Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Size: px
Start display at page:

Download "Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3"

Transcription

1 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017

2 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Overview 1 The Riemann Problem 2 The Riemann Problem with Structure 3 Bibliography

3 The Physical laws in continuum theories are balance laws: Let F 0 (x, t); x Ω, t R +, a generic density. The time derivative in the domain Ω is expressed by d F 0 dω = G i n i dσ + fdω, (1) dt Ω Σ Ω where the first integral on the r.h.s. represents the flux of some quantities G i trough the surface Σ of unit normal n and velocity v, while the last integral represents the productions. Under regularity assumptions the system can be put in the local form: F 0 t + Fi x i = f, F i = F 0 v i + G i (2)

4 For example in the case of fluids: ρ t + ρv i x i = 0 (mass balance) (ρv j ) + t x i (ρv iv j t ij ) = 0 (balance of momentum) (3) E t + x i (Ev i + q i t ij v j ) = 0 (energy conservation). where E = ρ v ρε and ρ, v (v i), t (t ij ), q (q i ), ε are the density, the velocity, the stress tensor, the heat flux and the internal energy. Of course the system is not closed and we need the so called constitutive equations.

5 In the modern constitutive theory all the constitutive equations must obey the two principles: The objectivity principle: the proper constitutive equations are independent of the Observer; The second principle of thermodynamics that in the Rational Thermodynamics requires that any solutions of the full system satisfies the inequality of Clausius-Duhem (Coleman-Noll 1963): ρs t + x i ) (ρsv i + qi 0 for all processes (4) T

6 For instance in the case of classical approach of fluids with Fourier Navier-Stokes assumptions t = pi + σ q i = χ T x i ; σ <ij> = µ v <i x j> ; σ ll = νdivv, the constitutive equations compatible with (4) require the existence of a free energy ψ, function of the density ρ and temperature T, such that: p = ρ 2 ψ ρ, S = ψ T, ε = ψ T ψ T, (5) while χ (heat conductivity), µ (shear viscosity), ν (bulk viscosity) 0.

7 The entropy principle is also supported by the kinetic theory of gases. In fact from the Boltzmann equation f t + f ci x i = Q; f f (x, t, c) introducing as moment: ρs = ( k log f )f dc; φ i = ( k log f )fc i dc; we have the so called H-theorem: ρs t + x i ( ρsv i + φ i) 0 (6) but the non convective entropy flux φ i is in general different from q i /T.

8 The necessity to extend the entropy principle with a general entropy flux was proposed by Ingo Müller (1967). At present the general form (6) ρs t + x i ( ρsv i + φ i) 0 is universally accepted in the continuum community and all the constitutive equations in new models are tested by the entropy principle.

9 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 For systems (2) we can define the so called weak solution: ( u t Φ + F i i Φ ) dv = 0 (7) V for any test function Φ. Γ: ϕ(x,t) = 0 In a particular a shock wave is a weak solution of (2) iff across the shock front the Rankine-Hugoniot equations are fulfilled: P n s [u] + [ F i] n i = 0. u 1 (x,t) u 0 (x,t)

10 The Riemann problem was originated by the following well know problem in fluidynamics: Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

11 The Riemann Problem Let us consider quasi-linear system of conservation laws compatible with an entropy principle with a convex entropy density: t u + x F(u) = 0 t h(u) + x k(u) 0. (8) with initial data u (x, 0) = { u0 for x > 0 u 1 for x < 0.

12 The Riemann Problem and the non uniqueness of weak solutions Before we recall how the Riemann Problem was solved we remember a peculiarity of the weak solutions: the non uniqueness! To explain this let s consider the Burger equation ( ) u 2 u t + = 0 2 equivalent to with initial data u (x, 0) = x u t + uu x = 0 { u0 for x > 0 u 1 for x < 0

13 u (x,0) u 0 u 1 x Figure: Initial data

14 If we are looking for a shock solution, along the curve dx/dt = s the R-H condition must be satisfied. In this case this turns into: and we can get the velocity of the shock, s [ u 2 /2 ] s = s [u] + [ u 2 /2 ] = 0 (9) [u] = 1 2 (u 0 + u 1 ). (10) So we have the weak solution u 0 u (x, t) = u 1 per x > st per x < st ; with s = 1 2 (u 0 + u 1 ). (11)

15 u dx/dt = s (shock line) u = u u = 1 u 0 x Figure: Shock wave

16 u u 0 u 1 x t x = s t Figure: Shock wave in space-time

17 We can see that we have also the following solution u (x, t) u 1 per x t < u 1 x u (x, t) = per u 1 x t t u 0 u 0 per x t > u 0 (12) u u 0 u 1 x t

18 The solution (12) is compatible with the initial data; is continuous for any t > 0; is differentiable; is a weak solution So we have found two different solutions of this Riemann problem. Both of them are acceptable from a mathematical point of view, but from a physical point of view only one of them should be acceptable. Which is the physically acceptable solution?

