Math Partial Differential Equations 1

Size: px
Start display at page:

Download "Math Partial Differential Equations 1"

Transcription

1 Math 9 - Partial Differential Equations Homework 5 and Answers. The one-dimensional shallow water equations are h t + (hv) x, v t + ( v + h) x, or equivalently for classical solutions, h t + (hv) x, (hv) t + (hv + h ) x, where v is the horizontal velocity and h is the height. how that the above two systems are strictly hyperbolic for h >. olution: The both systems have eigenvalues: v ± h which are real and distinct for h >.. Use characteristics to find the solutions of (a) u t + u x u, u t +x, x R, t >. (b) u t + txu x, u t +x, x R, t >. (c) u t + uu x, u t x, x R, t >. olution: (a) The characteristic passing through (x, ) is x x + t. du(x(t), t) dt u, so u(x, t) u(x(), )e t u (x )e t u (x t)e t (b) The characteristic x x(t) passing through (x, ) is: dx dt tx, x() x, which gives x x e t, so u(x, t) u (x ) u (xe t ). (c) The characteristic x x(t) passing through (x, ) is: and du(x(t),t) x +t. 3. Prove that dx dt u, x() x, e t +(x t). dt, then u(x(t), t) u(x(), ) u (x ) x, thus x(t) x + x t, and u(x, t) x u(x, t) is a weak solution to the Riemann problem u t + uu x, u t u (x), if x < t,, if x > t,, if x <,, if x >.

2 olution: For a test function φ C(R R + ), assume suup φ [, a] [, T ] with a >, T >, ) (uφ t + u φ x dxdt + u (x)φ(x, )dx T a ) a (uφ t + u φ x dxdt + u (x)φ(x, )dx T t ( φ t + ) φ x dxdt + φ(x, )dx T T T T φ t dtdx + φ t dtdx + x (φ(x, T ) φ(x, ))dx + φ(x, x)dx + T T T T t φ x dxdt + (φ(x, T ) φ(x, x))dx + φ( t, t)dt, T or use the divergence formula, ) (uφ t + u φ x dxdt + u (x)φ(x, )dx T a ) a (uφ t + u φ x dxdt + u (x)φ(x, )dx T t ( φ t + ) φ x. x t t dxdt + φ(x, )dx (x,t) ( φ, φ)dxdt + φ(x, )dx ( φ, φ) 5 (, )dl + 4. Consider the nonhomogeneous conservation law t,<x< u t + f(u) x g(u, x, t), φ(x, )dx (φ( t, t) φ(, t))dt + φ(x, )dx ( φ, φ) (, )dl + φ(x, )dx where g is a source term. Define u(x, t) L (R R + ) to be a weak solution if (uϕ t + f(u)ϕ x + gϕ) dx dt + u(x, )ϕ(x, ) dx, for all test functions ϕ C (R R + ). how that the Rankine-Hugoniot jump condition is the same as the homogeneous case when g. olution: uppose that a curve : x x(t) divides the upper half plane into two parts V ± and u(x, t) is a piecewise smooth solution with jump discontinuity along. That is, u is a weak solution in the sense of distributions and also a C solution in both V + and V, and at each point (x, t ) on the curve, the limits of u(x, t) as (x, t) (x, t ) in both V + and V exist but are not necessarily equal. Choose a test function ϕ R R + with compact support in some open region V R R +, and

3 ϕ(x, ) but not vanishing along the curve. Then u t + f(u) x g in V ± V and (uϕ t + f(u)ϕ x + gϕ) dx dt (uϕ t + f(u)ϕ x + gϕ) dx dt + (uϕ t + f(u)ϕ x + gϕ) dx dt V V + ((uϕ) t + (f(u)ϕ) x (u t + f(u) x g)ϕ) dx dt V + ((uϕ) t + (f(u)ϕ) x (u t + f(u) x g)ϕ) dx dt V + (x,t) (f(u)ϕ, uϕ) dx dt + (x,t) (f(u)ϕ, uϕ) dx dt V V + (f(u )ϕ, u ϕ) ν dl + (f(u + )ϕ, u + ϕ) ( ν) l (f(u )ν + u ν )ϕ dl (f(u + )ν + u + ν +)ϕ dl ((f(u ) f(u + ))ν + (u u + )ν ) ϕ dl, for all test functions ϕ, thus the jump condition is the same as the homogeneous case. 5. Construct the entropy solution of the following IVP: u t + ( u)u x, x R, t >,, if x <, u t u (x), if x. olution: The characteristics passing through (x, ) have slope if x < and have slope if x >. The flux is f(u) u u f(u+) f(u ). The shock speed is σ u + u (u ++u ), o the solution is u(x, t), x < t,, x > t. 6. Find the traveling wave solutions u(x, t) to the following equation u t + ( u)u x εu xx, ε > : constant, such that lim u(x, t), lim x u x(x, t) ; x lim u(x, t), lim x and also find the limit lim u(x, t). ε Compare the limit with the solution in the previous exercise. olution: If u(x, t) f(x σt) f(ξ) with ξ x σt, then u x(x, t), x σf + ( u)f εf, f( ), f(), f ( ) f (). Integrating it from to ξ, we get f f σf + σ εf, 3

