Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Size: px
Start display at page:

Download "Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion"

Transcription

1 Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe Analyse Numérique 23 mars INRIA Rennes - Bretagne Atlantique, IPSO & Université de Nantes, LMJL. 2 INRIA Rennes - Bretagne Atlantique, IPSO & Université de Rennes 1, IRMAR & ENS Rennes. 3 CNRS & Université de Rennes 1, IRMAR & INRIA Rennes - Bretagne Atlantique, IPSO & ENS Rennes. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 1

2 Outline 1 Problem and objectives A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 2

3 Introduction Our problem Objectives Particle systems: some applications Plasma physics. Plasma: gaz constituted of at least two species of charged particles (positive ions and electrons). Natural state: stars, ionosphere, aurora borealis,... Industrial state: TV screen, neon light, nuclear fusion,... ITER project Radiative transfer. Interaction between photons and matter. Examples: radiotherapy,... A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 3

4 Introduction Our problem Objectives Numerical simulation of particle systems Different scales, for example collisions parameterized by the Knudsen number ε different models. Kinetic model Particles represented by a distribution function f (x, v, t). Solving a Boltzmann or Vlasov-type equation t f +A(v,ε) x f +B(v,E,B,ε) v f = S(ε) potentially coupled with Maxwell or Poisson equations. Accurate and necessary far from thermodynamical equilibrium. In 3D = 7 variables = heavy computations. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 4

5 Introduction Our problem Objectives Fluid model Moment equations on physical quantities linked to f (density ρ, mean velocity u, temperature T, etc.). Lost of precision. Small cost and sufficient at thermodynamical equilibrium. General difficulties Find a well adapted model for the problem, with a good precision/cost ratio. If two scales in the same simulation, develop a numerical scheme efficient in each regime: spatial coupling of two schemes, with an interface, or asymptotic-preserving (AP) scheme 4. 4 Jin, SIAM JSC A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 5

6 AP scheme Problem and objectives Introduction Our problem Objectives Problem ε h 0 Discretized Problem h,ε ε 0 ε 0 Limit h 0 Discretized limit h h: space step x or time step t. Prop.: Stability and consistency ε, particularly when ε 0. Standard schemes: constraint h = O(ε). Aim: Construct a scheme for which h is independent of ε. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 6

7 Introduction Our problem Objectives Our 1st Problem ε 1D Vlasov-BGK equation, diffusion scaling t f + 1 ε v xf + 1 ε E vf = 1 ε2(ρm f) (1) x [0,L x ] R, v V = R, charge density ρ = V f dv, electric field E given by Poisson equation x E = ρ 1, M(v) = 1 2π exp ( v2 2 ), periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the drift-diffusion limit t ρ x ( x ρ Eρ) = 0. (2) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 7

8 Introduction Our problem Objectives Our 2nd Problem ε 1D radiative transport equation, diffusion scaling t f + 1 ε v xf = 1 ε2(ρm f) (3) x [0,L x ] R, v V = [ 1,1], charge density ρ = 1 2 V f dv, M(v) = 1, periodic conditions in x and initial conditions. Main difficulty: Knudsen number ε may be of order 1 or tend to 0 at the diffusion limit t ρ 1 3 xxρ = 0. (4) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 8

9 Objectives Problem and objectives Introduction Our problem Objectives Tools Idea Construction of an AP scheme. Reduction of the numerical cost. Micro-macro decomposition 5,6 for these models 7 (in [7], grid in v for the micro part). Use particles for the micro part since few points in v are enough at the limit. 5 Lemou, Mieussens, SIAM JSC Liu, Yu, CMP Crouseilles, Lemou, KRM A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 9

10 Derivation of the micro-macro system First-order reformulation for the 2nd Problem ε (3) Micro-macro decomposition 5,7 : f = ρm + g with g the rest. N = Span{M} = {f = ρm} null space of the BGK operator Q(f) = ρm f. Π orthogonal projection in L 2( M 1 dv ) onto N: Πh := h M, h := h dv. Hypothesis: first moment of g must be zero = g = 0, since f = ρ. True at the numerical level? If not, we have to impose it. 5 M. Lemou, L. Mieussens, SIAM JSC N. Crouseilles, M. Lemou, KRM A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 10 V

11 Derivation of the micro-macro system First-order reformulation Applying Π to (3) = macro equation on ρ t ρ+ 1 ε x vg = 0. (5) Applying (I Π) to (3) = micro equation on g t g + 1 ε [v xρ+v x g x vg ] = 1 ε2g. (6) Equation (3) micro-macro system: t ρ+ 1 ε x vg = 0, t g + 1 ε F(ρ,g) = 1 (7) ε 2g, where F(ρ,g) := v x ρ+v x g x vg. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 11

12 Difficulties Problem and objectives Derivation of the micro-macro system First-order reformulation Stiff terms in the micro equation (6) on g. In previous works 5,7, stiffest term (of order 1/ε 2 ) considered implicit in time = transport term (of order 1/ε) stabilized. But here: use of particles for the micro part = splitting between the transport term and the source term, = not possible to use the same strategy. Idea? Suitable reformulation of the model. 5 M. Lemou, L. Mieussens, SIAM JSC N. Crouseilles, M. Lemou, KRM A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 12