19 In the present case the characteristic velocity λ = u and the characteristic curves are straight lines represented by the equations x = u 0 t + x 0 and x = u 1 t + x 0. If λ(u 1 ) < λ(u 0 ) the two families of characteristics do not intersect for any t > 0; If λ(u 1 ) > λ(u 0 ) the two families of characteristics do intersect for t > 0.

20 t t t=x/u 1 t=x/u 0 0 x 0 x Figure: Non-intersecting and intersecting characteristic lines

21 The Lax condition select the admissible shock: The entropy growth: ( ) u 2 u t + 2 ( ) ( ) u 2 u t x λ(u 0 ) < s < λ(u 1 ). (13) [ ] u 2 = 0, s[u] + = 0, u 1 = 2s u 0 ; 2 x [ ] u 2 = 0, η = s + 2 [ u 3 3 ] ; η = 2 3 (s λ 0) 3 > 0 s > λ 0 and as s = (λ 1 + λ 0 )/2 s < λ 1

22 i.e. the equivalence between the Lax condition and the entropy growth condition: λ(u 0 ) < s < λ(u 1 ) η > 0. (14) Both are also justified by the artificial viscosity method: u t + uu x = νu xx (15) taking the limit of ν 0.

23 Peter Lax The general Lax solution:

24 Let A = F; (A λi)r = 0. The Riemann problem for initial sufficiently small jump is solved as a superposition of shocks, characteristic shocks, rarefaction waves and constant states. The physical shocks are those for which: Shock: if λ r 0, λ(u 0 ) < s < λ(u 1 ) η > 0 Characteristic Shock: if λ r 0, λ(u 0 ) = s = λ(u 1 ) η = 0 while if λ(u 1 ) < λ(u 0 ) we have a rarefaction wave.

25 u 0 Shock

26 u 0 Shock Rarefaction

27 Unstable part Shock u 0 Stable part Rarefaction

28 R 1 u 0 S 1

29 R 1 R 2 u 0 S 2 S 1

30 u 1 u 0 u *

31 Figure: The Euler solution for the density - t = 0 Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

32 Figure: The Euler solution for the density - t > 0 Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

33 The problem fails in the special case of local exceptionality λ r = 0 for some u. Positive Shocks V λ r = 0 Local Exceptionality surface Negative Shocks

34 In this case the stability of the shock must be satisfy the Liu conditions that implies the generalized Lax condition λ(u 0 ) s λ(u 1 ) but the entropy growth is not sufficient; it is necessary to add additional conditions for example a new superposition principle (Liu, Ruggeri, 2003). (a) (b) U s λ λ(μ) U s (μ) µ 0 µ µ 1 μ

35 The Riemann problem is a fundamental tool for the existence theorem for solutions of the initial data (Glimm, Dafermos, Bressan, Bianchini,...) as well for numerically approach (Godunov, Russo,...). See the book of C. Dafermos, Hyperbolic Conservation Laws in Continuum Physics. Springer Verlag, Berlin. Tommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

36 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 u 1 Riemann (R) problem u(x,t=0) v(x,t=0) u 0 0 x

37 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 u 1 Riemann (R) problem u(x,t=0) v(x,t=0) u 0 0 x u 1 u(x,t=0) v(x,t=0) u 0 Riemann with Structure (RS) problem u(x,t=0) v(x,t=0) u 1 0 u 0 0

38 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 The importance of the Riemann Problem is evident also for the following asymptotic results due to Tai-Ping Liu: Theorem If the initial data are perturbations of the Riemann data, i.e. at x = ± there are two constant states then for t large the solutions tends to the one of the Riemann problem for genuine non-linear characteristic, while waves of linearly degenerate characteristic velocities tend to traveling waves. In particular if the initial data are perturbations of a constant state then for t large the solutions converge to the constant state.

