in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D)

Size: px
Start display at page:

Download "in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D)"

Transcription

1 Positive specific heat critical exponent in three-dimensional three-state random bond Potts model (α >0f for a disordered d dsystem in 3D) ZHONG Fan School of Physics and Engineering Sun Yat-sen University Guangzhou stszf@mail.sysu.edu.cn International Workshop on Critical Behavior in Lattice Models, April 1-4, 2013 Beijing Normal University, Beijing

2 Outline Introduction Model Finite-time scaling Method and results Summary

3 Introduction Continous phase transitions Pure state Harris criterion (Harris 74): whether uncorrelated quenched randomness coupled to local energy density is relevant α >0relevant relevant,α α <0irrelevant irrelevant. Dirty state α < 0? α < 0 (Ma 76, RG) α > 0 (Kinzel & Domany 81, Andelman & Berker 84) crossover exponent of the perturbation associated with the randomness near the pure decoupled fixed point: φ =2y y - d = (2 - dv)/v ) = α/v. At the random fixed point, the replicas are coupled, not applicable.

4 ν 2/d (Chayes et al. 86) α <0(If an appropriately defined FSS correlation length diverges at a nontrivial value of the disorder with an exponent ν ) ν < 2/d (Pazmandi et al. 97) α > 0 (For systems that t lack self-averaging, intrinsicν finite size ν ) ν 2/d, α < 0 (Aharony98) (to avoid the RG iterations flowing into unphysical regime) The sign of α is not yet conclusive.

5 First-order phase transitions Quenched disorder coupled to local energy density D 2: continous (rigorous (Aizenman & Wehr, Hui & Berker 89], true for QPTs [Greenblatt et al 09)] D = 3: strong disorder continuous (Uzelac et al 95, Cardy &Jacobsen97] Less well studied. Whether the continuous transition derived from rounding of afirst-order phase transition is different from that from a pure continuous one?

6 Violation of hyperscaling law α = 2 ( d θ) ν Randomness is relevant at zero-temperature fixed point (Grinstein 76, Fisher 86) Tricritical point of the large-q qrbpmcanbe mapped to RFIM (Cardy & Jacobsen 97)

7 Model Random-bond Potts model = H Kijδ σσ i j < i, j> σ = 1, 2,3. i K ij three states K, p = = rk 0, p= 0.5 Simple cubic lattice with periodic boundary conditions

8 Phase diagram (Yin, Zheng, & Trimper 2005)

9 Summary of previous results Studied: Site dilutions and bond dilutions, three states and four states, random bond three states and large states (large q) Obtained exponents varied slightly and depending on disorder strength ν > 2/d (FSS, STCD after correction) α >0(Mercaldo et al 06) but claimed to be far away from asymptotic region

10 Finite-time scaling Finite-size it i scaling Theory Finite size! Numerical simulation L > ξ L < ξ Experiment Bulk behavior Finite-size scaling

11 Critical Slowing down Diverging orrelation time: t eq ~ ξ z Equilibrium: eq prerequisite for accurate measurement Dynamics: t eq ~ L z dynamic finite-size scaling, good for asymptotic region of long time, large size, and small τ = T-T c But: the simulation time is limited! Analogous situations ξ large but L < ξ FSS t eq large but simulation time limited FTS?

12 Finite-size scaling Pictorial representation lnm M L β / v FSS L 1 L 2 L L 3 lnm lnll M t β / vz Finite-time scaling? Initial slip 0 t mic 1 1 L 4 ξ ~ τ -ν t eq ~ ξ z R 1 R 1 2 R 1 3 R 1 4 R 5 t eq STCD lnh C H C / vr R βδ / H lnt FTS lnr

13 Main idea: Need a controllable external time scale: affects evolution, but is still able to probe intrinsic scaling Aim: The system does not evolve by itself to equilibrium, which takes a lot of time, but follows the new controllable finite time scale.

14 How to realize FTS? Apply an external field H M t H t f t Ht t t H / z 1/ z / z (, τ, ) = β ν ( τ ν, βδ ν ) / eq ~ ν z z z τ ~ ξ, ex ~ ν βδ The external time t ex depends on H. A static H just puts the system off its criticality and a varying H varies t ex too. How to have a controllable t ex? Let H vary linearly with time: H = Rt M t R t f t Rt / 1/ / 1 (,, ) β ν z ( ν z z, βδ ν + τ = τ ) t R ν βδ ν ~ z/( z) ex + just depends on R R introduces a new time scale. Varying R then produces a controllable t ex

15 Another derivation Scale transformation M t H b M tb b Hb / 1/ / (,, ) β ν z τ = (, τ ν, βδ ν ) valid for time-dependent H r H A new rate exponent: H = Rt R ' = H ' ' ' r H = R t = b z Rt = = b R βδ / ν βδ / ν b H b Rt r = z+ βδ / ν H reflecting the combined effects of H and t. relating static and dynamic exps.

16 H = Another derivation Scale transformation Rt M t H b M tb b Hb H R ' = b R (, τ, ) = / ( z 1/, τ ν, βδ / ) r -- Choose R and t as independent variables: M t R b M tb b Rb M t R R f tr R + ( r = z+ βδ / ν) β / ν z 1/ ν r (, τ, ) = (, τ, H ) β / / 1/ (,, ) r Hν H H 1( z r, r ν τ = τ ) ~ z/ rh ~ z/( z) t R R ν βδ ν ex H -- Choose R and H as independent variables: M H R b M b Hb Rb r H M(, H, R) R f ( R, HR ) / 1/ / ( τ,, ) = β ν ( τ ν, βδ ν, ) β / r Hν 1/ r Hν βδ / r Hν τ = 2 τ