13 Derivation of the micro-macro system First-order reformulation Strategy of Lemou 8 : 1. rewrite t g + 1 ε F(ρ, g) = 1 ε 2 g as t (e t/ε2 g) = et/ε2 F(ρ, g), ε 2. integrate in time between t n and t n+1 and multiply by e tn+1 /ε 2 : g n+1 g n t = e t/ε2 1 t 3. approximate up to terms of order O( t) by: t g = e t/ε2 1 t No more stiff terms and good properties. 8 Lemou, CRAS g n ε 1 e t/ε2 F(ρ n, g n )+O( t), t g ε 1 e t/ε2 F(ρ, g). (8) t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 13

14 Properties Problem and objectives Derivation of the micro-macro system First-order reformulation Where Consistency: ε > 0 fixed, as t goes to zero, equation (8) is consistent with the initial micro equation (6). Asymptotic behaviour: t > 0 fixed, as ε goes to zero, we get from (8) g = εv x ρ+o(ε 2 ), which injected in the macro equation (5) provides the limit model (4). (8) t g = e t/ε2 1 t g ε1 e t/ε 2 t [v x ρ+v x g x vg ], (5) t ρ+ 1 ε x vg = 0, (4) t ρ 1 3 xxρ = 0. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 14

15 Algorithm Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Reformulated system t ρ+ 1 ε x vg = 0, Algorithm: t g = e t/ε2 1 t g ε 1 e t/ε2 F(ρ,g). t 1. Solving the micro part by a Particle-In-Cell (PIC) method. 2. Projection step to numerically force to zero the first moment of g (matching procedure 9 ). 3. Solving the macro part by a finite volume scheme (mesh on x), with a source term dependent on g. Remark: already used in the hydrodynamic limit P. Degond, G. Dimarco, L. Pareschi, IJNMF, A. C., N. Crouseilles, M. Lemou, KRM, 2012 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 15

16 1. PIC method Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Equation t g = e t/ε2 1 g ε 1 e t/ε2 F(ρ,g) t t t g +ε 1 e t/ε2 [v x g] t = e t/ε2 1 t g ε 1 e t/ε2 [v x ρ x vg ] =: S g. t Model: having N p particles, with position x k, velocity v k and weight ω k, k = 1,...,N p, g is approximated by N p g Np (x,v,t) = ω k (t)δ(x x k (t))δ(v v k (t)). k=1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 16

17 Problem and objectives Classical PIC algorithm PIC method Finite volumes scheme Properties Second-order in time Mesh generation on x for fields Fields computing on the mesh Initialization of positions, velocities and weights of particles Computation of charge and current densities on the mesh (deposition) Interpolation of fields on the particles Evolution of weights (if source term) Movement of particles (in x and v) A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 17

18 Regularization using shape functions PIC method Finite volumes scheme Properties Second-order in time Use of shape functions such as B-spline of order l B l (x) = (B 0 B l 1 )(x), with In particular B 0 (x) = { 1 x if x < x/2, 0 else. B 1 (x) = 1 x Order 0: Nearest Grid Point. Order 1: Cloud In Cell. { 1 x / x, if x < x, 0 else. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 18

19 Deposition and interpolation PIC method Finite volumes scheme Properties Second-order in time Deposition: computation of the moment of order p on the cell i: v p g i = v p g (x,v,t) dv B l (x i x) dx = R N p V ω k (t)v p k (t)b l(x i x k (t)). k=1 Interpolation: evaluation of a quantity E on particle k: N x E (x k,t) = E (x i,t)b l (x i x k (t)). i=1 A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 19

20 Solving t g +ε 1 e t/ε2 t [v x g] = 0 PIC method Finite volumes scheme Properties Second-order in time 1. Initialization: particles randomly (or quasi) distributed in phase space (x, v), weights initialized to ω k (0) = g (x k, v k, 0) LxLv N p. (L x x-length of the domain, L v v-length.) 2. Deposition ρ i (t n ). 3. Movement of particles thanks to motion equations: dx k dt (t) = ε1 e t/ε2 v k (t). t For example x n+1 k = x n k +ε(1 e t/ε2 )v k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 20

21 PIC method Finite volumes scheme Properties Second-order in time Solving t g = S g 4. Evolution of weights ω k (step specific to kinetic equations with source term): with dω k dt (t) = S g (x k,v k ) L xl v N p S g = e t/ε2 1 g ε 1 e t/ε2 [v x ρ x vg ]. t t In practice: ω n+1 k ω n k t = e t/ε2 1 ωk n t ε1 e t/ε2 [α n k t +βn k ], with α n k = vn+1 k x ρ n (x n+1 k ) L xl v N p and βk n = x vg (x n+1 k ) L xl v. N p A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 21

22 2. Projection step Problem and objectives PIC method Finite volumes scheme Properties Second-order in time We now have N p g n+1 (x,v) k=1 ω n+1 k δ ( x x n+1 k ) ( ) δ v v n+1 k. Nothing ensures g n+1 = 0 at the numerical level. We have to impose it. How? By applying a discrete approximation of (I Π) to each weight ω k. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 22