39 Example of the traffic problem: ρ t + ρv x = 0 v (ρ) = v m ( 1 ρ ). ρ m t = 0 ρ (x) 0 x = -l 0 < t < t* x = 0 ρ= ρ m ρ = 0 ρ = 0 t > t * - l 0 x

40 ommaso Ruggeri Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 ρ (x) 0 ρ= ρ m t = 0 ρ = 0 - l 0 ρ = 0 x

41 ρ (x) 0 ρ= ρ m ρ = 0 - l 0 ρ = 0 x

42 ρ (x) 0 ρ= ρ m ρ = 0 - l 0 ρ = 0 x

43 ρ (x) 0 t > t * ρ = 0 - l 0 ρ = 0 x

44 Lax, P. D Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves. CBMS-NSF, Regional Conference Series in Applied Mathematics 11, SIAM. C. Dafermos Hyperbolic Conservation Laws in Continuum Physics Springer-Verlag, Berlin (2001). R. J. LeVeque, Numerical Methods for Conservation Laws Lectures in Mathematics, ETH-Zurich Birkhauser-Verlag, Basel, 1990 G. Boillat, T. Ruggeri, On the Shock Structure Problem for Hyperbolic System of Balance Laws and Convex Entropy, Continuum Mech. Thermodyn. 10, (1998)

45 Liu, T.-P 1976 The entropy condition and the admissibility of shocks. J. Math. Anal. Appl. 53, Liu, T.-P Admissible solutions of hyperbolic conservation laws. Mem. Am. Math. Soc. 240, 12. Liu, T.-P., Ruggeri, T Entropy production and admissibility of shocks. Acta Math. Appl. Sinica, English Series. 19, 112. I. Müller, T. Ruggeri, Rational Extended Thermodynamics, Springer Tracts in Natual Philosophy 37, 2nd Ed., Springer Verlag (1998)

46 F. Brini, T. Ruggeri, On the Riemann Problem in Extended Thermodynamics, Proc. of 10th Int. Conference on Hyperbolic Problems (Osaka, 2004); Yokohama Pub. Inc. (2006) A. Mentrelli, T. Ruggeri, Asymptotic Behavior of Riemann and Riemann with Structure Problems for a 2 2 Hyperbolic Dissipative System, Suppl. Rend. Circ. Mat. Palermo, Serie II, 78, (2006) F. Brini, T. Ruggeri, On the Riemann Problem with Structure in Extended Thermodynamics, Suppl. Rend. Circ. Mat. Palermo, Serie II, 78, (2006)

Can constitutive relations be represented by non-local equations?

Can constitutive relations be represented by non-local equations? Can constitutive relations be represented by non-local equations? Tommaso Ruggeri Dipartimento di Matematica & Centro di Ricerca per le Applicazioni della Matematica (CIRAM) Universitá di Bologna Fractional

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Shock and Rarefaction Waves in a Hyperbolic Model of Incompressible Fluids

Shock and Rarefaction Waves in a Hyperbolic Model of Incompressible Fluids Shock and Rarefaction Waves in a Hyperbolic Model of Incompressible Fluids Andrea Mentrelli Department of Mathematics & Research Center of Applied Mathematics (CIRAM) University of Bologna, Italy Summary

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method

The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method The inviscid limit to a contact discontinuity for the compressible Navier-Stokes-Fourier system using the relative entropy method Alexis Vasseur, and Yi Wang Department of Mathematics, University of Texas

More information

Gas Dynamics Equations: Computation

Gas Dynamics Equations: Computation Title: Name: Affil./Addr.: Gas Dynamics Equations: Computation Gui-Qiang G. Chen Mathematical Institute, University of Oxford 24 29 St Giles, Oxford, OX1 3LB, United Kingdom Homepage: http://people.maths.ox.ac.uk/chengq/

More information

Variational formulation of entropy solutions for nonlinear conservation laws

Variational formulation of entropy solutions for nonlinear conservation laws Variational formulation of entropy solutions for nonlinear conservation laws Eitan Tadmor 1 Center for Scientific Computation and Mathematical Modeling CSCAMM) Department of Mathematics, Institute for

More information

Hilbert Sixth Problem

Hilbert Sixth Problem Academia Sinica, Taiwan Stanford University Newton Institute, September 28, 2010 : Mathematical Treatment of the Axioms of Physics. The investigations on the foundations of geometry suggest the problem:

More information

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS

NONCLASSICAL SHOCK WAVES OF CONSERVATION LAWS: FLUX FUNCTION HAVING TWO INFLECTION POINTS Electronic Journal of Differential Equations, Vol. 2006(2006), No. 149, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) NONCLASSICAL

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS

REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS 1 REGULARIZATION AND BOUNDARY CONDITIONS FOR THE 13 MOMENT EQUATIONS HENNING STRUCHTRUP ETH Zürich, Department of Materials, Polymer Physics, CH-8093 Zürich, Switzerland (on leave from University of Victoria,

More information

Numerical Methods for Hyperbolic Conservation Laws Lecture 4

Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Wen Shen Department of Mathematics, Penn State University Email: wxs7@psu.edu Oxford, Spring, 018 Lecture Notes online: http://personal.psu.edu/wxs7/notesnumcons/

