A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas

Size: px
Start display at page:

Download "A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas"

Transcription

1 A particle-in-cell method with adaptive phase-space remapping for kinetic plasmas Bei Wang 1 Greg Miller 2 Phil Colella 3 1 Princeton Institute of Computational Science and Engineering Princeton University 2 Department of Chemical Engineering and Materials Science University of California at Davis 3 Applied Numerical Algorithm Group Lawrence Berkeley National Laboratory Mathematical and Computer Science Approaches to High Energy Density Physics Workshop, IPAM May 10, 2011

2 Outline Background Vlasov equation Numerical methods for the Vlasov equation Particle Methods The particle in cell method What is particle noise? Noise Reduction: Phase-space Remapping Conservative, high order and positive remapping Mesh refinement Numerical results

3 The Vlasov-Poisson equation We consider a collisionless electrostatic plasma with two species, electron and ion, described by the Vlasov-Poisson equation Vlasov equation Poisson equation f e t + v xf e + F v f e = 0 ρ = 1 q e R n f e dv F = q e m e E φ = ρ E = φ f e (x, v, t): the electron distribution function in phase space F(x, t): Lorentz force (electrostatic case) E(x, t): the self-consistent electrostatic field

4 Lagrangian description of the system The distribution function f is conserved along the characteristics. At time s and t f (X(t), V(t), t) = f (X(t 0 ), V(t 0 ), t 0 ) where (X(t), V(t)) is the characteristics of the Vlasov equation: dx dt dv dt = V(t) = F(t) where X(t 0 ) = x 0 and V(t 0 ) = v 0

5 Review of numerical methods: grid methods 1. Grid-based methods include spectral methods (Knorr 63, Armstrong 69, Flimas-Farrell 94), semi-lagrangian methods (Cheng-Knorr 76, Sonnendrucker 99, Nakamura-Yabe 99), finite volume methods (Fijalkow 99, Filbet 01, Colella 11) and finite element methods (Zaki 88, Kilimas-Farrell 94). 2. They have drawn much attention in the past decade thanks to increasing processing power. Advantage: Smooth representation of f Disadvantage: High dimensions (up to 6) high computational cost (specifically memory)

6 Review of numerical methods: particle methods Particle methods,e.g.,the PIC method,are widely used and are preferred for high dimensions. Advantages: Naturally adaptive, since particles only occupy spaces where the distribution function is not zero Simpler to implement, in particular in high dimensions Disadvantages: particle noise difficulties to get precise results in some cases, for example, in simulating the problems with large dynamic ranges

7 Particle methods In particle methods, we approximate the distribution function by a collection of finite-size particles f (x, v, t) k q k δ εx (x X k (t))δ εv (v Ṽk(t)) q k = f (x i, v i, 0)h x h v where X k (0) = x i, Ṽk (t) = v i. δ εx (y)dy = u1 u0 δ εx (y) = 1 ε x u( y ε x ) u(y) At each time step, particles are transported along trajectories described by the equation of motion y where X k (0) = x k and Ṽ k (0) = v k. dq k dt d X k dt dṽk dt = 0 = Ṽ k (t) = F k (t)

8 The PIC method Charge assignment: ρ(x j, t n ) = k q k u 1 ( x j X k (t n ) ) ε x ε x where j is the grid index. Field solver: i.e., FFTs or multigrid methods φ j 1 2φ j + φ j+1 ε x 2 = ρ j Force interpolation: E j = φ j 1 φ j+1 2ε x Ẽ( X k, t n ) = j E j u 1 ( x j X k (t n ) ε x )

9 What is particle noise? Particle noise: the numerical error introduced when evaluating the moments of the distribution function using particles in phase space and the particle disorder induced by the numerical error Error analysis: Monte Carlo estimate (Aydemir 93) error σ N where σ is the standard deviation depends on the particle sampling and the distribution function. The approach in vortex methods: consistency error + stability error (Cottet-Raviart 84): error consistency error (exp(at) 1) where a is a physical parameter.

10 Error Analysis of the PIC method for the VP system The charge density error is ρ(x, t) ρ(x, t) = ρ(x, t) q k δ εx (x X k (t)) k ρ(x, t) ρ(y, t)δ εx (x y)dy R }{{} moment error:e m(x,t) ε 2 x + ρ(y, t)δ εx (x y)dy q k δ εx (x X k (t)) R k }{{} discretization error:e d (x,t) ε x 2 ( hx εx )2 + q k δ εx (x X k (t)) q k δ εx (x X k (t)) k k }{{} stability error:e s (x,t) εx 1 max k X k X k ( ( E(x, t) Ẽ(x, t) ε 2 2 hx x + ε x ε x ) 2 + max X k (t) X k (t) k )

11 By following Cottet and Raviart (84): and t (Ṽ k V k )(t) = 0 t = 0 t = 0 t ( X k X k )(t) = (Ṽk V k )(t )dt 0 (Ẽ( X k, t ) E(X k, t )) dt ( (Ẽ E)( X ( k, t ) + E( X )) k, t ) E(X k, t ) dt ( (Ẽ E)( X k, t ) + E ) x ( X k X k )(t ) dt

12 By using a variation on Gronwall s inequality, we get max ( X k(t) X k (t) + V k (t) Ṽ k (t) + E Ẽ(, t) ) k L C 1 εx 2 + ε 2 x ( hx 2 ( ) ) + ε 2 x + ε 2 x ( hx ) 2 (exp(at) 1) ε x ε x }{{}}{{} e c (x,t) e s (x,t) where a is max(1, E x (, t) L ), but not εx and hx. Requirements for Convergence Particle overlapping: hx ε x 1 Particle regularization: control the exponential-like term ref: Cottet-Raviart 84 and Wang,Miller,Colella 11