23 3. Macro part Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Equation t ρ+ 1 ε x vg = 0. Finite volume method ρ n+1 i = ρ n i t ε vg n+1 i+1 vg n+1 i 1. 2 x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 23

24 Numerical limit Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Micro equation is discretized as v xρ x vg ω n+1 k = e t/ε2 ωk n {}}{{}}{ ε(1 e t/ε2 ) α n k + βk n. When ε 0, βk n = O(ε) thus ωn+1 k = εα n k +O(ε2 ) and vg n+1 i = ε v 2 n i }{{} x ρ n i +O(ε 2 ). 1/3 Np Injecting in the macro equation ρ n+1 i = ρ n i t ε x vg n+1 i gives ρ n+1 i = ρ n i + t 3 xxρ n i, = we recover a discretization of the limit equation (4). A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 24

25 "Maneuver" Problem and objectives PIC method Finite volumes scheme Properties Second-order in time Use this idea to implicit the diffusion term. v xρ x vg Write ω n+1 k = e t/ε2 ωk n ε(1 {}}{{}}{ e t/ε2 ) α n k + βk n. Let h n i := e t/ε2 g n i ε(1 e t/ε2 ) x vg and approximate vg n+1 i = ε(1 e t/ε2 ) 1 3 xρ n i + h n i. Inject it in the macro equation and take the diffusion term implicit ρ n+1 i = ρ n i + t(1 e t/ε2 ) 1 3 xxρ n+1 i t ε xhi n. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 25

26 AP property Problem and objectives PIC method Finite volumes scheme Properties Second-order in time For fixed ε > 0, the scheme is a first-order (in time) approximation of the reformulated micro-macro system, for fixed t > 0, the scheme degenerates into an implicit first-order (in time) scheme of the diffusion equation (4) = AP property. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 26

27 PIC method Finite volumes scheme Properties Second-order in time Second-order scheme in time: new reformulation When integrating in time t (e t/ε2 g) = et/ε2 ε F(ρ,g), use a midpoint method for the right-hand side g n+1 = e t/ε2 g n te t/2ε2 F ε ( ρ n+1/2,g n+1/2) +O ( t 3). Make appear a discrete time derivative g n+1 g n = e t/ε2 1 ( g n e t/2ε2 F ρ n+1/2,g n+1/2) +O ( t 2). t t ε Perform Taylor expansions at t n+1/2 ( t g n+1/2 = e t/ε2 1 g n+1/2 t ) t 2 tg n+1/2 ( e t/2ε2 F ρ n+1/2,g n+1/2) +O ( t 2). ε A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 27

28 PIC method Finite volumes scheme Properties Second-order in time New second-order micro-macro system: t ρ+ 1 ε x vg = 0, t g = 2 t e t/ε2 1 e t/ε2 + 1 g 2 e t/2ε2 ε e t/ε2 + 1 [v xρ+v x g x vg ]. Time scheme: RK2 g n+1/2 =g n + e t/ε2 1 e t/ε2 + 1 gn t ε ρ n+1/2 =ρ n t 2ε x vg n+1/2, g n+1 =g n + 2 e t/ε2 1 e t/ε2 + 1 ρ n+1 =ρ n t ε x vg n+1/2. Prediction step on t/2: e t/2ε2 e t/ε2 + 1 F (ρn,g n ), Correction step on t: g 2 t ε e t/2ε2 ( e t/ε2 + 1 F ρ n+1/2,g n+1/2), A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 28

29 PIC method Finite volumes scheme Properties Second-order in time ρ n+1 i Choice of g in order to have a second-order scheme in time and the right asymptotic limit: g = gn +g n+1 2. Do not "maneuver", but correct the macro equation: = ρ n i t ε x vg n+1/2 i + t(1 e t/ε2 ) 21 3 xx( ρn+1 i 2 +ρ n i ). Same PIC/FV discretization in space as for the first-order scheme. Use only B-splines of order l 1 for depositions and interpolations. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 29

30 Properties Problem and objectives PIC method Finite volumes scheme Properties Second-order in time For fixed ε > 0, the scheme is a second-order (in time) approximation of the reformulated micro-macro system, for fixed t > 0, the scheme degenerates into an implicit second-order (in time) scheme of the diffusion equation (4) = AP property. The scheme can be (and has been) extended to the Vlasov-BGK-Poisson case. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 30

31 ETR case Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1+cos ( 2π ( x + 1 )), x [0,1],v [ 1,1]. 2 Micro-macro initializations: ( ( ρ(x,t = 0) = 1+cos 2π x + 1 )) 2 and g(x,v,t = 0) = 0. Density ρ(x,t) = f(x,v,t)dv. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 31

32 Asymptotic behaviour ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 64, N p = 10 4, t = 10 3 (left), T = 0.1, N x = 64, ε = 10 6, t = 10 2 (right). Density ρ ETR, AP property Limit ε=10-6 ε=10-2 ε=0.25 ε= x Density ρ ETR, limit Limit ε=10-6, Np=10 4 ε=10-6, Np= x A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 32

33 Convergence Problem and objectives ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 16, N p = 100. Error on ρ in L norm ETR, convergence (1) 10-5 ε= ε= ε=0.1 ε= Slope t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 33

