UIUC Physics Abstract: Three models of surface growth

More information

Effective Field Theory of Dissipative Fluids

Effective Field Theory of Dissipative Fluids Effective Field Theory of Dissipative Fluids Hong Liu Paolo Glorioso Michael Crossley arxiv: 1511.03646 Conserved quantities Consider a long wavelength disturbance of a system in thermal equilibrium non-conserved

More information

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods

Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: Hydrodynamics of SP Hard Rods Active Matter Lectures for the 2011 ICTP School on Mathematics and Physics of Soft and Biological Matter Lecture 3: of SP Hard Rods M. Cristina Marchetti Syracuse University Baskaran & MCM, PRE 77 (2008);

More information

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden

Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality. Hans-Henning Klauss. Institut für Festkörperphysik TU Dresden Phase Transitions in Condensed Matter Spontaneous Symmetry Breaking and Universality Hans-Henning Klauss Institut für Festkörperphysik TU Dresden 1 References [1] Stephen Blundell, Magnetism in Condensed

More information

Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing

Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing Phase Field Crystal (PFC) Model and Density Functional Theory (DFT) of Freezing Pyrite Project Meeting October 14 th 2010 Arvind Baskaran John Lowengrub Density functional Theory of Freezing [ Ramakrishnan

More information

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas

Vortex dynamics in finite temperature two-dimensional superfluid turbulence. Andrew Lucas Vortex dynamics in finite temperature two-dimensional superfluid turbulence Andrew Lucas Harvard Physics King s College London, Condensed Matter Theory Special Seminar August 15, 2014 Collaborators 2 Paul

More information

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents

Directed Assembly of Functionalized Nanoparticles with Amphiphilic Diblock Copolymers. Contents Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is the Owner Societies 2017 Electronic Supplementary Information for Directed Assembly of Functionalized Nanoparticles

More information

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics

Three Lectures on Soft Modes and Scale Invariance in Metals. Quantum Ferromagnets as an Example of Universal Low-Energy Physics Three Lectures on Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example of Universal Low-Energy Physics Soft Modes and Scale Invariance in Metals Quantum Ferromagnets as an Example

More information

Clusters and Percolation

Clusters and Percolation Chapter 6 Clusters and Percolation c 2012 by W. Klein, Harvey Gould, and Jan Tobochnik 5 November 2012 6.1 Introduction In this chapter we continue our investigation of nucleation near the spinodal. We

More information

MD simulation of methane in nanochannels

MD simulation of methane in nanochannels MD simulation of methane in nanochannels COCIM, Arica, Chile M. Horsch, M. Heitzig, and J. Vrabec University of Stuttgart November 6, 2008 Scope and structure Molecular model for graphite and the fluid-wall

More information

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids

Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Modeling the combined effect of surface roughness and shear rate on slip flow of simple fluids Anoosheh Niavarani and Nikolai Priezjev www.egr.msu.edu/~niavaran November 2009 A. Niavarani and N.V. Priezjev,

More information

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL

THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL THREE-BODY INTERACTIONS DRIVE THE TRANSITION TO POLAR ORDER IN A SIMPLE FLOCKING MODEL Purba Chatterjee and Nigel Goldenfeld Department of Physics University of Illinois at Urbana-Champaign Flocking in

More information

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang,

Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, Simulation of T-junction using LBM and VOF ENERGY 224 Final Project Yifan Wang, yfwang09@stanford.edu 1. Problem setting In this project, we present a benchmark simulation for segmented flows, which contain

More information

An Introduction to Theories of Turbulence. James Glimm Stony Brook University

An Introduction to Theories of Turbulence. James Glimm Stony Brook University An Introduction to Theories of Turbulence James Glimm Stony Brook University Topics not included (recent papers/theses, open for discussion during this visit) 1. Turbulent combustion 2. Turbulent mixing

More information

Rare Event Simulations

Rare Event Simulations Rare Event Simulations Homogeneous nucleation is a rare event (e.g. Liquid Solid) Crystallization requires supercooling (µ solid < µ liquid ) Crystal nucleus 2r Free - energy gain r 3 4! 3! GBulk = ñr!