13 Options if we want to reduce particle noise Perturbative methods, such as the δf method (Kotschenreuther 88, Dimits-Lee 93, Parker-Lee 93): discretize the perturbation with respect to a (local) Maxwellian in velocity space using particles reduce σ ( error σ N ) Our approach: remapping: remap the distorted charge distribution on regularized grid(s) in phase space and then create a new set of particle charges from the grids with regularized distribution reduce exponential term

14 Conservative remapping on phase space (x, v) Particle charges are remapped (interpolated) to a grid in phase space q i = q k u( x k x ix h x )u( v k v iv h v ) u1 u0 u(y) y Total charge and momentum are conserved if the interpolation function u satisfies i Z u( x x i h ) = 1 i Z x iu( x x i h ) = x

15 High order interpolation A modified B-spline by Monaghan (85) 1 5 y y y 1 u 2 (y) = 1 2 (2 y )2 (1 y ) 1 < y 2 0 otherwise u2 0.6 u(y) y u 2 can approximate a quadratic function exactly (error is O(h 3 )). Moreover, its first and second order derivatives are continuous.

16 Positivity for high order interpolation functions Algorithm: Global mass redistribution based on flux corrected transport (Zalesak 78) Treat interpolation as advection f n+1 i = k 1 q k u 1 2 ( h x h v f n+1 i x i x k h = fi n + F ) f n i = k 1 q k u 0 ( x i x k h x h v h ) u1 u2 u0 y x Obtain the flux by solving a Poisson equation F = f n+1 i f n i Define a low order flux F lo and a high order flux F hi as being using a low order u1 and a high order u2 interpolation. Correct the low interpolation value by using the idea of FCT

17 Positivity for high order interpolation functions Algorithm: Local mass redistribution by Chern-Colella (87) We redistribute the undershoot of cell i δf i = min(0, f n i ) to neighboring cells in proportion to their capacity ξ Neighboring Cells ξ i+l = max(0, f n i+l ) The distribution function is conserved, which fixes the constant of proportionality l i f n+1 i+l = f i+l n + ξ i+l neighbors l 0 ξ i+l δf i Cell with Negative Charge

18 Mesh refinement Motivation: Remapping creates too many small strength particles at the edge of the distribution function. Algorithm: Interpolate as in uniform grid first, then transfer the charge from invalid cells to valid cells Ω l c Ω l c Ω l+1 c Ω l+1 c Particle is at the coarser level side Particle is at the finer level side The valid deposit cells: filled circles The invalid cell: open circles

19 Introduce collision term 1. Remapping provides an opportunity to integrate collision models with a grid-based solver. 2. Example: simplified Fokker-Planck equation suggested by Rathmann and Denavit (75) ( f )c = v [νvf + D v (νf )] t where (ν, D) are constants. Discretize it using a finite volume discretization and a second order L 0 stable, implicit scheme Solve the matrix system using multigrid method Couple it with the Vlasov equation with operator splitting f t + v f x E f v = ( f t )c R R+C R N N+1/2 N+1 t PIC

20 1D Vlasov-Poisson: linear Landau damping The initial distribution of linear Landau damping is f 0 (x, v) = 1 2π exp( v 2 /2)(1 + α cos(kx)) where α = 0.01, k = 0.5, L = 2π/k. The evolution of the amplitude of the electric field: exponential decay with rate γ = γ= no remapping, h x =L/32, h v =h max / γ= with remapping, h x =L/32, h v =h max / e t w/o remapping particle number: 960 CPU times: 3.99 seconds 1e t w/ remapping particle number: 960-1,539 CPU times: 5.21 seconds

21 1D Vlasov-Poisson: linear Landau damping 0.1 γ= no remapping, h x =L/128, h v =h max / γ= with remapping, h x =L/32, h v =h max / e-05 1e t w/o remapping particle number: 60,416 CPU times: seconds 1e t w/ remapping particle number: 1,539 CPU times: 5.21 seconds

22 1D Vlasov-Poisson: the two stream instability The initial distribution of the two stream instability is f 0 (x, v) = 1 2π v 2 exp( v 2 /2)(1 + α cos(kx)) where α = 0.05, k = 0.5, L = 2π/k. The evolution of f(x,v,t) w/o remapping, particle number: 18,360 w/ remapping, particle number: 18,360-24,242

23 1D Vlasov-Poisson: the two stream instability Comparison of f (x, v, t) at the same instant of time t = 20 w/o remapping max c = vs. max e = 0.3 w/ remapping max c = vs. max e = 0.3

24 1D Vlasov-Poisson: the two stream instability E field Errors and convergence rates error error e-05 1e-06 h x =L/64, h v =v max /128 h x =L/128, h v =v max /256 h x =L/256, h v =v max / t 1e-05 1e-06 h x =L/64, h v =v max /128 h x =L/128, h v =v max /256 h x =L/256, h v =v max / t convergence rate h x =L/128, h v =v max /256 h x =L/256, h v =v max /512 convergence rate h x =L/128, h v =v max /256 h x =L/256, h v =v max / t t w/o remapping w/ remapping

25 1D Vlasov-Poisson-Fokker-Planck: the two stream instability The evolution of f(x,v,t) Simulation w/o (left) and w/ (right) collision at t=30