4 taking ξ, we obtain σ. o and thus for a constant C. Then and εf (f )(f ), df (f )(f ) ε dξ, f(ξ) + u(x, t) + lim u(x, t) ε which is the weak solution in the previous problem. + Ce ε ξ, + Ce ε (x+ t),, if x + t <,, if x + t >, 7. Construct the entropy solution of the following IVP: u t + uu x, x R, t >,, if x <,, if x <, u t u (x), if x,, if x >. olution: The solution is sketched in the figure. t 5 3 R 4 x The line is a shock passing through point (, ), with left state u, right state u +, speed σ, equation: x + t, crossing the t-axis at point (, ). The line is a shock passing through point (, ), with left state u, right state u +, speed σ, equation: x + t, ending at point (, ). The region R is the rarefaction wave with value u x t. 4

5 The shock wave and the rarefaction R starts interaction at point (, ) and produce a shock wave curve 3 : x x(t) with left state u and right state u + x t, so x (t) ( + x t ), x(), which gives the equation of the curve 3 : x t t. The shock wave and the rarefaction R starts interaction at point (, ) and produce a shock wave curve 4 : x x(t) with left state u x t and right state u +, so x (t) ( x t + ), x(), which gives the equation of the curve 4 : x t. The shock waves 3 and 4 meets at point (8, 6), which is obtained by solving x t t t. Their interaction yields another shock wave 5 passing through point (8, 6), with left state u and right state u +. The equation of 5 is x t. 5

0.3.4 Burgers Equation and Nonlinear Wave

0.3.4 Burgers Equation and Nonlinear Wave 16 CONTENTS Solution to step (discontinuity) initial condition u(x, 0) = ul if X < 0 u r if X > 0, (80) u(x, t) = u L + (u L u R ) ( 1 1 π X 4νt e Y 2 dy ) (81) 0.3.4 Burgers Equation and Nonlinear Wave

More information

MATH 220: MIDTERM OCTOBER 29, 2015

MATH 220: MIDTERM OCTOBER 29, 2015 MATH 22: MIDTERM OCTOBER 29, 25 This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve Problems -3 and one of Problems 4 and 5. Write your solutions to problems and

More information

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow

Notes: Outline. Shock formation. Notes: Notes: Shocks in traffic flow Outline Scalar nonlinear conservation laws Traffic flow Shocks and rarefaction waves Burgers equation Rankine-Hugoniot conditions Importance of conservation form Weak solutions Reading: Chapter, 2 R.J.

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, x < 1, 1 + x, 1 < x < 0, ψ(x) = 1 x, 0 < x < 1, 0, x > 1, so that it verifies ψ 0, ψ(x) = 0 if x 1 and ψ(x)dx = 1. Consider (ψ j )

More information

A Very Brief Introduction to Conservation Laws

A Very Brief Introduction to Conservation Laws A Very Brief Introduction to Wen Shen Department of Mathematics, Penn State University Summer REU Tutorial, May 2013 Summer REU Tutorial, May 2013 1 / The derivation of conservation laws A conservation

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University

Hyperbolic Systems of Conservation Laws. in One Space Dimension. I - Basic concepts. Alberto Bressan. Department of Mathematics, Penn State University Hyperbolic Systems of Conservation Laws in One Space Dimension I - Basic concepts Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 The Scalar Conservation

More information

Numerical Solutions to Partial Differential Equations

Numerical Solutions to Partial Differential Equations Numerical Solutions to Partial Differential Equations Zhiping Li LMAM and School of Mathematical Sciences Peking University Introduction to Hyperbolic Equations The Hyperbolic Equations n-d 1st Order Linear