17 Comparisons of FTS with FSS and short-time critical dynamics FTS: H = Rt, r = z+ βδ / ν H M H R b M Hb b Rb r H / / 1/ (, τ, ) = β ν ( βδ ν, τ ν, ) / / 1/ 1 β ν βδ ν ν FSS: M( H, τ, L) = b M( Hb, τb, L b) β / 1/ / FTS: (,, ) r Hν H H ( r ν βδ M H R R f R, HR r ν τ = τ ) FSS: FTS: STD: 2 β / ν 1/ ν βδ / ν M( τ, H, L) = L f( τl, HL ) Mt R t m t Rt (, τ, ) = β / νz 1/ νz ( τ, r H / z ) β νz νz (2) 2 / 1/ M (, t τ) = t f( t τ) Similar in forms, apparent differences due to dimensions. But lying behind is a controllable external time scale

18 Temperature driving β ν M ( t, τ ) = b M ( tb τ = T T = Rt, τb / z 1/ ν r R' = b R r z 1/ τ ' = R't ' = b Rt = b ν τ r = z+ 1/ ν M R b M b Rb c β / ν 1/ ν r ( τ, ) = ( τ, ) M R R f R β / r ν (, ) ( 1/ rν τ = τ ) χ ( τ, R ) R f ( τr ) γ / rν 1/ rν = 1 C( τ, R) = R f ( τr ) α / r ν 1/ r ν 2 )

19 Finite-time and finite-size scaling M R L R f R L R β / rν 1/ rν 1 1/ r ( τ,, ) = ( τ, ) An effective length scale: R -1/r : effective FSS DRIVING SIMULATIONS: Effective finite scaling of whatever effect one needs/wants to consider Crossovers Renormalization-group theory

20 Corrections to scaling FTS: STCD: FSS: M R Y R f R YR β / rν 1/ rν ω/ r ( τ,, ) = ( τ, ) M t Y t f t Yt β / νz 1/ νz ω/ z ( τ,, ) = ( τ, ) M L Y L f L YL β / ν 1/ ν ω ( τ,, ) = ( τ, ) r = z +1/ν Small correction-to-scaling exponent ω/r Good news: corrections o to scaling can be ignored Bad news: correction-to-scaling exponent is hard to be estimated

21 Method and results Monte Carlo renormalization group Two lattice matching: r, ν z ( r = z+ 1/ ν ) Best data collapses: β, β γ, γ α M R R f R β / r ν (, ) ( 1/ rν τ = τ ) χ ( τ, R ) R f ( τr ) γ / rν 1/ rν = 1 C( τ, R) = R f ( τr ) α / r ν 1/ r ν 2

22 MCRG Two lattice matching β / ν z 1/ ν r M (, t τ, R) = b M( tb, τb, Rb ) z 1/ ν ( t t )' = ( t t ) b, τ ' = τb, R' = Rb c c ' ' nn, Lb p nn, L ps s G ( T, R') G ( T, R ) Large lattice: Lb Small lattice: L = nearest correlation function r Invariance under coarse graining: z = r 1/ ν χτ (, R) = R f ( τr ) γ / rν 1/ r ν 1 An independent check of 1/rv A method to determine T c

23 Critical temperatures r 0 T c T c (FTS) (STCD) (4) (4) (4) (4) (5) (5) Effective interaction approximation (Turban, 1980)

24

25

26 Confirmation of consistency r 0 1/rv 1/rv T (from T p ) (from MCRG) (5) 0.451(7) (6) 0.431(6) (12) 0.426(6) (7) 0.419(6) 9.749(5) (8) 0.408(7) (12) 0.406(9) (12) 0.394(8) (16) 0.353(9) (13) 0.339(13) 9.71 T c

27 Effects of r 0 A fixed probability distribution of the random bonds v z 1/rv R = 5* /rv depends on R Only comparison with identical r 0 is reasonable square: circle: triangle:

28 No effect of lattice size

29 Exponets obtained ν <2/d α >0 The exponents vary with r 0 ; but in some range, the variations are slight.

30 Verification of the exponents by data collapses (a) r 0 = 2.5, (b) 7.5, (c) 10, (d) 20, and (e) 30

31 The exponents are correct. Corrections to scaling are negligible. Lines are fits according to C(T c ) R α/rν Within some ranges, C(T c )=c 1 c 2 R α/rν, (a negative α) but C curves collapse badly. The same method yielded α < 0 correctly for 3D random-bond Ising model.

32 Test of scaling laws Tricritical fixed point Crossover Random fixed point Crossover Percolation fixed point? combined with the plateaus in the variations

33 Critical exponents of the random fixed point (averages over r 0 = 10 to 20) ν = 0.568(22), β = 0.32(4), α = 0.29(6), γ = 1.15(7), z = 2.58(6), 1/ r ν = 0.407(11), r = 4.34(9), β / ν = 0.56(8), γ / ν = 2.03(16).

34 Comparison r 0 =10 β/vz (d-2β/v)/z z β/v v FTS 0.216(13) 0.764(56) 2.51(4) 0.54(6) 0.554(9) STCD 0.221(1) 0761(14) 0.761(14) 249(5) 2.49(5) 248(5) 2.48(5) 0548(13) 0.548(13) 0.584(18) 0.704(35) no corrn no corrn no corrn corrected no corrn corrected Without corrections, β/vz and (d-2β/v)/z z = 2.49(5) and β/v = 0.550(11) 1/vz = 0.573(16) 20% bigger v = 0.584(18) ~ 0.554(9) Fitting RG r = z +1/ν 1/rv 1/rv=1-z/r r v z C α α = 2-dv

35 Summary A possible case of α > 0 and ν < 2/d If confirmed What is the mechanism? First-order phase transition of the pure system or/and nonperturbative phenomena FTS can probe the intrinsic i i ν Through FTS, a lot of exponents can be estimated independently and scaling laws tested Scaling laws and asymptotic exponents (One or two scaling laws validated but not asymptotic) Critical exponents of the RBPM in 3D