26 2D Vlasov-Poisson:linear Landau damping The initial distribution of linear Landau damping in 2D is f 0 (x, y, v x, v y ) = 1 2π exp( (v 2 x + v 2 y )/2)(1 + α cos(kx) cos(ky)) where α = 0.05, k = 0.5, L = 2π/k. The evolution of the electric energy ξ e: exponential decay with constant rate γ log(ξ e ) γ without remapping, h x =L/32, h vx =h max /16 log(ξ e ) γ with remapping, h x =L/32, h vx =h max / w/o remapping, particle number: 1,228,800 t w/ remapping, particle number: 1,228,800-1,835,008 t

27 2D Vlasov-Poisson: the two stream instability The initial distribution for the two stream instability in 2D is f 0 (x, y, v x, v y ) = 1 12π exp( (v 2 x + v 2 y )/2)(1 + α cos(kx x))(1 + 5v 2 x ) where α = 0.05, k x = 0.5, L = 2π/k. Comparison of projected distribution function in (x, v x ) at time t = 20 w/o remapping, particle number: 14,408,192 w/ remapping particle number: 14,408,192-22,184,217

28 Code implementation The parallel and multidimensional Vlasov-Poisson solver is implemented using Chombo framework, a C/C++ and FORTRAN library for the solutions of partial differential equations on a hierarchy of block-structured grid with finite difference methods developed in the ANAG group of LBNL. The physical domain is decomposed into patches Each patch is assigned to a processor Particles are assigned to a processor according to their physical position Particles are transferred between patches using MPI Continuous work in ANAG: scalable multidimensional particle in cell code with remapping

29 Future Work Adaptivity on creating a hierarchy of grids for remapping Apply the method to magnetic fusion plasmas, e.g., gyrokinetic particle in cell method Parallel scalability GPU acceleration of remapping

30 Thank you! Questions?

Adaptive semi-lagrangian schemes for transport

Adaptive semi-lagrangian schemes for transport for transport (how to predict accurate grids?) Martin Campos Pinto CNRS & University of Strasbourg, France joint work Albert Cohen (Paris 6), Michel Mehrenberger and Eric Sonnendrücker (Strasbourg) MAMCDP

More information

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations

Semi-Lagrangian Formulations for Linear Advection Equations and Applications to Kinetic Equations Semi-Lagrangian Formulations for Linear Advection and Applications to Kinetic Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Chi-Wang Shu Supported by NSF and AFOSR.

More information

High Order Semi-Lagrangian WENO scheme for Vlasov Equations

High Order Semi-Lagrangian WENO scheme for Vlasov Equations High Order WENO scheme for Equations Department of Mathematical and Computer Science Colorado School of Mines joint work w/ Andrew Christlieb Supported by AFOSR. Computational Mathematics Seminar, UC Boulder

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. The 8th International Conference on Computational

More information

Landau Damping Simulation Models

Landau Damping Simulation Models Landau Damping Simulation Models Hua-sheng XIE (u) huashengxie@gmail.com) Department of Physics, Institute for Fusion Theory and Simulation, Zhejiang University, Hangzhou 310027, P.R.China Oct. 9, 2013

More information

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem

Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Massively parallel semi-lagrangian solution of the 6d Vlasov-Poisson problem Katharina Kormann 1 Klaus Reuter 2 Markus Rampp 2 Eric Sonnendrücker 1 1 Max Planck Institut für Plasmaphysik 2 Max Planck Computing

More information

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation

Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation Numerical Analysis and Scientific Computing Preprint Seria Hybrid semi-lagrangian finite element-finite difference methods for the Vlasov equation W. Guo J. Qiu Preprint #21 Department of Mathematics University

More information

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling

An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling An asymptotic-preserving micro-macro scheme for Vlasov-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3 Saint-Malo 13 December 2016 1 Université

More information

A Discontinuous Galerkin Method for Vlasov Systems

A Discontinuous Galerkin Method for Vlasov Systems A Discontinuous Galerkin Method for Vlasov Systems P. J. Morrison Department of Physics and Institute for Fusion Studies The University of Texas at Austin morrison@physics.utexas.edu http://www.ph.utexas.edu/

More information

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code

AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code AMSC 663 Project Proposal: Upgrade to the GSP Gyrokinetic Code George Wilkie (gwilkie@umd.edu) Supervisor: William Dorland (bdorland@umd.edu) October 11, 2011 Abstract Simulations of turbulent plasma in

More information

Z. Lin University of California, Irvine, CA 92697, USA. Supported by SciDAC GPS-TTBP, GSEP & CPES

Z. Lin University of California, Irvine, CA 92697, USA. Supported by SciDAC GPS-TTBP, GSEP & CPES GTC Framework Development and Application Z. Lin University of California, Irvine, CA 92697, USA and dgpsttbp GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES GPS-TTBP Workshop on GTC Framework

More information

Computational Methods in Plasma Physics

Computational Methods in Plasma Physics Computational Methods in Plasma Physics Richard Fitzpatrick Institute for Fusion Studies University of Texas at Austin Purpose of Talk Describe use of numerical methods to solve simple problem in plasma

More information

Moments conservation in adaptive Vlasov solver

Moments conservation in adaptive Vlasov solver 12 Moments conservation in adaptive Vlasov solver M. Gutnic a,c, M. Haefele b,c and E. Sonnendrücker a,c a IRMA, Université Louis Pasteur, Strasbourg, France. b LSIIT, Université Louis Pasteur, Strasbourg,

More information

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence

Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence 2013 US-Japan JIFT workshop on New Aspects of Plasmas Kinetic Simulation NIFS, November 22-23, 2013 Kinetic damping in gyro-kinetic simulation and the role in multi-scale turbulence cf. Revisit for Landau