34 Landau damping Problem and objectives ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = 1 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) and g(x,v,t = 0) = 0. Parameters: α = 0.05, k = 0.5. Electrical energy E(t) = E(t,x) 2 dx. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 34

35 ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 5, t = 0.1. log(e) Landau damping, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid εt log(e) Landau damping, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 35

36 ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = Landau damping, ε=0.5 0 log(e) MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 36

37 ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = (left), N x = 128, N p = 100, t = 0.01 (right). 0 Landau damping, ε=0.1 0 Landau damping, ε= log(e) MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit t t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 37

38 Two stream instability ETR case Vlasov-BGK-Poisson cases Initial distribution function: f (x,v,t = 0) = v2 2π exp( v2 2 )(1+α cos(kx)), x [0, 2π k Micro-macro initializations: ρ(x,t = 0) = 1+α cos(kx) g (x,v,t = 0) = 1 ( v 2 1 ) ) exp ( v2 (1+α cos(kx)). 2π 2 Parameters: α = 0.05, k = 0.5. ],v R. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 38

39 ETR case Vlasov-BGK-Poisson cases Kinetic regime, N x = 128, N p = 10 6, t = 0.1 (left), N x = 128, N p = 10 5, t = 0.1 (right). log(e) TSI, ε=10-12 MiMa-Part-2-14 MiMa-Part-1 Moment G. -16 Full PIC MiMa-Grid εt log(e) TSI, ε=1 MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 39

40 ETR case Vlasov-BGK-Poisson cases Intermediate regime, N x = 256, N p = 10 5, t = TSI, ε=0.5 0 log(e) MiMa-Part-2 MiMa-Part-1 Moment G. Full PIC MiMa-Grid t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 40

41 ETR case Vlasov-BGK-Poisson cases Limit regime, N x = 128, N p = 10 4, t = (left), N x = 128, N p = 100, t = 0.01 (right). 0 TSI, ε=0.1 0 TSI, ε= log(e) MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit log(e) MiMa-Part-2 MiMa-Part-1 Moment G. MiMa-Grid Limit t t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 41

42 Convergence Problem and objectives ETR case Vlasov-BGK-Poisson cases T = 0.1, N x = 16, N p = 100. Error on ρ in L norm Landau damping, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope t Error on ρ in L norm TSI, convergence ε=1 ε=0.5 ε=0.1 ε=10-6 Slope t A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 42

43 Conclusions Problem and objectives ETR case Vlasov-BGK-Poisson cases Diffusion (resp. drift-diffusion) limit recovered when ε 0. AP scheme. g 0 when ε 0 = few particles are sufficient at the limit, whereas grid methods have a constant cost, whatever the value of ε. Noise due to PIC method reduced (because only on g) = at equivalent results, fewer particles are necessary. Computational cost reduced at the limit. Second-order in time. A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 43

44 Future works Problem and objectives ETR case Vlasov-BGK-Poisson cases Monte-Carlo method for adapting the number of particles automatically. Models where ε = ε(x). Extension to a Vlasov-BGK-Maxwell model: 1D in x / 2D in v.... A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 44

45 References Problem and objectives ETR case Vlasov-BGK-Poisson cases [4] S. Jin: Efficient asymptotic-preserving (AP) schemes for some multiscale kinetic equations, J. Sci. Comput. 21, pp (1999). [5] M. Lemou, L. Mieussens: A new asymptotic preserving scheme based on micro-macro formulation for linear kinetic equations in the diffusion limit, J. Sci. Comp. 31, pp (2008). [6] T.-P. Liu, S.-H. Yu: Boltzmann Equation: Micro-Macro Decompositions and Positivity of Shock Profiles, Comm. Math. Phys. 246 pp (2004). [7] N. Crouseilles, M. Lemou: An asymptotic preserving scheme based on a micro-macro decomposition for collisional Vlasov equations: diffusion and high-field scaling limits, KRM 4, pp (2011). [8] M. Lemou:, Relaxed micro-macro schemes for kinetic equations, Comptes Rendus Mathématique 348, pp , (2010). [9] P. Degond, G. Dimarco, L. Pareschi: The moment guided Monte Carlo method, International Journal for Numerical Methods in Fluids 67, pp (2011). [10] A. C., N. Crouseilles, M. Lemou: Micro-macro decomposition for Vlasov-BGK equation using particles, Kinetic and Related Models 5, pp , (2012). Thank you for your attention! A. Crestetto, N. Crouseilles, M. Lemou Schéma AP micro-macro pour Boltzmann-BGK 45

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. Workshop Asymptotic-Preserving schemes, Porquerolles.