More information

Chapter 9: Differential Analysis of Fluid Flow

Chapter 9: Differential Analysis of Fluid Flow of Fluid Flow Objectives 1. Understand how the differential equations of mass and momentum conservation are derived. 2. Calculate the stream function and pressure field, and plot streamlines for a known

More information

Adaptive algorithm for saddle point problem for Phase Field model

Adaptive algorithm for saddle point problem for Phase Field model Adaptive algorithm for saddle point problem for Phase Field model Jian Zhang Supercomputing Center, CNIC,CAS Collaborators: Qiang Du(PSU), Jingyan Zhang(PSU), Xiaoqiang Wang(FSU), Jiangwei Zhao(SCCAS),

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

STRESS TRANSPORT MODELLING 2

STRESS TRANSPORT MODELLING 2 STRESS TRANSPORT MODELLING 2 T.J. Craft Department of Mechanical, Aerospace & Manufacturing Engineering UMIST, Manchester, UK STRESS TRANSPORT MODELLING 2 p.1 Introduction In the previous lecture we introduced

More information

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications

Kolloquium Universität Innsbruck October 13, The renormalization group: from the foundations to modern applications Kolloquium Universität Innsbruck October 13, 2009 The renormalization group: from the foundations to modern applications Peter Kopietz, Universität Frankfurt 1.) Historical introduction: what is the RG?

More information

Bridging scales. from microscopic dynamics to macroscopic laws. M. Hairer. UC Berkeley, 20/03/2018. Imperial College London

Bridging scales. from microscopic dynamics to macroscopic laws. M. Hairer. UC Berkeley, 20/03/2018. Imperial College London Bridging scales from microscopic dynamics to macroscopic laws M. Hairer Imperial College London UC Berkeley, 20/03/2018 Guiding principles in probability Symmetry If different outcomes are equivalent (from

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 11 Dec 2002 arxiv:cond-mat/0212257v1 [cond-mat.stat-mech] 11 Dec 2002 International Journal of Modern Physics B c World Scientific Publishing Company VISCOUS FINGERING IN MISCIBLE, IMMISCIBLE AND REACTIVE FLUIDS PATRICK

More information

Percolation properties of a three-dimensional random resistor-diode network

Percolation properties of a three-dimensional random resistor-diode network J. Phys. A: Math. Gen. 14 (1981) L285-L290. Printed in Great Britain LETTER TO THE EDITOR Percolation properties of a three-dimensional random resistor-diode network S Redner and A C Brown Center for Polymer

More information

Lifshitz Hydrodynamics

Lifshitz Hydrodynamics Lifshitz Hydrodynamics Yaron Oz (Tel-Aviv University) With Carlos Hoyos and Bom Soo Kim, arxiv:1304.7481 Outline Introduction and Summary Lifshitz Hydrodynamics Strange Metals Open Problems Strange Metals

More information

Statistical Mechanics of Active Matter

Statistical Mechanics of Active Matter Statistical Mechanics of Active Matter Umberto Marini Bettolo Marconi University of Camerino, Italy Naples, 24 May,2017 Umberto Marini Bettolo Marconi (2017) Statistical Mechanics of Active Matter 2017

More information

Continuum Model of Avalanches in Granular Media

Continuum Model of Avalanches in Granular Media Continuum Model of Avalanches in Granular Media David Chen May 13, 2010 Abstract A continuum description of avalanches in granular systems is presented. The model is based on hydrodynamic equations coupled

More information

More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff

More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff More is the Same Less is the Same, too; Mean Field Theories and Renormalization Leo P. Kadanoff email:leop@uchicago.edu Abstract This talk summarizes concepts derived in part from condensed matter physics.