More information

Lectures in Mathematics ETH Ziirich Department of Mathematics Research Institute of Mathematics. Managing Editor: Michael Struwe

Lectures in Mathematics ETH Ziirich Department of Mathematics Research Institute of Mathematics. Managing Editor: Michael Struwe Lectures in Mathematics ETH Ziirich Department of Mathematics Research Institute of Mathematics Managing Editor: Michael Struwe Philippe G. LeFloch Hyperbolic Systems of Conservation Laws The Theory of

More information

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases

Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Causal Dissipation for the Relativistic Fluid Dynamics of Ideal Gases Heinrich Freistühler and Blake Temple Proceedings of the Royal Society-A May 2017 Culmination of a 15 year project: In this we propose:

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University. Email: wxs27@psu.edu November 5, 2015 Abstract We study two systems of conservation

More information

Extended Thermodynamics of Real Gas: Maximum Entropy Principle for Rarefied Polyatomic Gas

Extended Thermodynamics of Real Gas: Maximum Entropy Principle for Rarefied Polyatomic Gas Tommaso Ruggeri Mathematical Departement and Research Center of Applied Mathematics University of Bologna International Conference in Nonlinear Analysis: Evolutionary P.D.E. and Kinetic Theory Taipei October

More information

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS

A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS A RIEMANN PROBLEM FOR THE ISENTROPIC GAS DYNAMICS EQUATIONS KATARINA JEGDIĆ, BARBARA LEE KEYFITZ, AND SUN CICA ČANIĆ We study a Riemann problem for the two-dimensional isentropic gas dynamics equations

More information

Hyperbolic Problems: Theory, Numerics, Applications

Hyperbolic Problems: Theory, Numerics, Applications AIMS on Applied Mathematics Vol.8 Hyperbolic Problems: Theory, Numerics, Applications Fabio Ancona Alberto Bressan Pierangelo Marcati Andrea Marson Editors American Institute of Mathematical Sciences AIMS

More information

Math Partial Differential Equations 1

Math Partial Differential Equations 1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv)

More information

Lecture Notes on Hyperbolic Conservation Laws

Lecture Notes on Hyperbolic Conservation Laws Lecture Notes on Hyperbolic Conservation Laws Alberto Bressan Department of Mathematics, Penn State University, University Park, Pa. 16802, USA. bressan@math.psu.edu May 21, 2009 Abstract These notes provide

More information

Second-gradient theory : application to Cahn-Hilliard fluids

Second-gradient theory : application to Cahn-Hilliard fluids Second-gradient theory : application to Cahn-Hilliard fluids P. Seppecher Laboratoire d Analyse Non Linéaire Appliquée Université de Toulon et du Var BP 132-83957 La Garde Cedex seppecher@univ-tln.fr Abstract.

More information

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations

Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations Simple waves and a characteristic decomposition of the two dimensional compressible Euler equations Jiequan Li 1 Department of Mathematics, Capital Normal University, Beijing, 100037 Tong Zhang Institute

More information

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1)

Author(s) Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 41(1) Title On the stability of contact Navier-Stokes equations with discont free b Authors Huang, Feimin; Matsumura, Akitaka; Citation Osaka Journal of Mathematics. 4 Issue 4-3 Date Text Version publisher URL

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Alberto Bressan ( ), Paolo Baiti ( ) and Helge Kristian Jenssen ( ) ( ) Department of Mathematics, Penn State University, University

More information

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni

Relaxation methods and finite element schemes for the equations of visco-elastodynamics. Chiara Simeoni Relaxation methods and finite element schemes for the equations of visco-elastodynamics Chiara Simeoni Department of Information Engineering, Computer Science and Mathematics University of L Aquila (Italy)

More information

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics

CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS. Multimedia Course on Continuum Mechanics CH.9. CONSTITUTIVE EQUATIONS IN FLUIDS Multimedia Course on Continuum Mechanics Overview Introduction Fluid Mechanics What is a Fluid? Pressure and Pascal s Law Constitutive Equations in Fluids Fluid Models

More information

Modelling and numerical methods for the diffusion of impurities in a gas

Modelling and numerical methods for the diffusion of impurities in a gas INERNAIONAL JOURNAL FOR NUMERICAL MEHODS IN FLUIDS Int. J. Numer. Meth. Fluids 6; : 6 [Version: /9/8 v.] Modelling and numerical methods for the diffusion of impurities in a gas E. Ferrari, L. Pareschi

More information

AMath 574 February 11, 2011

AMath 574 February 11, 2011 AMath 574 February 11, 2011 Today: Entropy conditions and functions Lax-Wendroff theorem Wednesday February 23: Nonlinear systems Reading: Chapter 13 R.J. LeVeque, University of Washington AMath 574, February