More information

Hybrid Kinetic-MHD simulations with NIMROD

Hybrid Kinetic-MHD simulations with NIMROD simulations with NIMROD Charlson C. Kim and the NIMROD Team Plasma Science and Innovation Center University of Washington CSCADS Workshop July 18, 2011 NIMROD C.R. Sovinec, JCP, 195, 2004 parallel, 3-D,

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 2 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

What place for mathematicians in plasma physics

What place for mathematicians in plasma physics What place for mathematicians in plasma physics Eric Sonnendrücker IRMA Université Louis Pasteur, Strasbourg projet CALVI INRIA Nancy Grand Est 15-19 September 2008 Eric Sonnendrücker (U. Strasbourg) Math

More information

GTC Simulation of Turbulence and Transport in Tokamak Plasmas

GTC Simulation of Turbulence and Transport in Tokamak Plasmas GTC Simulation of Turbulence and Transport in Tokamak Plasmas Z. Lin University it of California, i Irvine, CA 92697, USA and GPS-TTBP Team Supported by SciDAC GPS-TTBP, GSEP & CPES Motivation First-principles

More information

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas

Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Kinetic Solvers with Adaptive Mesh in Phase Space for Low- Temperature Plasmas Vladimir Kolobov, a,b,1 Robert Arslanbekov a and Dmitry Levko a a CFD Research Corporation, Huntsville, AL 35806, USA b The

More information

Benchmarks in Computational Plasma Physics

Benchmarks in Computational Plasma Physics Benchmarks in Computational Plasma Physics P. Londrillo INAF, Bologna, Italie S. Landi Università di Firenze, Italie What you compute when you do computations of the Vlasov equation? Overview A short review

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 Rennes, 14ème Journée de l équipe

More information

Guangye Chen, Luis Chacón,

Guangye Chen, Luis Chacón, JIFT workshop! Oct. 31, 2014 New Orleans, LA.! Guangye Chen, Luis Chacón, CoCoMANs team Los Alamos National Laboratory, Los Alamos, NM 87545, USA gchen@lanl.gov 1 Los Alamos National Laboratory Motivation

More information

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling

Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Micro-macro methods for Boltzmann-BGK-like equations in the diffusion scaling Anaïs Crestetto 1, Nicolas Crouseilles 2, Giacomo Dimarco 3 et Mohammed Lemou 4 Saint-Malo, 14 décembre 2017 1 Université de

More information

Accurate representation of velocity space using truncated Hermite expansions.

Accurate representation of velocity space using truncated Hermite expansions. Accurate representation of velocity space using truncated Hermite expansions. Joseph Parker Oxford Centre for Collaborative Applied Mathematics Mathematical Institute, University of Oxford Wolfgang Pauli

More information

VLASOV1: One-dimensional electrostatic Vlasov code Hands-on session in 13th International School for Space Simulations (ISSS-13)

VLASOV1: One-dimensional electrostatic Vlasov code Hands-on session in 13th International School for Space Simulations (ISSS-13) VLASOV1: One-dimensional electrostatic Vlasov code Hands-on session in 13th International School for Space Simulations (ISSS-13) Takayuki Umeda Ver.2: September 6, 2018 for ISSS-13@UCLA, USA Ver.1: July

More information

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles

Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Kinetic/Fluid micro-macro numerical scheme for Vlasov-Poisson-BGK equation using particles Anaïs Crestetto 1, Nicolas Crouseilles 2 and Mohammed Lemou 3. Workshop Asymptotic-Preserving schemes, Porquerolles.

More information

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations

Summer College on Plasma Physics. 30 July - 24 August, The particle-in-cell simulation method: Concept and limitations 1856-30 2007 Summer College on Plasma Physics 30 July - 24 August, 2007 The particle-in-cell M. E. Dieckmann Institut fuer Theoretische Physik IV, Ruhr-Universitaet, Bochum, Germany The particle-in-cell

More information

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion

Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Une décomposition micro-macro particulaire pour des équations de type Boltzmann-BGK en régime de diffusion Anaïs Crestetto 1, Nicolas Crouseilles 2 et Mohammed Lemou 3 La Tremblade, Congrès SMAI 2017 5

More information

High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory!

High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory! High-Order Finite-Volume Methods! Phillip Colella! Computational Research Division! Lawrence Berkeley National Laboratory! Why Higher Order?! Locally-refined grids, mapped-multiblock grids smooth except

More information

A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations.

A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations. A charge preserving scheme for the numerical resolution of the Vlasov-Ampère equations. Nicolas Crouseilles Thomas Respaud January, Abstract In this report, a charge preserving numerical resolution of

More information

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3

Nhung Pham 1, Philippe Helluy 2 and Laurent Navoret 3 ESAIM: PROCEEDINGS AND SURVEYS, September 014, Vol. 45, p. 379-389 J.-S. Dhersin, Editor HYPERBOLIC APPROXIMATION OF THE FOURIER TRANSFORMED VLASOV EQUATION Nhung Pham 1, Philippe Helluy and Laurent Navoret

More information

A forward semi-lagrangian method for the numerical solution of the Vlasov equation

A forward semi-lagrangian method for the numerical solution of the Vlasov equation A forward semi-lagrangian method for the numerical solution of the Vlasov equation Nicolas Crouseilles Thomas Respaud Eric Sonnendrücker November 2, 28 Abstract This work deals with the numerical solution

More information

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas

Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Multiscale, multiphysics modeling of turbulent transport and heating in collisionless, magnetized plasmas Michael Barnes Plasma Science & Fusion Center Massachusetts Institute of Technology Collaborators:

More information

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation

Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation J. Plasma Fusion Res. SERIES, Vol. 9 () Properties of freely decaying and driven turbulence of fusion plasmas using gyrokinetic particle simulation R. Ganesh Institute for Plasma Research, Bhat Village,

More information

Computational plasma physics

Computational plasma physics Computational plasma physics Eric Sonnendrücker Max-Planck-Institut für Plasmaphysik und Zentrum Mathematik, TU München Lecture notes Sommersemester 07 June 9, 07 Contents Introduction 3. Scientific computing..............................