More information

Hydrodynamic interactions and wall drag effect in colloidal suspensions and soft matter systems

Hydrodynamic interactions and wall drag effect in colloidal suspensions and soft matter systems Hydrodynamic interactions and wall drag effect in colloidal suspensions and soft matter systems Maciej Lisicki" Institute of Theoretical Physics" Faculty of Physics, University of Warsaw" Poland SOMATAI

More information

Nematic and Magnetic orders in Fe-based Superconductors

Nematic and Magnetic orders in Fe-based Superconductors Nematic and Magnetic orders in Fe-based Superconductors Cenke Xu Harvard University Collaborators: Markus Mueller, Yang Qi Subir Sachdev, Jiangping Hu Collaborators: Subir Sachdev Markus Mueller Yang Qi

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Linear Theory of Evolution to an Unstable State

Linear Theory of Evolution to an Unstable State Chapter 2 Linear Theory of Evolution to an Unstable State c 2012 by William Klein, Harvey Gould, and Jan Tobochnik 1 October 2012 2.1 Introduction The simple theory of nucleation that we introduced in

More information

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface

Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Modeling and Simulating Gold Nanoparticle Interactions on a Liquid-Air Interface Jennifer Jin 1 and Dr. Jacques Amar 2 1 Mary Baldwin College, 2 Department of Physics & Astronomy, University of Toledo

More information

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids

Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Systematic Coarse-Graining and Concurrent Multiresolution Simulation of Molecular Liquids Cameron F. Abrams Department of Chemical and Biological Engineering Drexel University Philadelphia, PA USA 9 June

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox

Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Modeling the configurational entropy of supercooled liquids and a resolution of the Kauzmann paradox Dmitry Matyushov Arizona State University Glass and Entropy II, Aberystwyth, 22 24 April, 2009 activated

More information

Chapter 9: Differential Analysis

Chapter 9: Differential Analysis 9-1 Introduction 9-2 Conservation of Mass 9-3 The Stream Function 9-4 Conservation of Linear Momentum 9-5 Navier Stokes Equation 9-6 Differential Analysis Problems Recall 9-1 Introduction (1) Chap 5: Control

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS

STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS STATISTICAL PHYSICS OF GEOMETRICALLY FRUSTRATED MAGNETS Classical spin liquids, emergent gauge fields and fractionalised excitations John Chalker Physics Department, Oxford University Outline Geometrically

More information

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A.

Fig. 1 Cluster flip: before. The region inside the dotted line is flipped in one Wolff move. Let this configuration be A. Physics 6562: Statistical Mechanics http://www.physics.cornell.edu/sethna/teaching/562/ In Class Exercises Last correction at March 25, 2017, 1:37 pm c 2017, James Sethna, all rights reserved 1. Detailed

More information

Fluid Mechanics Theory I

Fluid Mechanics Theory I Fluid Mechanics Theory I Last Class: 1. Introduction 2. MicroTAS or Lab on a Chip 3. Microfluidics Length Scale 4. Fundamentals 5. Different Aspects of Microfluidcs Today s Contents: 1. Introduction to

More information

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems

Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems THE JOURNAL OF CHEMICAL PHYSICS 124, 184101 2006 Coarse-graining limits in open and wall-bounded dissipative particle dynamics systems Igor V. Pivkin and George E. Karniadakis a Division of Applied Mathematics,

More information

Modelling of interfaces and free boundaries

Modelling of interfaces and free boundaries University of Regensburg Regensburg, March 2009 Outline 1 Introduction 2 Obstacle problems 3 Stefan problem 4 Shape optimization Introduction What is a free boundary problem? Solve a partial differential

More information

Complex Fluids. University of California - Santa Barbara, CA April 26, Abstract

Complex Fluids. University of California - Santa Barbara, CA April 26, Abstract Gravitational Effects on Structure Development in Quenched Complex Fluids V. E. Badalassi, a H. D. Ceniceros b and S. Banerjee c a,c Department of Chemical Engineering, b Department of Mathematics University

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model

Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model Low Variance Particle Simulations of the Boltzmann Transport Equation for the Variable Hard Sphere Collision Model G. A. Radtke, N. G. Hadjiconstantinou and W. Wagner Massachusetts Institute of Technology,