More information

Hyperbolic Systems of Conservation Laws. I - Basic Concepts

Hyperbolic Systems of Conservation Laws. I - Basic Concepts Hyperbolic Systems of Conservation Laws I - Basic Concepts Alberto Bressan Mathematics Department, Penn State University Alberto Bressan (Penn State) Hyperbolic Systems of Conservation Laws 1 / 27 The

More information

MATH 173: PRACTICE MIDTERM SOLUTIONS

MATH 173: PRACTICE MIDTERM SOLUTIONS MATH 73: PACTICE MIDTEM SOLUTIONS This is a closed book, closed notes, no electronic devices exam. There are 5 problems. Solve all of them. Write your solutions to problems and in blue book #, and your

More information

Quasi-linear first order equations. Consider the nonlinear transport equation

Quasi-linear first order equations. Consider the nonlinear transport equation Quasi-linear first order equations Consider the nonlinear transport equation u t + c(u)u x = 0, u(x, 0) = f (x) < x < Quasi-linear first order equations Consider the nonlinear transport equation u t +

More information

Modeling Rarefaction and Shock waves

Modeling Rarefaction and Shock waves April 30, 2013 Inroduction Inroduction Rarefaction and shock waves are combinations of two wave fronts created from the initial disturbance of the medium. Inroduction Rarefaction and shock waves are combinations

More information

Lecture Notes on Hyperbolic Conservation Laws

Lecture Notes on Hyperbolic Conservation Laws Lecture Notes on Hyperbolic Conservation Laws Alberto Bressan Department of Mathematics, Penn State University, University Park, Pa. 16802, USA. bressan@math.psu.edu May 21, 2009 Abstract These notes provide

More information

Numerical Methods for Hyperbolic Conservation Laws Lecture 4

Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Numerical Methods for Hyperbolic Conservation Laws Lecture 4 Wen Shen Department of Mathematics, Penn State University Email: wxs7@psu.edu Oxford, Spring, 018 Lecture Notes online: http://personal.psu.edu/wxs7/notesnumcons/

More information

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes

Math 660-Lecture 23: Gudonov s method and some theories for FVM schemes Math 660-Lecture 3: Gudonov s method and some theories for FVM schemes 1 The idea of FVM (You can refer to Chapter 4 in the book Finite volume methods for hyperbolic problems ) Consider the box [x 1/,

More information

The Riemann problem. The Riemann problem Rarefaction waves and shock waves

The Riemann problem. The Riemann problem Rarefaction waves and shock waves The Riemann problem Rarefaction waves and shock waves 1. An illuminating example A Heaviside function as initial datum Solving the Riemann problem for the Hopf equation consists in describing the solutions

More information

Hyperbolic Systems of Conservation Laws

Hyperbolic Systems of Conservation Laws Hyperbolic Systems of Conservation Laws III - Uniqueness and continuous dependence and viscous approximations Alberto Bressan Mathematics Department, Penn State University http://www.math.psu.edu/bressan/

More information

Non-linear Scalar Equations

Non-linear Scalar Equations Non-linear Scalar Equations Professor Dr. E F Toro Laboratory of Applied Mathematics University of Trento, Italy eleuterio.toro@unitn.it http://www.ing.unitn.it/toro August 24, 2014 1 / 44 Overview Here

More information

MATH 819 FALL We considered solutions of this equation on the domain Ū, where

MATH 819 FALL We considered solutions of this equation on the domain Ū, where MATH 89 FALL. The D linear wave equation weak solutions We have considered the initial value problem for the wave equation in one space dimension: (a) (b) (c) u tt u xx = f(x, t) u(x, ) = g(x), u t (x,

More information

MATH 220: Problem Set 3 Solutions

MATH 220: Problem Set 3 Solutions MATH 220: Problem Set 3 Solutions Problem 1. Let ψ C() be given by: 0, < 1, 1 +, 1 < < 0, ψ() = 1, 0 < < 1, 0, > 1, so that it verifies ψ 0, ψ() = 0 if 1 and ψ()d = 1. Consider (ψ j ) j 1 constructed as