More information

A parallel Vlasov solver based on local cubic spline interpolation on patches

A parallel Vlasov solver based on local cubic spline interpolation on patches A parallel Vlasov solver based on local cubic spline interpolation on patches Nicolas Crouseilles Guillaume Latu Eric Sonnendrücker September 4, 2008 Abstract A method for computing the numerical solution

More information

analysis for transport equations and applications

analysis for transport equations and applications Multi-scale analysis for transport equations and applications Mihaï BOSTAN, Aurélie FINOT University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Numerical methods for kinetic equations Strasbourg

More information

Berk-Breizman and diocotron instability testcases

Berk-Breizman and diocotron instability testcases Berk-Breizman and diocotron instability testcases M. Mehrenberger, N. Crouseilles, V. Grandgirard, S. Hirstoaga, E. Madaule, J. Petri, E. Sonnendrücker Université de Strasbourg, IRMA (France); INRIA Grand

More information

Lectures on basic plasma physics: Kinetic approach

Lectures on basic plasma physics: Kinetic approach Lectures on basic plasma physics: Kinetic approach Department of applied physics, Aalto University April 30, 2014 Motivation Layout 1 Motivation 2 Boltzmann equation (a nasty bastard) 3 Vlasov equation

More information

Monte Carlo methods for kinetic equations

Monte Carlo methods for kinetic equations Monte Carlo methods for kinetic equations Lecture 4: Hybrid methods and variance reduction Lorenzo Pareschi Department of Mathematics & CMCS University of Ferrara Italy http://utenti.unife.it/lorenzo.pareschi/

More information

Integration of Vlasov-type equations

Integration of Vlasov-type equations Alexander Ostermann University of Innsbruck, Austria Joint work with Lukas Einkemmer Verona, April/May 2017 Plasma the fourth state of matter 99% of the visible matter in the universe is made of plasma

More information

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field

Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field Optimization of Particle-In-Cell simulations for Vlasov-Poisson system with strong magnetic field Edwin Chacon-Golcher Sever A. Hirstoaga Mathieu Lutz Abstract We study the dynamics of charged particles

More information

EDP with strong anisotropy : transport, heat, waves equations

EDP with strong anisotropy : transport, heat, waves equations EDP with strong anisotropy : transport, heat, waves equations Mihaï BOSTAN University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr Nachos team INRIA Sophia Antipolis, 3/07/2017 Main goals Effective

More information

A Numerical Method for Parallel Particle Motions in Gyrokinetic Vlasov Simulations )

A Numerical Method for Parallel Particle Motions in Gyrokinetic Vlasov Simulations ) A Numerical Method for Parallel Particle Motions in Gyrokinetic Vlasov Simulations ) Shinya MAEYAMA, Akihiro ISHIZAWA 1), Tomo-Hiko WATANABE 1), Noriyoshi NAKAJIMA 1), Shunji TSUJI-IIO and Hiroaki TSUTSUI

More information

Computer Simulation Using Particles

Computer Simulation Using Particles Computer Simulation Using Particles R W Hockney Emeritus Professor, University ofreading and J W Eastwood Culham Laboratory, Abingdon Institute of Physics Publishing Bristol and Philadelphia CONTENTS Foreword

More information

Kinetics of the Raman Instability in a Laser Plasma

Kinetics of the Raman Instability in a Laser Plasma WDS'05 Proceedings of Contributed Papers, Part II, 383 390, 2005. ISBN 80-86732-59-2 MATFYZPRESS Kinetics of the Raman Instability in a Laser Plasma M. Mašek and K. Rohlena Institute of Physics, Academy

More information

Darwin-Vlasov Simulations of magnetized Plasmas

Darwin-Vlasov Simulations of magnetized Plasmas Darwin-Vlasov Simulations of magnetized Plasmas H. Schmitz and R. Grauer Theoretische Physik I, Ruhr-Universität Bochum, 44780 Bochum, Germany Abstract We present a new Vlasov code for collisionless plasmas

More information

Overview of Accelerated Simulation Methods for Plasma Kinetics

Overview of Accelerated Simulation Methods for Plasma Kinetics Overview of Accelerated Simulation Methods for Plasma Kinetics R.E. Caflisch 1 In collaboration with: J.L. Cambier 2, B.I. Cohen 3, A.M. Dimits 3, L.F. Ricketson 1,4, M.S. Rosin 1,5, B. Yann 1 1 UCLA Math

More information

Anomalous transport of particles in Plasma physics

Anomalous transport of particles in Plasma physics Anomalous transport of particles in Plasma physics L. Cesbron a, A. Mellet b,1, K. Trivisa b, a École Normale Supérieure de Cachan Campus de Ker Lann 35170 Bruz rance. b Department of Mathematics, University