More information

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS

Foundations of. Colloid Science SECOND EDITION. Robert J. Hunter. School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS Foundations of Colloid Science SECOND EDITION Robert J. Hunter School of Chemistry University of Sydney OXPORD UNIVERSITY PRESS CONTENTS 1 NATURE OF COLLOIDAL DISPERSIONS 1.1 Introduction 1 1.2 Technological

More information

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo

Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Fluctuating Hydrodynamics and Direct Simulation Monte Carlo Kaushi Balarishnan Lawrence Bereley Lab John B. Bell Lawrence Bereley Lab Alesandar Donev New Yor University Alejandro L. Garcia San Jose State

More information

in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D)

in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D) Positive specific heat critical exponent in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D) ZHONG Fan School of Physics and Engineering Sun Yat-sen University

More information

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study

Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study JOURNAL OF CHEMICAL PHYSICS VOLUME 109, NUMBER 19 15 NOVEMBER 1998 Early stages of dewetting of microscopically thin polymer films: A molecular dynamics study Hong Liu Department of Physics, Kansas State

More information

Interplay of interactions and disorder in two dimensions

Interplay of interactions and disorder in two dimensions Interplay of interactions and disorder in two dimensions Sergey Kravchenko in collaboration with: S. Anissimova, V.T. Dolgopolov, A. M. Finkelstein, T.M. Klapwijk, A. Punnoose, A.A. Shashkin Outline Scaling

More information

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi

Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale. Miguel Rubi Non equilibrium thermodynamics: foundations, scope, and extension to the meso scale Miguel Rubi References S.R. de Groot and P. Mazur, Non equilibrium Thermodynamics, Dover, New York, 1984 J.M. Vilar and

More information

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016

APMA 2811T. By Zhen Li. Today s topic: Lecture 2: Theoretical foundation and parameterization. Sep. 15, 2016 Today s topic: APMA 2811T Dissipative Particle Dynamics Instructor: Professor George Karniadakis Location: 170 Hope Street, Room 118 Time: Thursday 12:00pm 2:00pm Dissipative Particle Dynamics: Foundation,

More information

Long-time behavior and different shear regimes in quenched binary mixtures

Long-time behavior and different shear regimes in quenched binary mixtures PHYSICAL REVIEW E 75, 011501 2007 Long-time behavior and different shear regimes in quenched binary mixtures G. Gonnella* Dipartimento di Fisica, Università di Bari, and INFN, Sezione di Bari, Via Amendola

More information

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997

arxiv:cond-mat/ v1 [cond-mat.soft] 9 Aug 1997 Depletion forces between two spheres in a rod solution. K. Yaman, C. Jeppesen, C. M. Marques arxiv:cond-mat/9708069v1 [cond-mat.soft] 9 Aug 1997 Department of Physics, U.C.S.B., CA 93106 9530, U.S.A. Materials

More information

Collective Effects. Equilibrium and Nonequilibrium Physics

Collective Effects. Equilibrium and Nonequilibrium Physics Collective Effects in Equilibrium and Nonequilibrium Physics: Lecture 4, April 7, 2006 1 Collective Effects in Equilibrium and Nonequilibrium Physics Website: http://cncs.bnu.edu.cn/mccross/course/ Caltech

More information

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer

Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Interfaces with short-range correlated disorder: what we learn from the Directed Polymer Elisabeth Agoritsas (1), Thierry Giamarchi (2) Vincent Démery (3), Alberto Rosso (4) Reinaldo García-García (3),

More information

comp-gas/ Jan 1994

comp-gas/ Jan 1994 Simulation of non-ideal gases and liquid-gas phase transitions by lattice Boltzmann equation Xiaowen Shan Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545 Hudong Chen

More information

Hydrodynamic Modes of Incoherent Black Holes

Hydrodynamic Modes of Incoherent Black Holes Hydrodynamic Modes of Incoherent Black Holes Vaios Ziogas Durham University Based on work in collaboration with A. Donos, J. Gauntlett [arxiv: 1707.xxxxx, 170x.xxxxx] 9th Crete Regional Meeting on String

More information

Pattern Formation and Chaos

Pattern Formation and Chaos Developments in Experimental Pattern Formation - Isaac Newton Institute, 2005 1 Pattern Formation and Chaos Insights from Large Scale Numerical Simulations of Rayleigh-Bénard Convection Collaborators:

More information

Equilibrium correlations and heat conduction in the Fermi-Pasta-Ulam chain.