More information

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling

Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Asymptotic-Preserving scheme based on a Finite Volume/Particle-In-Cell coupling for Boltzmann- BGK-like equations in the diffusion scaling Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this

More information

Modèles hybrides préservant l asymptotique pour les plasmas

Modèles hybrides préservant l asymptotique pour les plasmas Modèles hybrides préservant l asymptotique pour les plasmas Anaïs Crestetto 1, Nicolas Crouseilles 2, Fabrice Deluzet 1, Mohammed Lemou 3, Jacek Narski 1 et Claudia Negulescu 1. Groupe de Travail Méthodes

More information

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles

Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Kinetic/fluid micro-macro numerical schemes for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto, Nicolas Crouseilles, Mohammed Lemou To cite this version: Anaïs Crestetto, Nicolas Crouseilles,

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations

Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Hybrid and Moment Guided Monte Carlo Methods for Kinetic Equations Giacomo Dimarco Institut des Mathématiques de Toulouse Université de Toulouse France http://perso.math.univ-toulouse.fr/dimarco giacomo.dimarco@math.univ-toulouse.fr

More information

Numerical methods for kinetic equations

Numerical methods for kinetic equations Numerical methods for kinetic equations Lecture 6: fluid-kinetic coupling and hybrid methods Lorenzo Pareschi Department of Mathematics and Computer Science University of Ferrara, Italy http://www.lorenzopareschi.com

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Exponential methods for kinetic equations

Exponential methods for kinetic equations Exponential methods for kinetic equations Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara, Italy http://utenti.unife.it/lorenzo.pareschi/ lorenzo.pareschi@unife.it Joint research

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Models of collective displacements: from microscopic to macroscopic description

Models of collective displacements: from microscopic to macroscopic description Models of collective displacements: from microscopic to macroscopic description Sébastien Motsch CSCAMM, University of Maryland joint work with : P. Degond, L. Navoret (IMT, Toulouse) SIAM Analysis of

More information

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme

Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Un schéma volumes finis well-balanced pour un modèle hyperbolique de chimiotactisme Christophe Berthon, Anaïs Crestetto et Françoise Foucher LMJL, Université de Nantes ANR GEONUM Séminaire de l équipe

More information

Uniformly accurate averaging numerical schemes for oscillatory evolution equations

Uniformly accurate averaging numerical schemes for oscillatory evolution equations Uniformly accurate averaging numerical schemes for oscillatory evolution equations Philippe Chartier University of Rennes, INRIA Joint work with M. Lemou (University of Rennes-CNRS), F. Méhats (University

More information

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA

Uncertainty Quantification for multiscale kinetic equations with random inputs. Shi Jin. University of Wisconsin-Madison, USA Uncertainty Quantification for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Where do kinetic equations sit in physics Kinetic equations with applications

More information

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids

Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Uncertainty Quantification for multiscale kinetic equations with high dimensional random inputs with sparse grids Shi Jin University of Wisconsin-Madison, USA Kinetic equations Different Q Boltmann Landau

More information

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS

MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS MACROSCOPIC FLUID MODELS WITH LOCALIZED KINETIC UPSCALING EFFECTS Pierre Degond, Jian-Guo Liu 2, Luc Mieussens Abstract. This paper presents a general methodology to design macroscopic fluid models that

More information

Adaptive semi-lagrangian schemes for transport

Adaptive semi-lagrangian schemes for transport for transport (how to predict accurate grids?) Martin Campos Pinto CNRS & University of Strasbourg, France joint work Albert Cohen (Paris 6), Michel Mehrenberger and Eric Sonnendrücker (Strasbourg) MAMCDP

More information

Berk-Breizman and diocotron instability testcases

Berk-Breizman and diocotron instability testcases Berk-Breizman and diocotron instability testcases M. Mehrenberger, N. Crouseilles, V. Grandgirard, S. Hirstoaga, E. Madaule, J. Petri, E. Sonnendrücker Université de Strasbourg, IRMA (France); INRIA Grand

More information

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs.

Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs. Uncertainty Quantification and hypocoercivity based sensitivity analysis for multiscale kinetic equations with random inputs Shi Jin University of Wisconsin-Madison, USA Shanghai Jiao Tong University,

More information

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS

Dissertation. presented to obtain the. Université Paul Sabatier Toulouse 3. Mention: Applied Mathematics. Luc MIEUSSENS Dissertation presented to obtain the HABILITATION À DIRIGER DES RECHERCHES Université Paul Sabatier Toulouse 3 Mention: Applied Mathematics by Luc MIEUSSENS Contributions to the numerical simulation in

More information

Moments conservation in adaptive Vlasov solver

Moments conservation in adaptive Vlasov solver 12 Moments conservation in adaptive Vlasov solver M. Gutnic a,c, M. Haefele b,c and E. Sonnendrücker a,c a IRMA, Université Louis Pasteur, Strasbourg, France. b LSIIT, Université Louis Pasteur, Strasbourg,

More information

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations

Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Controlling numerical dissipation and time stepping in some multi-scale kinetic/fluid simulations Jian-Guo Liu Department of Physics and Department of Mathematics, Duke University Collaborators: Pierre

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models

A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models A hybrid method for hydrodynamic-kinetic flow - Part II - Coupling of hydrodynamic and kinetic models Alessandro Alaia, Gabriella Puppo May 31, 2011 Abstract In this work we present a non stationary domain

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field Edwin Chacon-Golcher Sever A. Hirstoaga Mathieu Lutz Abstract We study the dynamics of charged particles

More information

Implicit kinetic relaxation schemes. Application to the plasma physic

Implicit kinetic relaxation schemes. Application to the plasma physic Implicit kinetic relaxation schemes. Application to the plasma physic D. Coulette 5, E. Franck 12, P. Helluy 12, C. Courtes 2, L. Navoret 2, L. Mendoza 2, F. Drui 2 ABPDE II, Lille, August 2018 1 Inria