36 Acknowledgements Former students Xiong Wanjie Fan Shuangli CNSF

37 Relevant publications Xiong, W. Zhong, F. & Fan, S. Comput. Phys. Commun. 183, 1161 (2012). Gong, S.; Zhong, F.; Huang, X. & Fan, S. New J. Phys. 12, (2010). Zhong, F. in Applications of Monte Carlo Method in Science and Engineering. g Chap. 18, p. 469, Intech Available at

38 Thank you for your attention!

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber

Scaling Theory. Roger Herrigel Advisor: Helmut Katzgraber Scaling Theory Roger Herrigel Advisor: Helmut Katzgraber 7.4.2007 Outline The scaling hypothesis Critical exponents The scaling hypothesis Derivation of the scaling relations Heuristic explanation Kadanoff

More information

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999

Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/ v1 [cond-mat.stat-mech] 22 Sep 1999 Microscopic Deterministic Dynamics and Persistence Exponent arxiv:cond-mat/9909323v1 [cond-mat.stat-mech] 22 Sep 1999 B. Zheng FB Physik, Universität Halle, 06099 Halle, Germany Abstract Numerically we

More information

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition

Effect of Diffusing Disorder on an. Absorbing-State Phase Transition Effect of Diffusing Disorder on an Absorbing-State Phase Transition Ronald Dickman Universidade Federal de Minas Gerais, Brazil Support: CNPq & Fapemig, Brazil OUTLINE Introduction: absorbing-state phase

More information

Phase transitions and finite-size scaling

Phase transitions and finite-size scaling Phase transitions and finite-size scaling Critical slowing down and cluster methods. Theory of phase transitions/ RNG Finite-size scaling Detailed treatment: Lectures on Phase Transitions and the Renormalization

More information

The Ising model Summary of L12

The Ising model Summary of L12 The Ising model Summary of L2 Aim: Study connections between macroscopic phenomena and the underlying microscopic world for a ferromagnet. How: Study the simplest possible model of a ferromagnet containing

More information

Physics 212: Statistical mechanics II Lecture XI

Physics 212: Statistical mechanics II Lecture XI Physics 212: Statistical mechanics II Lecture XI The main result of the last lecture was a calculation of the averaged magnetization in mean-field theory in Fourier space when the spin at the origin is

More information

0. Construction of d-dimensional Isotropic and Anisotropic Hierarchical Lattices 1. Frustrated Systems and Chaotic Renormalization- Group

0. Construction of d-dimensional Isotropic and Anisotropic Hierarchical Lattices 1. Frustrated Systems and Chaotic Renormalization- Group Hierarchical Lattices: Renormalization-Group Solutions of Plain, Anisotropic,Chaotic, Heterogeneous, and Clustered Systems Collaborators: D. Andelman, A. Erbaş, A. Falicov, K. Hui, M. Hinczewski, A. Kabakçıoğlu,

More information

MCRG Flow for the Nonlinear Sigma Model

MCRG Flow for the Nonlinear Sigma Model Raphael Flore,, Björn Wellegehausen, Andreas Wipf 23.03.2012 So you want to quantize gravity... RG Approach to QFT all information stored in correlation functions φ(x 0 )... φ(x n ) = N Dφ φ(x 0 )... φ(x

More information

Triangular Ising model with nearestand

Triangular Ising model with nearestand Chapter 3 Triangular Ising model with nearestand next-nearest-neighbor couplings in a field We study the Ising model on the triangular lattice with nearest-neighbor couplings K nn, next-nearest-neighbor

More information

2D Critical Systems, Fractals and SLE

2D Critical Systems, Fractals and SLE 2D Critical Systems, Fractals and SLE Meik Hellmund Leipzig University, Institute of Mathematics Statistical models, clusters, loops Fractal dimensions Stochastic/Schramm Loewner evolution (SLE) Outlook

More information

Ageing properties of three-dimensional pure and site-diluted Ising ferromagnets

Ageing properties of three-dimensional pure and site-diluted Ising ferromagnets Journal of Physics: Conference Series OPEN ACCESS Ageing properties of three-dimensional pure and site-diluted Ising ferromagnets To cite this article: Vladimir V Prudnikov et al 2014 J. Phys.: Conf. Ser.

More information

Non-equilibrium phase transitions

Non-equilibrium phase transitions Non-equilibrium phase transitions An Introduction Lecture III Haye Hinrichsen University of Würzburg, Germany March 2006 Third Lecture: Outline 1 Directed Percolation Scaling Theory Langevin Equation 2

More information

Invaded cluster dynamics for frustrated models

Invaded cluster dynamics for frustrated models PHYSICAL REVIEW E VOLUME 57, NUMBER 1 JANUARY 1998 Invaded cluster dynamics for frustrated models Giancarlo Franzese, 1, * Vittorio Cataudella, 1, * and Antonio Coniglio 1,2, * 1 INFM, Unità di Napoli,

More information

Monte Carlo study of the Baxter-Wu model

Monte Carlo study of the Baxter-Wu model Monte Carlo study of the Baxter-Wu model Nir Schreiber and Dr. Joan Adler Monte Carlo study of the Baxter-Wu model p.1/40 Outline Theory of phase transitions, Monte Carlo simulations and finite size scaling

More information

MONTE-CARLO SIMULATIONS OF DISORDERED NON-EQUILIBRIUM PHASE TRANSITIONS. Mark Dickison A THESIS

MONTE-CARLO SIMULATIONS OF DISORDERED NON-EQUILIBRIUM PHASE TRANSITIONS. Mark Dickison A THESIS MONTE-CARLO SIMULATIONS OF DISORDERED NON-EQUILIBRIUM PHASE TRANSITIONS by Mark Dickison A THESIS Presented to the Faculty of the Graduate School of the UNIVERSITY OF MISSOURI ROLLA in Partial Fulfillment

More information

Renormalization Group Analysis of a Small-world Network Model

Renormalization Group Analysis of a Small-world Network Model Renormalization Group Analysis of a Small-world Network Model Thomas Payne December 4, 2009 A small-world network is a network where most of the nodes aren t directly connected to each other, but any node

More information

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics.

Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Renormalization Group: non perturbative aspects and applications in statistical and solid state physics. Bertrand Delamotte Saclay, march 3, 2009 Introduction Field theory: - infinitely many degrees of

More information

Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling

Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling Improvement of Monte Carlo estimates with covariance-optimized finite-size scaling at fixed phenomenological coupling Francesco Parisen Toldin Max Planck Institute for Physics of Complex Systems Dresden

More information

Mean Field Dynamical Exponents in Finite-Dimensional Ising Spin Glass

Mean Field Dynamical Exponents in Finite-Dimensional Ising Spin Glass arxiv:cond-mat/9702030v2 [cond-mat.dis-nn] 5 Feb 1997 Mean Field Dynamical Exponents in Finite-Dimensional Ising Spin Glass G. Parisi, P. Ranieri, F. Ricci-Tersenghi and J. J. Ruiz-Lorenzo Dipartimento

More information

Multifractality in random-bond Potts models

Multifractality in random-bond Potts models Multifractality in random-bond Potts models Ch. Chatelain Groupe de Physique Statistique, Université Nancy 1 April 1st, 2008 Outline 1 Self-averaging 2 Rare events 3 The example of the Ising chain 4 Multifractality

More information

Fluctuations in the aging dynamics of structural glasses

Fluctuations in the aging dynamics of structural glasses Fluctuations in the aging dynamics of structural glasses Horacio E. Castillo Collaborator: Azita Parsaeian Collaborators in earlier work: Claudio Chamon Leticia F. Cugliandolo José L. Iguain Malcolm P.

More information

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010)

NATURAL SCIENCES TRIPOS. Past questions. EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics. (27 February 2010) NATURAL SCIENCES TRIPOS Part III Past questions EXPERIMENTAL AND THEORETICAL PHYSICS Minor Topics (27 February 21) 1 In one-dimension, the q-state Potts model is defined by the lattice Hamiltonian βh =

More information

arxiv:hep-th/ v2 1 Aug 2001

arxiv:hep-th/ v2 1 Aug 2001 Universal amplitude ratios in the two-dimensional Ising model 1 arxiv:hep-th/9710019v2 1 Aug 2001 Gesualdo Delfino Laboratoire de Physique Théorique, Université de Montpellier II Pl. E. Bataillon, 34095

More information

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that.

Ω = e E d {0, 1} θ(p) = P( C = ) So θ(p) is the probability that the origin belongs to an infinite cluster. It is trivial that. 2 Percolation There is a vast literature on percolation. For the reader who wants more than we give here, there is an entire book: Percolation, by Geoffrey Grimmett. A good account of the recent spectacular

More information

Quasi-Stationary Simulation: the Subcritical Contact Process

Quasi-Stationary Simulation: the Subcritical Contact Process Brazilian Journal of Physics, vol. 36, no. 3A, September, 6 685 Quasi-Stationary Simulation: the Subcritical Contact Process Marcelo Martins de Oliveira and Ronald Dickman Departamento de Física, ICEx,

More information

Introduction to the Renormalization Group

Introduction to the Renormalization Group Introduction to the Renormalization Group Gregory Petropoulos University of Colorado Boulder March 4, 2015 1 / 17 Summary Flavor of Statistical Physics Universality / Critical Exponents Ising Model Renormalization

More information

A Lattice Study of the Glueball Spectrum

A Lattice Study of the Glueball Spectrum Commun. Theor. Phys. (Beijing, China) 35 (2001) pp. 288 292 c International Academic Publishers Vol. 35, No. 3, March 15, 2001 A Lattice Study of the Glueball Spectrum LIU Chuan Department of Physics,

More information

Logarithmic corrections to gap scaling in random-bond Ising strips

Logarithmic corrections to gap scaling in random-bond Ising strips J. Phys. A: Math. Gen. 30 (1997) L443 L447. Printed in the UK PII: S0305-4470(97)83212-X LETTER TO THE EDITOR Logarithmic corrections to gap scaling in random-bond Ising strips SLAdeQueiroz Instituto de

More information

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group

Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Complex Systems Methods 9. Critical Phenomena: The Renormalization Group Eckehard Olbrich e.olbrich@gmx.de http://personal-homepages.mis.mpg.de/olbrich/complex systems.html Potsdam WS 2007/08 Olbrich (Leipzig)

More information

PoS(LAT2005)018. Quenched Disordered Ferromagnets

PoS(LAT2005)018. Quenched Disordered Ferromagnets Institut für Theoretische Physik, Universität Leipzig, Augustusplatz 10/11, D-04109 Leipzig, Germany E-mail: wolfhard.janke@itp.uni-leipzig.de Bertrand Berche and Christophe Chatelain Laboratoire de Physique

More information

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion

Physics 127b: Statistical Mechanics. Renormalization Group: 1d Ising Model. Perturbation expansion Physics 17b: Statistical Mechanics Renormalization Group: 1d Ising Model The ReNormalization Group (RNG) gives an understanding of scaling and universality, and provides various approximation schemes to

More information

Slightly off-equilibrium dynamics

Slightly off-equilibrium dynamics Slightly off-equilibrium dynamics Giorgio Parisi Many progresses have recently done in understanding system who are slightly off-equilibrium because their approach to equilibrium is quite slow. In this

More information

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care)

Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Is there a de Almeida-Thouless line in finite-dimensional spin glasses? (and why you should care) Peter Young Talk at MPIPKS, September 12, 2013 Available on the web at http://physics.ucsc.edu/~peter/talks/mpipks.pdf

More information

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics

Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics Non-perturbative beta-function in SU(2) lattice gauge fields thermodynamics O. Mogilevsky, N.N.Bogolyubov Institute for Theoretical Physics, National Academy of Sciences of Ukraine, 25243 Kiev, Ukraine

More information

PHYSICAL REVIEW LETTERS

PHYSICAL REVIEW LETTERS PHYSICAL REVIEW LETTERS VOLUME 76 4 MARCH 1996 NUMBER 10 Finite-Size Scaling and Universality above the Upper Critical Dimensionality Erik Luijten* and Henk W. J. Blöte Faculty of Applied Physics, Delft

More information

Renormalization Group for the Two-Dimensional Ising Model

Renormalization Group for the Two-Dimensional Ising Model Chapter 8 Renormalization Group for the Two-Dimensional Ising Model The two-dimensional (2D) Ising model is arguably the most important in statistical physics. This special status is due to Lars Onsager

More information

arxiv:cond-mat/ v1 22 Sep 1998

arxiv:cond-mat/ v1 22 Sep 1998 Scaling properties of the cluster distribution of a critical nonequilibrium model Marta Chaves and Maria Augusta Santos Departamento de Física and Centro de Física do Porto, Faculdade de Ciências, Universidade

More information

arxiv: v1 [cond-mat.dis-nn] 7 Sep 2007

arxiv: v1 [cond-mat.dis-nn] 7 Sep 2007 Short-time critical dynamics of the three-dimensional systems with long-range correlated disorder Vladimir V. Prudnikov 1,, Pavel V. Prudnikov 1, Bo Zheng 2, Sergei V. Dorofeev 1 and Vyacheslav Yu. Kolesnikov

More information

Optimization in random field Ising models by quantum annealing

Optimization in random field Ising models by quantum annealing Optimization in random field Ising models by quantum annealing Matti Sarjala, 1 Viljo Petäjä, 1 and Mikko Alava 1 1 Helsinki University of Techn., Lab. of Physics, P.O.Box 1100, 02015 HUT, Finland We investigate

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses Phase Transitions in Spin Glasses Peter Young Talk available at http://physics.ucsc.edu/ peter/talks/sinica.pdf e-mail:peter@physics.ucsc.edu Supported by the Hierarchical Systems Research Foundation.

More information

Universality class of triad dynamics on a triangular lattice

Universality class of triad dynamics on a triangular lattice Universality class of triad dynamics on a triangular lattice Filippo Radicchi,* Daniele Vilone, and Hildegard Meyer-Ortmanns School of Engineering and Science, International University Bremen, P. O. Box

More information

Cluster Monte Carlo study of multicomponent fluids of the Stillinger-Helfand and Widom- Rowlinson type

Cluster Monte Carlo study of multicomponent fluids of the Stillinger-Helfand and Widom- Rowlinson type University of Massachusetts Amherst From the SelectedWorks of Jonathan Machta 2000 Cluster Monte Carlo study of multicomponent fluids of the Stillinger-Helfand and Widom- Rowlinson type Rongfeng Sun Harvey

More information

Fractal Geometry of Minimal Spanning Trees

Fractal Geometry of Minimal Spanning Trees Fractal Geometry of Minimal Spanning Trees T. S. Jackson and N. Read Part I: arxiv:0902.3651 Part II: arxiv:0909.5343 Accepted by Phys. Rev. E Problem Definition Given a graph with costs on the edges,

More information

the renormalization group (RG) idea

the renormalization group (RG) idea the renormalization group (RG) idea Block Spin Partition function Z =Tr s e H. block spin transformation (majority rule) T (s, if s i ; s,...,s 9 )= s i > 0; 0, otherwise. b Block Spin (block-)transformed

More information

Critical Region of the QCD Phase Transition

Critical Region of the QCD Phase Transition Critical Region of the QCD Phase Transition Mean field vs. Renormalization group B.-J. Schaefer 1 and J. Wambach 1,2 1 Institut für Kernphysik TU Darmstadt 2 GSI Darmstadt 18th August 25 Uni. Graz B.-J.

More information

Coarsening process in the 2d voter model

Coarsening process in the 2d voter model Alessandro Tartaglia (LPTHE) Coarsening in the 2d voter model May 8, 2015 1 / 34 Coarsening process in the 2d voter model Alessandro Tartaglia LPTHE, Université Pierre et Marie Curie alessandro.tartaglia91@gmail.com

More information

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics Nagoya Winter Workshop on Quantum Information, Measurement, and Quantum Foundations (Nagoya, February 18-23, 2010) Quantum measurement theory and micro-macro consistency in nonequilibrium statistical mechanics

More information

The glass transition as a spin glass problem

The glass transition as a spin glass problem The glass transition as a spin glass problem Mike Moore School of Physics and Astronomy, University of Manchester UBC 2007 Co-Authors: Joonhyun Yeo, Konkuk University Marco Tarzia, Saclay Mike Moore (Manchester)

More information

Localization I: General considerations, one-parameter scaling

Localization I: General considerations, one-parameter scaling PHYS598PTD A.J.Leggett 2013 Lecture 4 Localization I: General considerations 1 Localization I: General considerations, one-parameter scaling Traditionally, two mechanisms for localization of electron states

More information

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N

Tb 2 Hf 2 O 7 R 2 B 2 7 R B R 3+ T N Tb Hf O 7 7 χ ac(t ) χ(t ) M(H) C p(t ) µ χ ac(t ) µ 7 7 7 R B 7 R B R 3+ 111 7 7 7 7 111 θ p = 19 7 7 111 7 15 7 7 7 7 7 7 7 7 T N.55 3+ 7 µ µ B 7 7 7 3+ 4f 8 S = 3 L = 3 J = 6 J + 1 = 13 7 F 6 3+ 7 7