More information

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction

Edwin Chacon-Golcher 1, Sever A. Hirstoaga 2 and Mathieu Lutz 3. Introduction ESAIM: PROCEEDINGS AND SURVEYS, March 2016, Vol. 53, p. 177-190 M. Campos Pinto and F. Charles, Editors OPTIMIZATION OF PARTICLE-IN-CELL SIMULATIONS FOR VLASOV-POISSON SYSTEM WITH STRONG MAGNETIC FIELD

More information

Computational plasma physics

Computational plasma physics Computational plasma physics Eric Sonnendrücker Max-Planck-Institut für Plasmaphysik und Zentrum Mathematik, TU München Lecture notes Sommersemester 015 July 13, 015 Contents 1 Introduction 3 Plasma models

More information

PHYSICS OF HOT DENSE PLASMAS

PHYSICS OF HOT DENSE PLASMAS Chapter 6 PHYSICS OF HOT DENSE PLASMAS 10 26 10 24 Solar Center Electron density (e/cm 3 ) 10 22 10 20 10 18 10 16 10 14 10 12 High pressure arcs Chromosphere Discharge plasmas Solar interior Nd (nω) laserproduced

More information

Beam-Beam Simulations for e + e Colliders

Beam-Beam Simulations for e + e Colliders Beam-Beam Simulations for e + e Colliders J. Rogers, Cornell University Motivation for simulations from observed effects Methods algorithms, simulation codes, and some results. Conclusions Brown Bag Seminar,

More information

Multiscale Modelling, taking into account Collisions

Multiscale Modelling, taking into account Collisions Multiscale Modelling, taking into account Collisions Andreas Adelmann (Paul Scherrer Institut) October 28, 2017 Multiscale Modelling, taking into account Collisions October 28, 2017 Page 1 / 22 1 Motivation

More information

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids

Math background. Physics. Simulation. Related phenomena. Frontiers in graphics. Rigid fluids Fluid dynamics Math background Physics Simulation Related phenomena Frontiers in graphics Rigid fluids Fields Domain Ω R2 Scalar field f :Ω R Vector field f : Ω R2 Types of derivatives Derivatives measure

More information

Scalable Methods for Kinetic Equations

Scalable Methods for Kinetic Equations Scalable Methods for Kinetic Equations Oak Ridge National Laboratory October 19-23, 2015 Poster Titles and Abstracts 1 Multiscale and Multiphysics Simulations with GenASiS Reuben D. Budiardja University

More information

Gyrokinetic Simulations of Tearing Instability

Gyrokinetic Simulations of Tearing Instability Gyrokinetic Simulations of Tearing Instability July 6, 2009 R. NUMATA A,, W. Dorland A, N. F. Loureiro B, B. N. Rogers C, A. A. Schekochihin D, T. Tatsuno A rnumata@umd.edu A) Center for Multiscale Plasma

More information

Outline. 1 Why PIC Simulations Make Sense. 2 The Algorithm. 3 Examples Surface High Harmonics Generation. 4 Extensions Of The PIC Algorithm

Outline. 1 Why PIC Simulations Make Sense. 2 The Algorithm. 3 Examples Surface High Harmonics Generation. 4 Extensions Of The PIC Algorithm PIC Simulations an Introduction GRK 1203 Meeting February 12-15, 2008, Oelde Outline 1 Simulations Make Sense 2 3 Surface High Harmonics Generation 4 Of PIC Plasma Physics Is Complex Experiment real thing

More information

Development of LH wave fullwave simulation based on FEM

Development of LH wave fullwave simulation based on FEM Development of LH wave fullwave simulation based on FEM S. Shiraiwa and O. Meneghini on behalf of LHCD group of Alacator C-Mod PSFC, MIT 2010/03/10 San-Diego, CA Special acknowledgements : R. Parker, P.

More information

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications

Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications Simulation of Coulomb Collisions in Plasma Accelerators for Space Applications D. D Andrea 1, W.Maschek 1 and R. Schneider 2 Vienna, May 6 th 2009 1 Institut for Institute for Nuclear and Energy Technologies

More information

Kinetic theory of gases

Kinetic theory of gases Kinetic theory of gases Toan T. Nguyen Penn State University http://toannguyen.org http://blog.toannguyen.org Graduate Student seminar, PSU Jan 19th, 2017 Fall 2017, I teach a graduate topics course: same

More information

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality

Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Asymptotic-Preserving Particle-In-Cell method for the Vlasov-Poisson system near quasineutrality Pierre Degond 1, Fabrice Deluzet 2, Laurent Navoret 3, An-Bang Sun 4, Marie-Hélène Vignal 5 1 Université

More information

Plasma Physics for Astrophysics

Plasma Physics for Astrophysics - ' ' * ' Plasma Physics for Astrophysics RUSSELL M. KULSRUD PRINCETON UNIVERSITY E;RESS '. ' PRINCETON AND OXFORD,, ', V. List of Figures Foreword by John N. Bahcall Preface Chapter 1. Introduction 1

More information

Global particle-in-cell simulations of Alfvénic modes

Global particle-in-cell simulations of Alfvénic modes Global particle-in-cell simulations of Alfvénic modes A. Mishchenko, R. Hatzky and A. Könies Max-Planck-Institut für Plasmaphysik, EURATOM-Association, D-749 Greifswald, Germany Rechenzentrum der Max-Planck-Gesellschaft

More information

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas

Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Bounce-averaged gyrokinetic simulations of trapped electron turbulence in elongated tokamak plasmas Lei Qi a, Jaemin Kwon a, T. S. Hahm a,b and Sumin Yi a a National Fusion Research Institute (NFRI), Daejeon,