Equilibrium correlations and heat conduction in the Fermi-Pasta-Ulam chain. Equilibrium correlations and heat conduction in the Fermi-Pasta-Ulam chain. Abhishek Dhar International centre for theoretical sciences TIFR, Bangalore www.icts.res.in Suman G. Das (Raman Research Institute,

More information

Chapter 10. Solids and Fluids

Chapter 10. Solids and Fluids Chapter 10 Solids and Fluids Surface Tension Net force on molecule A is zero Pulled equally in all directions Net force on B is not zero No molecules above to act on it Pulled toward the center of the

More information

Sliding Friction in the Frenkel-Kontorova Model

Sliding Friction in the Frenkel-Kontorova Model arxiv:cond-mat/9510058v1 12 Oct 1995 to appear in "The Physics of Sliding Friction", Ed. B.N.J. Persson (Kluwer Academic Publishers), 1995 Sliding Friction in the Frenkel-Kontorova Model E. Granato I.N.P.E.,

More information

Percolation and conduction in a random resistor-diode network

Percolation and conduction in a random resistor-diode network J. Phys. A: Math. Gen. 14 (1981) L349-L354. Printed in Great Britain LETTER TO THE EDITOR Percolation and conduction in a random resistor-diode network S Redner Center for Polymer Studiest and Department

More information

Capillary-gravity waves: The effect of viscosity on the wave resistance

Capillary-gravity waves: The effect of viscosity on the wave resistance arxiv:cond-mat/9909148v1 [cond-mat.soft] 10 Sep 1999 Capillary-gravity waves: The effect of viscosity on the wave resistance D. Richard, E. Raphaël Collège de France Physique de la Matière Condensée URA

More information

Stochastic dynamics of surfaces and interfaces

Stochastic dynamics of surfaces and interfaces Department of Physics Seminar I - 1st year, II. cycle Stochastic dynamics of surfaces and interfaces Author: Timotej Lemut Advisor: assoc. prof. Marko Žnidarič Ljubljana, 2018 Abstract In the seminar,

More information

Protein amyloid self assembly: nucleation, growth, and breakage

Protein amyloid self assembly: nucleation, growth, and breakage CMMP11, Manchester December 011 Protein amyloid self assembly: nucleation, growth, and breakage Chiu Fan Lee 1, Létitia Jean, and David J. Vaux 1 Max Planck Institute for the Physics of Complex Systems

More information

Scaling limit of the two-dimensional dynamic Ising-Kac model

Scaling limit of the two-dimensional dynamic Ising-Kac model Scaling limit of the two-dimensional dynamic Ising-Kac model Jean-Christophe Mourrat Hendrik Weber Mathematics Institute University of Warwick Statistical Mechanics Seminar, Warwick A famous result Theorem

More information

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future?

Modeling Random Wet 2D Foams with Controlled Polydispersity. Back to the Future? Modeling Random Wet 2D Foams with Controlled Polydispersity Back to the Future? Andy Kraynik Sandia National Labs (retired) CEAS, University of Manchester University of Erlangen-Nuremberg Simon Cox Aberystwyth

More information

Non-equilibrium phase transitions

Non-equilibrium phase transitions Non-equilibrium phase transitions An Introduction Lecture III Haye Hinrichsen University of Würzburg, Germany March 2006 Third Lecture: Outline 1 Directed Percolation Scaling Theory Langevin Equation 2

More information

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble

TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble TURBULENCE IN STRATIFIED ROTATING FLUIDS Joel Sommeria, Coriolis-LEGI Grenoble Collaborations: Olivier Praud, Toulouse P.H Chavanis, Toulouse F. Bouchet, INLN Nice A. Venaille, PhD student LEGI OVERVIEW

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information