More information

arxiv: v2 [cond-mat.stat-mech] 24 Aug 2014

arxiv: v2 [cond-mat.stat-mech] 24 Aug 2014 Hyperuniformity of critical absorbing states Daniel Hexner and Dov Levine, Department of Physics, Technion, Haifa, Israel Initiative for the Theoretical Sciences - CUNY Graduate Center 65 Fifth Avenue,

More information

Introduction to Phase Transitions in Statistical Physics and Field Theory

Introduction to Phase Transitions in Statistical Physics and Field Theory Introduction to Phase Transitions in Statistical Physics and Field Theory Motivation Basic Concepts and Facts about Phase Transitions: Phase Transitions in Fluids and Magnets Thermodynamics and Statistical

More information

Critical Behavior II: Renormalization Group Theory

Critical Behavior II: Renormalization Group Theory Critical Behavior II: Renormalization Group Theor H. W. Diehl Fachbereich Phsik, Universität Duisburg-Essen, Campus Essen 1 What the Theor should Accomplish Theor should ield & explain: scaling laws #

More information

Critical Behavior I: Phenomenology, Universality & Scaling

Critical Behavior I: Phenomenology, Universality & Scaling Critical Behavior I: Phenomenology, Universality & Scaling H. W. Diehl Fachbereich Physik, Universität Duisburg-Essen, Campus Essen 1 Goals recall basic facts about (static equilibrium) critical behavior

More information

Short-Time Critical Dynamics of the Three-Dimensional Systems with Long-Range Correlated Disorder

Short-Time Critical Dynamics of the Three-Dimensional Systems with Long-Range Correlated Disorder 973 Progress of Theoretical Physics, Vol. 117, No. 6, June 2007 Short-Time Critical Dynamics of the Three-Dimensional Systems with Long-Range Correlated Disorder Vladimir V. Prudnikov, 1, ) Pavel V. Prudnikov,

More information

0.1. CORRELATION LENGTH

0.1. CORRELATION LENGTH 0.1. CORRELAION LENGH 0.1 1 Correlation length 0.1.1 Correlation length: intuitive picture Roughly speaking, the correlation length ξ of a spatial configuration is the representative size of the patterns.

More information

Critical quench dynamics in confined quantum systems

Critical quench dynamics in confined quantum systems Critical quench dynamics in confined quantum systems IJL, Groupe Physique Statistique - Université Henri Poincaré 27 nov. 2009 Contents 1 Crossing a critical point Kibble-Zurek argument 2 Confining potential

More information

arxiv: v1 [cond-mat.stat-mech] 15 Apr 2016

arxiv: v1 [cond-mat.stat-mech] 15 Apr 2016 Theory of riven Nonequilibrium Critical Phenomena Baoquan Feng, Shuai Yin, and Fan Zhong State Key Laboratory of Optoelectronic aterials and Technologies, School of Physics and Engineering, Sun Yat-sen

More information

Renormalization: An Attack on Critical Exponents

Renormalization: An Attack on Critical Exponents Renormalization: An Attack on Critical Exponents Zebediah Engberg March 15, 2010 1 Introduction Suppose L R d is a lattice with critical probability p c. Percolation on L is significantly differs depending

More information

arxiv:cond-mat/ v1 24 Aug 1995

arxiv:cond-mat/ v1 24 Aug 1995 On damage spreading transitions Franco Bagnoli arxiv:cond-mat/9508106v1 24 Aug 1995 October 28, 2008 Abstract We study the damage spreading transition in a generic one-dimensional stochastic cellular automata

More information

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014

Problem set for the course Skálázás és renormálás a statisztikus fizikában, 2014 1 Problem set for the course Skálázás és renormálás a statisztikus fizikában, 014 Rules: You can choose at wish from problems having the same main number (i.e. from a given section), but you can collect

More information

Clusters and Percolation

Clusters and Percolation Chapter 6 Clusters and Percolation c 2012 by W. Klein, Harvey Gould, and Jan Tobochnik 5 November 2012 6.1 Introduction In this chapter we continue our investigation of nucleation near the spinodal. We

More information

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 24 Jan 2006

arxiv:cond-mat/ v3 [cond-mat.dis-nn] 24 Jan 2006 Optimization in random field Ising models by quantum annealing Matti Sarjala, 1 Viljo Petäjä, 1 and Mikko Alava 1 1 Helsinki University of Techn., Lab. of Physics, P.O.Box 10, 02015 HUT, Finland arxiv:cond-mat/0511515v3

More information

Interface depinning in a disordered medium - numerical results

Interface depinning in a disordered medium - numerical results Interface depinning in a disordered medium - numerical results Heiko Leschhorn Theoretische Physik III, Ruhr-Universität Bochum, Postfach 102148, D-4630 Bochum, Germany arxiv:cond-mat/9302039v1 26 Feb

More information

Monte Carlo tests of theoretical predictions for critical phenomena: still a problem?