More information

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy

Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Exponential Runge-Kutta for inhomogeneous Boltzmann equations with high order of accuracy Qin Li, Lorenzo Pareschi Abstract We consider the development of exponential methods for the robust time discretization

More information

Chapter 1 Direct Modeling for Computational Fluid Dynamics

Chapter 1 Direct Modeling for Computational Fluid Dynamics Chapter 1 Direct Modeling for Computational Fluid Dynamics Computational fluid dynamics (CFD) is a scientific discipline, which aims to capture fluid motion in a discretized space. The description of the

More information

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th

Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Hypocoercivity and Sensitivity Analysis in Kinetic Equations and Uncertainty Quantification October 2 nd 5 th Department of Mathematics, University of Wisconsin Madison Venue: van Vleck Hall 911 Monday,

More information

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3 ESAIM: PROCEEDINGS AND SURVEYS, September 014, Vol. 45, p. 379-389 J.-S. Dhersin, Editor HYPERBOLIC APPROXIMATION OF THE FOURIER TRANSFORMED VLASOV EQUATION Nhung Pham 1, Philippe Helluy and Laurent Navoret

More information

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE

Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations SCHEDULE Boundary Value Problems and Multiscale Coupling Methods for Kinetic Equations April 21-24, 2016 Department of Mathematics University of Wisconsin-Madison SCHEDULE Thursday, April 21 Friday, April 22 Saturday,

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations

An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations An asymptotic preserving unified gas kinetic scheme for the grey radiative transfer equations Institute of Applied Physics and Computational Mathematics, Beijing NUS, Singapore, March 2-6, 2015 (joint

More information

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction ESAIM: PROCEEDINGS AND SURVEYS, March 2016, Vol. 53, p. 177-190 M. Campos Pinto and F. Charles, Editors OPTIMIZATION OF PARTICLE-IN-CELL SIMULATIONS FOR VLASOV-POISSON SYSTEM WITH STRONG MAGNETIC FIELD

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

Asymptotic-Preserving Schemes

Asymptotic-Preserving Schemes Asymptotic-Preserving Schemes Porto-Ercole summer school 2012 MMKT Methods and Models of Kinetic Theory MODELING, SIMULATION AND MATHEMATICAL ANALYSIS OF MAGNETICALLY CONFINED PLASMAS Claudia NEGULESCU

More information

Traveling waves of a kinetic transport model for the KPP-Fisher equation

Traveling waves of a kinetic transport model for the KPP-Fisher equation Traveling waves of a kinetic transport model for the KPP-Fisher equation Christian Schmeiser Universität Wien and RICAM homepage.univie.ac.at/christian.schmeiser/ Joint work with C. Cuesta (Bilbao), S.

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Numerical methods for plasma physics in collisional regimes

Numerical methods for plasma physics in collisional regimes J. Plasma Physics (15), vol. 81, 358116 c Cambridge University Press 1 doi:1.117/s3778176 1 Numerical methods for plasma physics in collisional regimes G. Dimarco 1,Q.Li,L.Pareschi 1 and B. Yan 3 1 Department

More information

in Bounded Domains Ariane Trescases CMLA, ENS Cachan

in Bounded Domains Ariane Trescases CMLA, ENS Cachan CMLA, ENS Cachan Joint work with Yan GUO, Chanwoo KIM and Daniela TONON International Conference on Nonlinear Analysis: Boundary Phenomena for Evolutionnary PDE Academia Sinica December 21, 214 Outline

More information

arxiv: v1 [math.na] 7 Nov 2018

arxiv: v1 [math.na] 7 Nov 2018 A NUMERICAL METHOD FOR COUPLING THE BGK MODEL AND EULER EQUATION THROUGH THE LINEARIZED KNUDSEN LAYER HONGXU CHEN, QIN LI, AND JIANFENG LU arxiv:8.34v [math.na] 7 Nov 8 Abstract. The Bhatnagar-Gross-Krook

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

An improved unified gas-kinetic scheme and the study of shock structures

An improved unified gas-kinetic scheme and the study of shock structures IMA Journal of Applied Mathematics (2011) 76, 698 711 doi:10.1093/imamat/hxr002 Advance Access publication on March 16, 2011 An improved unified gas-kinetic scheme and the study of shock structures KUN

More information

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations

Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Micro-macro decomposition based asymptotic-preserving numerical schemes and numerical moments conservation for collisional nonlinear kinetic equations Irene M. Gamba, Shi Jin, and Liu Liu Abstract In this

More information

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW

ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW ASYMPTOTIC PRESERVING (AP) SCHEMES FOR MULTISCALE KINETIC AND HYPERBOLIC EQUATIONS: A REVIEW SHI JIN Contents 1. Introduction 1 2. Hyperbolic systems with stiff relaxations 3 3. Kinetic equations: the

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach coefficients Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

On the Boltzmann equation: global solutions in one spatial dimension

On the Boltzmann equation: global solutions in one spatial dimension On the Boltzmann equation: global solutions in one spatial dimension Department of Mathematics & Statistics Colloque de mathématiques de Montréal Centre de Recherches Mathématiques November 11, 2005 Collaborators

More information

Model adaptation in hierarchies of hyperbolic systems

Model adaptation in hierarchies of hyperbolic systems Model adaptation in hierarchies of hyperbolic systems Nicolas Seguin Laboratoire J.-L. Lions, UPMC Paris 6, France February 15th, 2012 DFG-CNRS Workshop Nicolas Seguin (LJLL, UPMC) 1 / 29 Outline of the

More information

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal

An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal 1 An asymptotic preserving scheme in the drift limit for the Euler-Lorentz system. Stéphane Brull, Pierre Degond, Fabrice Deluzet, Marie-Hélène Vignal IMT: Institut de Mathématiques de Toulouse 1. Introduction.