More information

A Vlasov-Maxwell Solver to Study Microbunching Instability in the First Bunch Compressor System

A Vlasov-Maxwell Solver to Study Microbunching Instability in the First Bunch Compressor System Microbunching in the FERMI@ELETTRA First Bunch Compressor System / Gabriele Bassi Page 1 A Vlasov-Maxwell Solver to Study Microbunching Instability in the FERMI@ELETTRA First Bunch Compressor System Gabriele

More information

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations

A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Motivation Numerical methods Numerical tests Conclusions A High Order Conservative Semi-Lagrangian Discontinuous Galerkin Method for Two-Dimensional Transport Simulations Xiaofeng Cai Department of Mathematics

More information

GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE

GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE GA A27235 EULERIAN SIMULATIONS OF NEOCLASSICAL FLOWS AND TRANSPORT IN THE TOKAMAK PLASMA EDGE AND OUTER CORE by E.A. BELLI, J.A. BOEDO, J. CANDY, R.H. COHEN, P. COLELLA, M.A. DORF, M.R. DORR, J.A. HITTINGER,

More information

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations

Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations Max-Planck-Insititut für Plasmaphysik Entropy evolution and dissipation in collisionless particle-in-cell gyrokinetic simulations A. Bottino Objectives Develop a numerical tool able to reproduce and predict

More information

A discontinuous Galerkin method for the Vlasov-Poisson system

A discontinuous Galerkin method for the Vlasov-Poisson system A discontinuous Galerkin method for the Vlasov-Poisson system R. E. Heath, a I. M. Gamba, b P. J. Morrison, c and C. Michler d a Applied Research Laboratories, University of Texas at Austin, TX 78758,

More information

EXASCALE COMPUTING. Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing

EXASCALE COMPUTING. Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing ExaScience Lab Intel Labs Europe EXASCALE COMPUTING Implementation of a 2D Electrostatic Particle in Cell algorithm in UniÞed Parallel C with dynamic load-balancing B. Verleye P. Henry R. Wuyts G. Lapenta

More information

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas

Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Frank Jenko Gyrokinetics an efficient framework for studying turbulence and reconnection in magnetized plasmas Max-Planck-Institut für Plasmaphysik, Garching Workshop on Vlasov-Maxwell Kinetics WPI, Vienna,

More information

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas

Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Coarse-graining the electron distribution in turbulence simulations of tokamak plasmas Yang Chen and Scott E. Parker University of Colorado at Boulder Gregory Rewoldt Princeton Plasma Physics Laboratory

More information

Lecture 4: The particle equations (1)

Lecture 4: The particle equations (1) Lecture 4: The particle equations (1) Presenter: Mark Eric Dieckmann Department of Science and Technology (ITN), Linköping University, Sweden July 17, 2014 Overview We have previously discussed the leapfrog

More information

Numerical simulation methods for laser target interactions

Numerical simulation methods for laser target interactions Numerical simulation methods for laser target interactions Jiří Limpouch Czech Technical University in Prague Faculty of Nuclear Sciences & Physical Engineering Brehova 7, 115 19 Praha 1, Czechia jiri.limpouch@fjfi.cvut.cz

More information

Hypocoercivity for kinetic equations with linear relaxation terms

Hypocoercivity for kinetic equations with linear relaxation terms Hypocoercivity for kinetic equations with linear relaxation terms Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (A JOINT

More information

Gyrokinetic simulations of magnetic fusion plasmas

Gyrokinetic simulations of magnetic fusion plasmas Gyrokinetic simulations of magnetic fusion plasmas Tutorial 1 Virginie Grandgirard CEA/DSM/IRFM, Association Euratom-CEA, Cadarache, 13108 St Paul-lez-Durance, France. email: virginie.grandgirard@cea.fr

More information

Stochastic Particle Methods for Rarefied Gases

Stochastic Particle Methods for Rarefied Gases CCES Seminar WS 2/3 Stochastic Particle Methods for Rarefied Gases Julian Köllermeier RWTH Aachen University Supervisor: Prof. Dr. Manuel Torrilhon Center for Computational Engineering Science Mathematics

More information

Hybrid Simulation Method ISSS-10 Banff 2011

Hybrid Simulation Method ISSS-10 Banff 2011 Hybrid Simulation Method ISSS-10 Banff 2011 David Burgess Astronomy Unit Queen Mary University of London With thanks to Dietmar Krauss-Varban Space Plasmas: From Sun to Earth Space Plasma Plasma is (mostly)

More information

Forced hybrid-kinetic turbulence in 2D3V

Forced hybrid-kinetic turbulence in 2D3V Forced hybrid-kinetic turbulence in 2D3V Silvio Sergio Cerri1,2 1 In collaboration with: 3 F. Califano, F. Rincon, F. Jenko4, D. Told4 1 Physics Department E. Fermi, University of Pisa, Italy fu r Plasmaphysik,

More information

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations

Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations PIC Method for Numerical Simulation Ninad Joshi NNP Group 1 Contents Motivation Particle In Cell Method Projects Plasma and Ion Beam Simulations Motivation 3 Particle simulation Ion beams and Plasmas Accelerators

More information

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016

Michel Mehrenberger 1 & Eric Sonnendrücker 2 ECCOMAS 2016 for Vlasov type for Vlasov type 1 2 ECCOMAS 2016 In collaboration with : Bedros Afeyan, Aurore Back, Fernando Casas, Nicolas Crouseilles, Adila Dodhy, Erwan Faou, Yaman Güclü, Adnane Hamiaz, Guillaume