More information

A model for a network of conveyor belts with discontinuous speed and capacity

A model for a network of conveyor belts with discontinuous speed and capacity A model for a network of conveyor belts with discontinuous speed and capacity Adriano FESTA Seminario di Modellistica differenziale Numerica - 6.03.2018 work in collaboration with M. Pfirsching, S. Goettlich

More information

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws

On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws On a Lyapunov Functional Relating Shortening Curves and Viscous Conservation Laws Stefano Bianchini and Alberto Bressan S.I.S.S.A., Via Beirut 4, Trieste 34014 Italy. E-mail addresses: bianchin@mis.mpg.de,

More information

Projection Dynamics in Godunov-Type Schemes

Projection Dynamics in Godunov-Type Schemes JOURNAL OF COMPUTATIONAL PHYSICS 142, 412 427 (1998) ARTICLE NO. CP985923 Projection Dynamics in Godunov-Type Schemes Kun Xu and Jishan Hu Department of Mathematics, Hong Kong University of Science and

More information

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

Hysteresis rarefaction in the Riemann problem

Hysteresis rarefaction in the Riemann problem Hysteresis rarefaction in the Riemann problem Pavel Krejčí 1 Institute of Mathematics, Czech Academy of Sciences, Žitná 25, 11567 Praha 1, Czech Republic E-mail: krejci@math.cas.cz Abstract. We consider

More information

Hyperbolic Conservation Laws Past and Future

Hyperbolic Conservation Laws Past and Future Hyperbolic Conservation Laws Past and Future Barbara Lee Keyfitz Fields Institute and University of Houston bkeyfitz@fields.utoronto.ca Research supported by the US Department of Energy, National Science

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

On the Front-Tracking Algorithm

On the Front-Tracking Algorithm JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 395404 998 ARTICLE NO. AY97575 On the Front-Tracking Algorithm Paolo Baiti S.I.S.S.A., Via Beirut 4, Trieste 3404, Italy and Helge Kristian Jenssen

More information

K. Ambika and R. Radha

K. Ambika and R. Radha Indian J. Pure Appl. Math., 473: 501-521, September 2016 c Indian National Science Academy DOI: 10.1007/s13226-016-0200-9 RIEMANN PROBLEM IN NON-IDEAL GAS DYNAMICS K. Ambika and R. Radha School of Mathematics

More information

TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BURGERS EQUATION. 1. Introduction. Burgers equation. (1.1) u t + uu x = ɛu xx

TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BURGERS EQUATION. 1. Introduction. Burgers equation. (1.1) u t + uu x = ɛu xx SIAM J. APPL. MATH. Vol. 68, No. 5, pp. 1316 1332 c 2008 Society for Industrial and Applied Mathematics TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BURGERS EQUATION VICTOR CAMACHO, ROBERT

More information

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II

WEAK ASYMPTOTIC SOLUTION FOR A NON-STRICTLY HYPERBOLIC SYSTEM OF CONSERVATION LAWS-II Electronic Journal of Differential Equations, Vol. 2016 (2016), No. 94, pp. 1 14. ISSN: 1072-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu WEAK ASYMPTOTIC

More information

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x

CapSel Euler The Euler equations. conservation laws for 1D dynamics of compressible gas. = 0 m t + (m v + p) x CapSel Euler - 01 The Euler equations keppens@rijnh.nl conservation laws for 1D dynamics of compressible gas ρ t + (ρ v) x = 0 m t + (m v + p) x = 0 e t + (e v + p v) x = 0 vector of conserved quantities

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

n v molecules will pass per unit time through the area from left to

n v molecules will pass per unit time through the area from left to 3 iscosity and Heat Conduction in Gas Dynamics Equations of One-Dimensional Gas Flow The dissipative processes - viscosity (internal friction) and heat conduction - are connected with existence of molecular

More information

International Engineering Research Journal

International Engineering Research Journal Special Edition PGCON-MECH-7 Development of high resolution methods for solving D Euler equation Ms.Dipti A. Bendale, Dr.Prof. Jayant H. Bhangale and Dr.Prof. Milind P. Ray ϯ Mechanical Department, SavitribaiPhule

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System

Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Weak-Strong Uniqueness of the Navier-Stokes-Smoluchowski System Joshua Ballew University of Maryland College Park Applied PDE RIT March 4, 2013 Outline Description of the Model Relative Entropy Weakly

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Level Set Tumor Growth Model

Level Set Tumor Growth Model Level Set Tumor Growth Model Andrew Nordquist and Rakesh Ranjan, PhD University of Texas, San Antonio July 29, 2013 Andrew Nordquist and Rakesh Ranjan, PhD (University Level Set of Texas, TumorSan Growth