Monte Carlo tests of theoretical predictions for critical phenomena: still a problem? Computer Physics Communications 127 (2) 126 13 www.elsevier.nl/locate/cpc Monte Carlo tests of theoretical predictions for critical phenomena: still a problem? K. Binder, E. Luijten Johannes-Gutenberg-Universität,

More information

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group

Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group Lecture Notes, Field Theory in Condensed Matter Physics: Quantum Criticality and the Renormalization Group Jörg Schmalian Institute for Theory of Condensed Matter (TKM) Karlsruhe Institute of Technology

More information

arxiv:hep-lat/ v1 6 Oct 2000

arxiv:hep-lat/ v1 6 Oct 2000 1 Scalar and Tensor Glueballs on Asymmetric Coarse Lattices C. Liu a, a Department of Physics, Peking University, Beijing 100871, P. R. China arxiv:hep-lat/0010007v1 6 Oct 2000 Scalar and tensor glueball

More information

Fractal Geometries and their Nonequillibrium Behaviour in Two Dimensional Ising Magnets

Fractal Geometries and their Nonequillibrium Behaviour in Two Dimensional Ising Magnets Fractal Geometries and their Nonequillibrium Behaviour in Two Dimensional Ising Magnets Ph. D. Theses by László Környei Tutor: Prof. Ferenc Iglói D. Sc. Department of Theoretical Physics University of

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997 arxiv:cond-mat/9706065v1 [cond-mat.stat-mech] 6 Jun 1997 LETTER TO THE EDITOR Logarithmic corrections to gap scaling in random-bond Ising strips S L A de Queiroz Instituto de Física, UFF, Avenida Litorânea

More information

Critical exponents in quantum Einstein gravity

Critical exponents in quantum Einstein gravity Critical exponents in quantum Einstein gravity Sándor Nagy Department of Theoretical physics, University of Debrecen MTA-DE Particle Physics Research Group, Debrecen Leibnitz, 28 June Critical exponents

More information

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 13 Mar 2001

arxiv:cond-mat/ v2 [cond-mat.stat-mech] 13 Mar 2001 arxiv:cond-mat/0103165v2 [cond-mat.stat-mech] 13 Mar 2001 Dynamic critical exponents of the Ising model with multispin interactions C. S. Simões 1 and J. R. Drugowich de Felício 1,2 1-Departamento de Física

More information

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems

8.334: Statistical Mechanics II Spring 2014 Test 2 Review Problems 8.334: Statistical Mechanics II Spring 014 Test Review Problems The test is closed book, but if you wish you may bring a one-sided sheet of formulas. The intent of this sheet is as a reminder of important

More information

Critical behaviour of the 1D q-state Potts model with long-range interactions. Z Glumac and K Uzelac

Critical behaviour of the 1D q-state Potts model with long-range interactions. Z Glumac and K Uzelac Critical behaviour of the D q-state Potts model with long-range interactions Z Glumac and K Uzelac Institute of Physics, University of Zagreb, Bijenička 46, POB 304, 4000 Zagreb, Croatia Abstract The critical

More information

Phase Transitions in Spin Glasses

Phase Transitions in Spin Glasses p.1 Phase Transitions in Spin Glasses Peter Young http://physics.ucsc.edu/ peter/talks/bifi2008.pdf e-mail:peter@physics.ucsc.edu Work supported by the and the Hierarchical Systems Research Foundation.

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 22 Jun 2005

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 22 Jun 2005 arxiv:cond-mat/0506567v1 [cond-mat.dis-nn] 22 Jun 2005 Effective critical behaviour of diluted Heisenberg-like magnets M. Dudka a R. Folk b Yu. Holovatch a,c D. Ivaneiko c a Institute for Condensed Matter

More information

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Nov 2009

arxiv:cond-mat/ v2 [cond-mat.dis-nn] 11 Nov 2009 arxiv:cond-mat/0611568v2 [cond-mat.dis-nn] 11 Nov 2009 On the universality class of the 3d Ising model with long-range-correlated disorder D. Ivaneyko a,, B. Berche b, Yu. Holovatch c,d, J. Ilnytskyi c,e

More information

Renormalization group maps for Ising models in lattice gas variables

Renormalization group maps for Ising models in lattice gas variables Renormalization group maps for Ising models in lattice gas variables Department of Mathematics, University of Arizona Supported by NSF grant DMS-0758649 http://www.math.arizona.edu/ e tgk RG in lattice

More information

On the Perturbative Stability of des QFT s

On the Perturbative Stability of des QFT s On the Perturbative Stability of des QFT s D. Boyanovsky, R.H. arxiv:3.4648 PPCC Workshop, IGC PSU 22 Outline Is de Sitter space stable? Polyakov s views Some quantum Mechanics: The Wigner- Weisskopf Method

More information

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University

Quantum and classical annealing in spin glasses and quantum computing. Anders W Sandvik, Boston University NATIONAL TAIWAN UNIVERSITY, COLLOQUIUM, MARCH 10, 2015 Quantum and classical annealing in spin glasses and quantum computing Anders W Sandvik, Boston University Cheng-Wei Liu (BU) Anatoli Polkovnikov (BU)

More information

Cluster Distribution in Mean-Field Percolation: Scaling and. Universality arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997.

Cluster Distribution in Mean-Field Percolation: Scaling and. Universality arxiv:cond-mat/ v1 [cond-mat.stat-mech] 6 Jun 1997. Cluster Distribution in Mean-Field Percolation: Scaling and Universality arxiv:cond-mat/9706064v1 [cond-mat.stat-mech] 6 Jun 1997 Joseph Rudnick and Paisan Nakmahachalasint Department of Physics, UCLA,

More information

A model for the transmission of contact forces in granular piles

A model for the transmission of contact forces in granular piles Author: Javier Cristín. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain Advisor: Carmen Miguel. Abstract:Granular matter is fundamentally different from other, more conventional,

More information

The Last Survivor: a Spin Glass Phase in an External Magnetic Field.

The Last Survivor: a Spin Glass Phase in an External Magnetic Field. The Last Survivor: a Spin Glass Phase in an External Magnetic Field. J. J. Ruiz-Lorenzo Dep. Física, Universidad de Extremadura Instituto de Biocomputación y Física de los Sistemas Complejos (UZ) http://www.eweb.unex.es/eweb/fisteor/juan

More information

Is the Sherrington-Kirkpatrick Model relevant for real spin glasses?