More information

arxiv: v1 [math.na] 25 Oct 2018

arxiv: v1 [math.na] 25 Oct 2018 Multi-scale control variate methods for uncertainty quantification in kinetic equations arxiv:80.0844v [math.na] 25 Oct 208 Giacomo Dimarco and Lorenzo Pareschi October 26, 208 Abstract Kinetic equations

More information

Physical Modeling of Multiphase flow. Boltzmann method

Physical Modeling of Multiphase flow. Boltzmann method with lattice Boltzmann method Exa Corp., Burlington, MA, USA Feburary, 2011 Scope Scope Re-examine the non-ideal gas model in [Shan & Chen, Phys. Rev. E, (1993)] from the perspective of kinetic theory

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics

Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Derivation of quantum hydrodynamic equations with Fermi-Dirac and Bose-Einstein statistics Luigi Barletti (Università di Firenze) Carlo Cintolesi (Università di Trieste) 6th MMKT Porto Ercole, june 9th

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

Direct Modeling for Computational Fluid Dynamics

Direct Modeling for Computational Fluid Dynamics Direct Modeling for Computational Fluid Dynamics Kun Xu February 20, 2013 Computational fluid dynamics (CFD) is new emerging scientific discipline, and targets to simulate fluid motion in different scales.

More information

Postprint.

Postprint. http://www.diva-portal.org Postprint This is the accepted version of a chapter published in Domain Decomposition Methods in Science and Engineering XXI. Citation for the original published chapter: Gander,

More information

Admissibility and asymptotic-preserving scheme

Admissibility and asymptotic-preserving scheme Admissibility and asymptotic-preserving scheme F. Blachère 1, R. Turpault 2 1 Laboratoire de Mathématiques Jean Leray (LMJL), Université de Nantes, 2 Institut de Mathématiques de Bordeaux (IMB), Bordeaux-INP

More information

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University

Plasma Astrophysics Chapter 1: Basic Concepts of Plasma. Yosuke Mizuno Institute of Astronomy National Tsing-Hua University Plasma Astrophysics Chapter 1: Basic Concepts of Plasma Yosuke Mizuno Institute of Astronomy National Tsing-Hua University What is a Plasma? A plasma is a quasi-neutral gas consisting of positive and negative

More information

The Moment Guided Monte Carlo Method

The Moment Guided Monte Carlo Method The Moment Guided Monte Carlo Method Pierre Degond,, Giacomo Dimarco,,3 and Lorenzo Pareschi Université de Toulouse; UPS, INSA, UT, UTM ; Institut de Mathématiques de Toulouse ; F-3 Toulouse, France. CNRS;

More information

Lecture 5: Kinetic theory of fluids

Lecture 5: Kinetic theory of fluids Lecture 5: Kinetic theory of fluids September 21, 2015 1 Goal 2 From atoms to probabilities Fluid dynamics descrines fluids as continnum media (fields); however under conditions of strong inhomogeneities

More information

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods

Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Kinetic Models and Gas-Kinetic Schemes with Rotational Degrees of Freedom for Hybrid Continuum/Kinetic Boltzmann Methods Simone Colonia, René Steijl and George N. Barakos CFD Laboratory - School of Engineering

More information

Landau Damping Simulation Models

Landau Damping Simulation Models Landau Damping Simulation Models Hua-sheng XIE (u) huashengxie@gmail.com) Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China Oct. 9, 2013

More information

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS

STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS STABLE STEADY STATES AND SELF-SIMILAR BLOW UP SOLUTIONS FOR THE RELATIVISTIC GRAVITATIONAL VLASOV- POISSON SYSTEM Mohammed Lemou CNRS and IRMAR, Rennes Florian Méhats University of Rennes 1 and IRMAR Pierre

More information

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University

Anisotropic fluid dynamics. Thomas Schaefer, North Carolina State University Anisotropic fluid dynamics Thomas Schaefer, North Carolina State University Outline We wish to extract the properties of nearly perfect (low viscosity) fluids from experiments with trapped gases, colliding

More information

Particle in Cell method

Particle in Cell method Particle in Cell method Birdsall and Langdon: Plasma Physics via Computer Simulation Dawson: Particle simulation of plasmas Hockney and Eastwood: Computer Simulations using Particles we start with an electrostatic