More information

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model

Overview of the Numerics of the ECMWF. Atmospheric Forecast Model Overview of the Numerics of the Atmospheric Forecast Model M. Hortal Seminar 6 Sept 2004 Slide 1 Characteristics of the model Hydrostatic shallow-atmosphere approimation Pressure-based hybrid vertical

More information

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence

Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence Fine-Scale Zonal Flow Suppression of Electron Temperature Gradient Turbulence S.E. Parker, J.J. Kohut, Y. Chen, Z. Lin, F.L. Hinton and W.W. Lee Center for Integrated Plasma Studies, University of Colorado,

More information

Monte Carlo Collisions in Particle in Cell simulations

Monte Carlo Collisions in Particle in Cell simulations Monte Carlo Collisions in Particle in Cell simulations Konstantin Matyash, Ralf Schneider HGF-Junior research group COMAS : Study of effects on materials in contact with plasma, either with fusion or low-temperature

More information

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck

Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Une approche hypocoercive L 2 pour l équation de Vlasov-Fokker-Planck Jean Dolbeault dolbeaul@ceremade.dauphine.fr CEREMADE CNRS & Université Paris-Dauphine http://www.ceremade.dauphine.fr/ dolbeaul (EN

More information

Fluid equations, magnetohydrodynamics

Fluid equations, magnetohydrodynamics Fluid equations, magnetohydrodynamics Multi-fluid theory Equation of state Single-fluid theory Generalised Ohm s law Magnetic tension and plasma beta Stationarity and equilibria Validity of magnetohydrodynamics

More information

Simulation Techniques for HED I: Particle-in-Cell Methods

Simulation Techniques for HED I: Particle-in-Cell Methods 2015 HED Summer School Simulation Techniques for HED I: Particle-in-Cell Methods Frank S. Tsung UCLA Special Thanks Viktor Decyk Peicheng Yu < - Slides Michael Meyers Thamine Dalichaouch < - Demos Outline

More information

Mixed semi-lagrangian/finite difference methods for plasma simulations

Mixed semi-lagrangian/finite difference methods for plasma simulations Mixed semi-lagrangian/finite difference methods for plasma simulations Francis Filbet, Chang Yang To cite this version: Francis Filbet, Chang Yang. Mixed semi-lagrangian/finite difference methods for plasma

More information

AMSC 664 Final Report: Upgrade to the GSP Gyrokinetic Code

AMSC 664 Final Report: Upgrade to the GSP Gyrokinetic Code AMSC 664 Final Report: Upgrade to the GSP Gyrokinetic Code George Wilkie (gwilkie@umd.edu) Supervisor: William Dorland (bdorland@umd.edu) May 14, 2012 Abstract Simulations of turbulent plasma in a strong

More information

Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases

Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases Adaptive simulation of Vlasov equations in arbitrary dimension using interpolatory hierarchical bases Erwan Deriaz Fusion Plasma Team Institut Jean Lamour (Nancy), CNRS / Université de Lorraine VLASIX

More information

Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas

Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas Hybrid Discontinuous/Continuous Galerkin Algorithms for (Gyro) Kinetic Simulations of Plasmas A. H. Hakim G. W. Hammett Eric Shi Princeton Plasma Physics Laboratory, Princeton, NJ ammar@princeton.edu http://www.ammar-hakim.org/sj

More information

The gyrokinetic turbulence code GENE - Numerics and applications

The gyrokinetic turbulence code GENE - Numerics and applications Contributors: T. Dannert (1), F. Jenko (1),F. Merz (1), D. Told (1), X. Lapillonne (2), S. Brunner (2), and others T. Görler (1) The gyrokinetic turbulence code GENE - Numerics and applications (1) Max-Planck-Institut

More information

Computer simulation of multiscale problems

Computer simulation of multiscale problems Progress in the SSF project CutFEM, Geometry, and Optimal design Computer simulation of multiscale problems Axel Målqvist and Daniel Elfverson University of Gothenburg and Uppsala University Umeå 2015-05-20

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Hierarchical Modeling of Complicated Systems

Hierarchical Modeling of Complicated Systems Hierarchical Modeling of Complicated Systems C. David Levermore Department of Mathematics and Institute for Physical Science and Technology University of Maryland, College Park, MD lvrmr@math.umd.edu presented

More information

Chapter 1. Introduction to Nonlinear Space Plasma Physics

Chapter 1. Introduction to Nonlinear Space Plasma Physics Chapter 1. Introduction to Nonlinear Space Plasma Physics The goal of this course, Nonlinear Space Plasma Physics, is to explore the formation, evolution, propagation, and characteristics of the large

More information

Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics

Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics Gyrokinetic simulations with GYSELA: Main current issues in physics & numerics Y. Sarazin, Y. Asahi 2, N. Bouzat, G. Dif-Pradalier, P. Donnel, C. Ehrlacher, C. Emeriau 3, X. Garbet, Ph. Ghendrih, V. Grandgirard,

More information

Interfaces and simulations in SELALIB

Interfaces and simulations in SELALIB Interfaces and simulations in SELALIB M. Mehrenberger IRMA, Université de Strasbourg Garching, Selalib Day, November 2014 M. Mehrenberger (UDS) Interfaces and simulations in SELALIB Garching, November

More information

Fundamentals of wave kinetic theory

Fundamentals of wave kinetic theory Fundamentals of wave kinetic theory Introduction to the subject Perturbation theory of electrostatic fluctuations Landau damping - mathematics Physics of Landau damping Unmagnetized plasma waves The plasma

More information