Is the Sherrington-Kirkpatrick Model relevant for real spin glasses? Is the Sherrington-Kirkpatrick Model relevant for real spin glasses? A. P. Young Department of Physics, University of California, Santa Cruz, California 95064 E-mail: peter@physics.ucsc.edu Abstract. I

More information

Graphical Representations and Cluster Algorithms

Graphical Representations and Cluster Algorithms Graphical Representations and Cluster Algorithms Jon Machta University of Massachusetts Amherst Newton Institute, March 27, 2008 Outline Introduction to graphical representations and cluster algorithms

More information

Hydrodynamics and QCD Critical Point in Magnetic Field

Hydrodynamics and QCD Critical Point in Magnetic Field Hydrodynamics and QCD Critical Point in Magnetic Field University of Illinois at Chicago May 25, 2018 INT Workshop Multi Scale Problems Using Effective Field Theories Reference: Phys.Rev. D97 (2018) no.5,

More information

Critical Phenomena and Percolation Theory: II

Critical Phenomena and Percolation Theory: II Critical Phenomena and Percolation Theory: II Kim Christensen Complexity & Networks Group Imperial College London Joint CRM-Imperial College School and Workshop Complex Systems Barcelona 8-13 April 2013

More information

arxiv:cond-mat/ v1 19 Sep 1995

arxiv:cond-mat/ v1 19 Sep 1995 Large-scale Simulation of the Two-dimensional Kinetic Ising Model arxiv:cond-mat/9509115v1 19 Sep 1995 Andreas Linke, Dieter W. Heermann Institut für theoretische Physik Universität Heidelberg Philosophenweg

More information

Percolation between vacancies in the two-dimensional Blume-Capel model

Percolation between vacancies in the two-dimensional Blume-Capel model Percolation between vacancies in the two-dimensional Blume-Capel model Youjin Deng, 1,2 Wenan Guo, 3 and Henk W. J. Blöte 2, 1 Laboratory for Materials Science, Delft University of Technology, Rotterdamseweg

More information

arxiv: v1 [cond-mat.stat-mech] 4 May 2010

arxiv: v1 [cond-mat.stat-mech] 4 May 2010 arxiv:1005.0565v1 [cond-mat.stat-mech] 4 May 2010 Critical Slowing Down along the Dynamic Phase Boundary in Ising meanfield dynamics Muktish Acharyya Department of Physics, Presidency College 86/1 College

More information

Low T scaling behavior of 2D disordered and frustrated models

Low T scaling behavior of 2D disordered and frustrated models Low T scaling behavior of 2D disordered and frustrated models Enzo Marinari (Roma La Sapienza, Italy) A. Galluccio, J. Lukic, E.M., O. C. Martin and G. Rinaldi, Phys. Rev. Lett. 92 (2004) 117202. Additional

More information

arxiv: v3 [cond-mat.stat-mech] 14 Feb 2013

arxiv: v3 [cond-mat.stat-mech] 14 Feb 2013 Dynamical Properties of Random Field Ising Model Suman Sinha Department of Physics, University of Calcutta, 92 Acharya Prafulla Chandra Road, Kolkata 79, India Pradipta Kumar Mandal Department of Physics,

More information

arxiv:cond-mat/ v2 16 Nov 1998

arxiv:cond-mat/ v2 16 Nov 1998 ON GROWTH, DISORDER, AND FIELD THEORY arxiv:cond-mat/9806330 v2 16 Nov 1998 Michael Lässig Max-Planck-Institut für Kolloid-und Grenzflächenforschung Kantstr.55, 14513 Teltow, Germany lassig@mpikg-teltow.mpg.de

More information

Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN

Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN Dynamics of polar nanodomains and critical behavior of the uniaxial relaxor SBN W. Kleemann, Th. Braun, Angewandte Physik, Univ. Duisburg, Germany J. Banys, Physics Department, University of Vilnius, Lithuania

More information

Phase Transitions in Relaxor Ferroelectrics

Phase Transitions in Relaxor Ferroelectrics Phase Transitions in Relaxor Ferroelectrics Matthew Delgado December 13, 2005 Abstract This paper covers the properties of relaxor ferroelectrics and considers the transition from the paraelectric state

More information

arxiv:cond-mat/ v1 7 Sep 1995

arxiv:cond-mat/ v1 7 Sep 1995 Correlations in Ising chains with non-integrable interactions Birger Bergersen, Zoltán Rácz and Huang-Jian Xu Department of Physics, University of British Columbia, Vancouver BC V6T 1Z1, Canada Institute

More information

Ising model and phase transitions

Ising model and phase transitions Chapter 5 Ising model and phase transitions 05 by Alessandro Codello 5. Equilibrium statistical mechanics Aspinsystemisdescribedbyplacingaspinvariableσ i {, } at every site i of a given lattice. A microstate

More information

arxiv:cond-mat/ v1 13 May 1999

arxiv:cond-mat/ v1 13 May 1999 Numerical signs for a transition in the 2d Random Field Ising Model at T = 0 arxiv:cond-mat/9905188v1 13 May 1999 Carlos Frontera and Eduard Vives Departament d Estructura i Constituents de la Matèria,

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

Polymer Solution Thermodynamics:

Polymer Solution Thermodynamics: Polymer Solution Thermodynamics: 3. Dilute Solutions with Volume Interactions Brownian particle Polymer coil Self-Avoiding Walk Models While the Gaussian coil model is useful for describing polymer solutions

More information

POWER-LAW CORRELATED PHASE IN RANDOM-FIELD XY MODELS AND RANDOMLY PINNED CHARGE-DENSITY WAVES Ronald Fisch Dept. of Physics Washington Univ. St. Louis, MO 63130 ABSTRACT: Monte Carlo simulations have been

More information