More information

Formulation of the problem

Formulation of the problem TOPICAL PROBLEMS OF FLUID MECHANICS DOI: https://doi.org/.43/tpfm.27. NOTE ON THE PROBLEM OF DISSIPATIVE MEASURE-VALUED SOLUTIONS TO THE COMPRESSIBLE NON-NEWTONIAN SYSTEM H. Al Baba, 2, M. Caggio, B. Ducomet

More information

The 2-d isentropic compressible Euler equations may have infinitely many solutions which conserve energy

The 2-d isentropic compressible Euler equations may have infinitely many solutions which conserve energy The -d isentropic compressible Euler equations may have infinitely many solutions which conserve energy Simon Markfelder Christian Klingenberg September 15, 017 Dept. of Mathematics, Würzburg University,

More information

Bulk equations and Knudsen layers for the regularized 13 moment equations

Bulk equations and Knudsen layers for the regularized 13 moment equations Continuum Mech. Thermon. 7 9: 77 89 DOI.7/s6-7-5- ORIGINAL ARTICLE Henning Struchtrup Toby Thatcher Bulk equations and Knudsen layers for the regularized 3 moment equations Received: 9 December 6 / Accepted:

More information

Ray equations of a weak shock in a hyperbolic system of conservation laws in multi-dimensions

Ray equations of a weak shock in a hyperbolic system of conservation laws in multi-dimensions Proc. Indian Acad. Sci. (Math. Sci.) Vol. 126, No. 2, May 2016, pp. 199 206. c Indian Academy of Sciences Ray equations of a weak in a hyperbolic system of conservation laws in multi-dimensions PHOOLAN

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

L 1 stability of conservation laws for a traffic flow model

L 1 stability of conservation laws for a traffic flow model Electronic Journal of Differential Equations, Vol. 2001(2001), No. 14, pp. 1 18. ISSN: 1072-6691. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu ftp ejde.math.unt.edu (login:

More information

Generators of hyperbolic heat equation in nonlinear thermoelasticity

Generators of hyperbolic heat equation in nonlinear thermoelasticity RENDICONTI del SEMINARIO MATEMATICO della UNIVERSITÀ DI PADOVA TOMMASO RUGGERI Generators of hyperbolic heat equation in nonlinear thermoelasticity Rendiconti del Seminario Matematico della Università

More information

Rarefaction wave interaction for the unsteady transonic small disturbance equations

Rarefaction wave interaction for the unsteady transonic small disturbance equations Rarefaction wave interaction for the unsteady transonic small disturbance equations Jun Chen University of Houston Department of Mathematics 4800 Calhoun Road Houston, TX 77204, USA chenjun@math.uh.edu

More information

Non-equilibrium mixtures of gases: modeling and computation

Non-equilibrium mixtures of gases: modeling and computation Non-equilibrium mixtures of gases: modeling and computation Lecture 1: and kinetic theory of gases Srboljub Simić University of Novi Sad, Serbia Aim and outline of the course Aim of the course To present

More information

Nonlinear elasticity and gels

Nonlinear elasticity and gels Nonlinear elasticity and gels M. Carme Calderer School of Mathematics University of Minnesota New Mexico Analysis Seminar New Mexico State University April 4-6, 2008 1 / 23 Outline Balance laws for gels

More information

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation

Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation Solving the Payne-Whitham traffic flow model as a hyperbolic system of conservation laws with relaxation W.L. Jin and H.M. Zhang August 3 Abstract: In this paper we study the Payne-Whitham (PW) model as

More information

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010

Hydrodynamics. Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 Hydrodynamics Stefan Flörchinger (Heidelberg) Heidelberg, 3 May 2010 What is Hydrodynamics? Describes the evolution of physical systems (classical or quantum particles, fluids or fields) close to thermal

More information

On weak solution approach to problems in fluid dynamics

On weak solution approach to problems in fluid dynamics On weak solution approach to problems in fluid dynamics Eduard Feireisl based on joint work with J.Březina (Tokio), C.Klingenberg, and S.Markfelder (Wuerzburg), O.Kreml (Praha), M. Lukáčová (Mainz), H.Mizerová

More information

Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation

Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation Bose-Einstein Condensation and Global Dynamics of Solutions to a Hyperbolic Kompaneets Equation Joshua Ballew Abstract In this article, a simplified, hyperbolic model of the non-linear, degenerate parabolic

More information

TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BURGERS EQUATION. 1. Introduction. Burgers equation. u t + uu x = ɛu xx (1.

TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BURGERS EQUATION. 1. Introduction. Burgers equation. u t + uu x = ɛu xx (1. TRAVELING WAVES AND SHOCKS IN A VISCOELASTIC GENERALIZATION OF BRGERS EQATION VICTOR CAMACHO, ROBERT D. GY, AND JON JACOBSEN Abstract. We consider traveling wave phenomena for a viscoelastic generalization

More information

Euler equation and Navier-Stokes equation

Euler equation and Navier-Stokes equation Euler equation and Navier-Stokes equation WeiHan Hsiao a a Department of Physics, The University of Chicago E-mail: weihanhsiao@uchicago.edu ABSTRACT: This is the note prepared for the Kadanoff center

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

Non-linear Scalar Equations

Non-linear Scalar Equations Non-linear Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro August 24, 2014 1 / 44 Overview Here

More information

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations

A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations A SHORT INTRODUCTION TO TWO-PHASE FLOWS Two-phase flows balance equations Hervé Lemonnier DM2S/STMF/LIEFT, CEA/Grenoble, 38054 Grenoble Cedex 9 Ph. +33(0)4 38 78 45 40 herve.lemonnier@cea.fr, herve.lemonnier.sci.free.fr/tpf/tpf.htm

More information

STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM WITH FLUX APPROXIMATION

STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM WITH FLUX APPROXIMATION Electronic Journal of Differential Equations, Vol. 216 (216, No. 126, pp. 1 16. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN

More information

Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form

Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form Numerical Simulation of Rarefied Gases using Hyperbolic Moment Equations in Partially-Conservative Form Julian Koellermeier, Manuel Torrilhon May 18th, 2017 FU Berlin J. Koellermeier 1 / 52 Partially-Conservative

More information

The Hopf equation. The Hopf equation A toy model of fluid mechanics

The Hopf equation. The Hopf equation A toy model of fluid mechanics The Hopf equation A toy model of fluid mechanics 1. Main physical features Mathematical description of a continuous medium At the microscopic level, a fluid is a collection of interacting particles (Van

More information

Quick Recapitulation of Fluid Mechanics

Quick Recapitulation of Fluid Mechanics Quick Recapitulation of Fluid Mechanics Amey Joshi 07-Feb-018 1 Equations of ideal fluids onsider a volume element of a fluid of density ρ. If there are no sources or sinks in, the mass in it will change

More information

The Riemann problem. The Riemann problem Rarefaction waves and shock waves

The Riemann problem. The Riemann problem Rarefaction waves and shock waves The Riemann problem Rarefaction waves and shock waves 1. An illuminating example A Heaviside function as initial datum Solving the Riemann problem for the Hopf equation consists in describing the solutions

More information

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws

A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws A high order adaptive finite element method for solving nonlinear hyperbolic conservation laws Zhengfu Xu, Jinchao Xu and Chi-Wang Shu 0th April 010 Abstract In this note, we apply the h-adaptive streamline

More information

Mechanics of Materials and Structures

Mechanics of Materials and Structures Journal of Mechanics of Materials and Structures INTERNAL ENERGY IN DISSIPATIVE RELATIVISTIC FLUIDS Péter Ván Volume 3, Nº 6 June 2008 mathematical sciences publishers JOURNAL OF MECHANICS OF MATERIALS

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS.

ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS. ACCURATE NUMERICAL SCHEMES FOR APPROXIMATING INITIAL-BOUNDARY VALUE PROBLEMS FOR SYSTEMS OF CONSERVATION LAWS. SIDDHARTHA MISHRA AND LAURA V. SPINOLO Abstract. Solutions of initial-boundary value problems

More information

Fluid flows through unsaturated porous media: An alternative simulation procedure

Fluid flows through unsaturated porous media: An alternative simulation procedure Engineering Conferences International ECI Digital Archives 5th International Conference on Porous Media and Their Applications in Science, Engineering and Industry Refereed Proceedings Summer 6-24-2014

More information

On the Dependence of Euler Equations on Physical Parameters

On the Dependence of Euler Equations on Physical Parameters On the Dependence of Euler Equations on Physical Parameters Cleopatra Christoforou Department of Mathematics, University of Houston Joint Work with: Gui-Qiang Chen, Northwestern University Yongqian Zhang,

More information

Hydrodynamic Limits for the Boltzmann Equation

Hydrodynamic Limits for the Boltzmann Equation Hydrodynamic Limits for the Boltzmann Equation François Golse Université Paris 7 & Laboratoire J.-L. Lions golse@math.jussieu.fr Academia Sinica, Taipei, December 2004 LECTURE 2 FORMAL INCOMPRESSIBLE HYDRODYNAMIC