More information

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016 for Vlasov type for Vlasov type 1 2 ECCOMAS 2016 In collaboration with : Bedros Afeyan, Aurore Back, Fernando Casas, Nicolas Crouseilles, Adila Dodhy, Erwan Faou, Yaman Güclü, Adnane Hamiaz, Guillaume

More information

Monte Carlo method with negative particles

Monte Carlo method with negative particles Monte Carlo method with negative particles Bokai Yan Joint work with Russel Caflisch Department of Mathematics, UCLA Bokai Yan (UCLA) Monte Carlo method with negative particles 1/ 2 The long range Coulomb

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 21 May 2001 with E. A. Spiegel

More information

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation

An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation An Asymptotic-Preserving Monte Carlo Method for the Boltzmann Equation Wei Ren a, Hong Liu a,, Shi Jin b,c a J C Wu Center for Aerodynamics, School of Aeronautics and Aerospace, Shanghai Jiao Tong University,

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Finite volumes schemes preserving the low Mach number limit for the Euler system

Finite volumes schemes preserving the low Mach number limit for the Euler system Finite volumes schemes preserving the low Mach number limit for the Euler system M.-H. Vignal Low Velocity Flows, Paris, Nov. 205 Giacomo Dimarco, Univ. de Ferrara, Italie Raphael Loubere, IMT, CNRS, France

More information

A successive penalty based Asymptotic-Preserving scheme for kinetic equations

A successive penalty based Asymptotic-Preserving scheme for kinetic equations A successive penalty based Asymptotic-Preserving scheme for kinetic equations Bokai Yan Shi Jin September 30, 202 Abstract We propose an asymptotic-preserving AP) scheme for kinetic equations that is efficient

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Multi-water-bag model and method of moments for Vlasov

Multi-water-bag model and method of moments for Vlasov and method of moments for the Vlasov equation 1, Philippe Helluy 2, Nicolas Besse 3 FVCA 2011, Praha, June 6. 1 INRIA Nancy - Grand Est & University of Strasbourg - IRMA crestetto@math.unistra.fr (PhD

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle CEREMADE Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre

More information

High-order ADI schemes for convection-diffusion equations with mixed derivative terms

High-order ADI schemes for convection-diffusion equations with mixed derivative terms High-order ADI schemes for convection-diffusion equations with mixed derivative terms B. Düring, M. Fournié and A. Rigal Abstract We consider new high-order Alternating Direction Implicit ADI) schemes

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation.

A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. A hybrid kinetic-fluid model for solving the gas dynamics Boltzmann-BGK equation. N. Crouseilles a, b, P. Degond a, and M. Lemou a a MIP, UMR CNRS 564, UFR MIG, Université Paul Sabatier 8, route de Narbonne,

More information

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes

All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes All-regime Lagrangian-Remap numerical schemes for the gas dynamics equations. Applications to the large friction and low Mach regimes Christophe Chalons LMV, Université de Versailles Saint-Quentin-en-Yvelines

More information

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin

A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin A quantum heat equation 5th Spring School on Evolution Equations, TU Berlin Mario Bukal A. Jüngel and D. Matthes ACROSS - Centre for Advanced Cooperative Systems Faculty of Electrical Engineering and Computing

More information

Benchmarks in Computational Plasma Physics

Benchmarks in Computational Plasma Physics Benchmarks in Computational Plasma Physics P. Londrillo INAF, Bologna, Italie S. Landi Università di Firenze, Italie What you compute when you do computations of the Vlasov equation? Overview A short review

More information

Conservative semi-lagrangian schemes for Vlasov equations

Conservative semi-lagrangian schemes for Vlasov equations Conservative semi-lagrangian schemes for Vlasov equations Nicolas Crouseilles Michel Mehrenberger Eric Sonnendrücker October 3, 9 Abstract Conservative methods for the numerical solution of the Vlasov

More information

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models

Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models Comparison of Numerical Solutions for the Boltzmann Equation and Different Moment Models Julian Koellermeier, Manuel Torrilhon October 12th, 2015 Chinese Academy of Sciences, Beijing Julian Koellermeier,

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

Figure 1.1: Ionization and Recombination

Figure 1.1: Ionization and Recombination Chapter 1 Introduction 1.1 What is a Plasma? 1.1.1 An ionized gas A plasma is a gas in which an important fraction of the atoms is ionized, so that the electrons and ions are separately free. When does

More information

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models

On a New Diagram Notation for the Derivation of Hyperbolic Moment Models On a New Diagram Notation for the Derivation of Hyperbolic Moment Models Julian Koellermeier, Manuel Torrilhon, Yuwei Fan March 17th, 2017 Stanford University J. Koellermeier 1 / 57 of Hyperbolic Moment

More information

Global existence for the ion dynamics in the Euler-Poisson equations

Global existence for the ion dynamics in the Euler-Poisson equations Global existence for the ion dynamics in the Euler-Poisson equations Yan Guo (Brown U), Benoît Pausader (Brown U). FRG Meeting May 2010 Abstract We prove global existence for solutions of the Euler-Poisson/Ion

More information

Different types of phase transitions for a simple model of alignment of oriented particles

Different types of phase transitions for a simple model of alignment of oriented particles Different types of phase transitions for a simple model of alignment of oriented particles Amic Frouvelle Université Paris Dauphine Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond

More information