More information

Finite Volume Method

Finite Volume Method Finite Volume Method An Introduction Praveen. C CTFD Division National Aerospace Laboratories Bangalore 560 037 email: praveen@cfdlab.net April 7, 2006 Praveen. C (CTFD, NAL) FVM CMMACS 1 / 65 Outline

More information

Quasi-linear first order equations. Consider the nonlinear transport equation

Quasi-linear first order equations. Consider the nonlinear transport equation Quasi-linear first order equations Consider the nonlinear transport equation u t + c(u)u x = 0, u(x, 0) = f (x) < x < Quasi-linear first order equations Consider the nonlinear transport equation u t +

More information

On pore fluid pressure and effective solid stress in the mixture theory of porous media

On pore fluid pressure and effective solid stress in the mixture theory of porous media On pore fluid pressure and effective solid stress in the mixture theory of porous media I-Shih Liu Abstract In this paper we briefly review a typical example of a mixture of elastic materials, in particular,

More information

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b

Where as discussed previously we interpret solutions to this partial differential equation in the weak sense: b Consider the pure initial value problem for a homogeneous system of onservation laws with no soure terms in one spae dimension: Where as disussed previously we interpret solutions to this partial differential

More information

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS

AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS Hierarchy of Mathematical Models 1 / 29 AA214B: NUMERICAL METHODS FOR COMPRESSIBLE FLOWS 2 / 29

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

Chapter 2: Fluid Dynamics Review

Chapter 2: Fluid Dynamics Review 7 Chapter 2: Fluid Dynamics Review This chapter serves as a short review of basic fluid mechanics. We derive the relevant transport equations (or conservation equations), state Newton s viscosity law leading

More information

A review of Continuum Thermodynamics

A review of Continuum Thermodynamics A review of Continuum Thermodynamics Amabile Tatone 1 1 Disim, University of L Aquila, Italy November 2017 Summary Thermodynamics of continua is not a simple subject. It deals with the interplay between

More information

Fluid Equations for Rarefied Gases

Fluid Equations for Rarefied Gases 1 Fluid Equations for Rarefied Gases Jean-Luc Thiffeault Department of Applied Physics and Applied Mathematics Columbia University http://plasma.ap.columbia.edu/~jeanluc 23 March 2001 with E. A. Spiegel

More information

Stability of Thick Spherical Shells

Stability of Thick Spherical Shells Continuum Mech. Thermodyn. (1995) 7: 249-258 Stability of Thick Spherical Shells I-Shih Liu 1 Instituto de Matemática, Universidade Federal do Rio de Janeiro Caixa Postal 68530, Rio de Janeiro 21945-970,

More information

ACCELERATION WAVES IN THE VON KARMAN PLATE THEORY 1

ACCELERATION WAVES IN THE VON KARMAN PLATE THEORY 1 ACCELERATION WAVES IN THE VON KARMAN PLATE THEORY V. VASSILEV and P. DJONDJOROV Institute of Mechanics Bulgarian Academy of Sciences Acad. G. Bontchev St., Block 4, 3 Sofia, BULGARIA arxiv:math-ph/000606v2

More information

ON MULTICOMPONENT FLUID MIXTURES

ON MULTICOMPONENT FLUID MIXTURES ON MULTICOMPONENT FLUID MIXTURES KONSTANTINA TRIVISA 1. Introduction We consider the flow of the mixture of viscous, heat-conducting, compressible fluids consisting of n different components, each of which

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

VISCOUS FLUX LIMITERS

VISCOUS FLUX LIMITERS VISCOUS FLUX LIMITERS E. F. Toro Department of Aerospace Science College of Aeronautics Cranfield Institute of Technology Cranfield, Beds MK43 OAL England. Abstract We present Numerical Viscosity Functions,

More information

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION

DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION Chapter 1 DRIVING FORCE IN SIMULATION OF PHASE TRANSITION FRONT PROPAGATION A. Berezovski Institute of Cybernetics at Tallinn Technical University, Centre for Nonlinear Studies, Akadeemia tee 21, 12618

More information

Kinetic relaxation models for reacting gas mixtures

Kinetic relaxation models for reacting gas mixtures Kinetic relaxation models for reacting gas mixtures M. Groppi Department of Mathematics and Computer Science University of Parma - ITALY Main collaborators: Giampiero Spiga, Giuseppe Stracquadanio, Univ.

More information

Nonlinear Wave Propagation in 1D Random Media

Nonlinear Wave Propagation in 1D Random Media Nonlinear Wave Propagation in 1D Random Media J. B. Thoo, Yuba College UCI Computational and Applied Math Seminar Winter 22 Typeset by FoilTEX Background O Doherty and Anstey (Geophysical Prospecting,

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information