More information

Introduction to nonlinear wave models

Introduction to nonlinear wave models Introduction to nonlinear wave models Marko Nedeljkov Department of Mathematics and Informatics, University of Novi Sad Trg Dositeja Obradovića 4, 21000 Novi Sad, Serbia marko.nedeljkov@dmi.uns.ac.rs http://www.dmi.uns.ac.rs

More information

Math 5588 Final Exam Solutions

Math 5588 Final Exam Solutions Math 5588 Final Exam Solutions Prof. Jeff Calder May 9, 2017 1. Find the function u : [0, 1] R that minimizes I(u) = subject to u(0) = 0 and u(1) = 1. 1 0 e u(x) u (x) + u (x) 2 dx, Solution. Since the

More information

S. N. Kruzhkov s lectures on first-order quasilinear PDEs

S. N. Kruzhkov s lectures on first-order quasilinear PDEs to appear in: Analytical and Numerical Aspects of PDEs de Gruyter 2009 S. N. Kruzhkov s lectures on first-order quasilinear PDEs Gregory A. Chechkin and Andrey Yu. Goritsky Abstract. The present contribution

More information

Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems

Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems Dynamics of Propagation and Interaction of Delta-Shock Waves in Conservation Law Systems V. G. Danilov and V. M. Shelkovich Abstract. We introduce a new definition of a δ-shock wave type solution for a

More information

Applications of the compensated compactness method on hyperbolic conservation systems

Applications of the compensated compactness method on hyperbolic conservation systems Applications of the compensated compactness method on hyperbolic conservation systems Yunguang Lu Department of Mathematics National University of Colombia e-mail:ylu@unal.edu.co ALAMMI 2009 In this talk,

More information

Math 4263 Homework Set 1

Math 4263 Homework Set 1 Homework Set 1 1. Solve the following PDE/BVP 2. Solve the following PDE/BVP 2u t + 3u x = 0 u (x, 0) = sin (x) u x + e x u y = 0 u (0, y) = y 2 3. (a) Find the curves γ : t (x (t), y (t)) such that that

More information

Numerische Mathematik

Numerische Mathematik Numer. Math. (2007 106:369 425 DOI 10.1007/s00211-007-0069-y Numerische Mathematik Hyperbolic balance laws: Riemann invariants and the generalized Riemann problem Matania Ben-Artzi Jiequan Li Received:

More information

Hyperbolic Conservation Laws Past and Future

Hyperbolic Conservation Laws Past and Future Hyperbolic Conservation Laws Past and Future Barbara Lee Keyfitz Fields Institute and University of Houston bkeyfitz@fields.utoronto.ca Research supported by the US Department of Energy, National Science

More information

Lecture 5.7 Compressible Euler Equations

Lecture 5.7 Compressible Euler Equations Lecture 5.7 Compressible Euler Equations Nomenclature Density u, v, w Velocity components p E t H u, v, w e S=c v ln p - c M Pressure Total energy/unit volume Total enthalpy Conserved variables Internal

More information

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3

Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Non-linear Wave Propagation and Non-Equilibrium Thermodynamics - Part 3 Tommaso Ruggeri Department of Mathematics and Research Center of Applied Mathematics University of Bologna January 21, 2017 ommaso

More information

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan

Hyperbolic Systems of Conservation Laws. in One Space Dimension. II - Solutions to the Cauchy problem. Alberto Bressan Hyperbolic Systems of Conservation Laws in One Space Dimension II - Solutions to the Cauchy problem Alberto Bressan Department of Mathematics, Penn State University http://www.math.psu.edu/bressan/ 1 Global

More information

AMath 574 February 11, 2011

AMath 574 February 11, 2011 AMath 574 February 11, 2011 Today: Entropy conditions and functions Lax-Wendroff theorem Wednesday February 23: Nonlinear systems Reading: Chapter 13 R.J. LeVeque, University of Washington AMath 574, February

More information

On a simple model of isothermal phase transition

On a simple model of isothermal phase transition On a simple model of isothermal phase transition Nicolas Seguin Laboratoire Jacques-Louis Lions Université Pierre et Marie Curie Paris 6 France Micro-Macro Modelling and Simulation of Liquid-Vapour Flows

More information

STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM WITH FLUX APPROXIMATION

STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN PROBLEM FOR A NON-STRICTLY HYPERBOLIC SYSTEM WITH FLUX APPROXIMATION Electronic Journal of Differential Equations, Vol. 216 (216, No. 126, pp. 1 16. ISSN: 172-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu STRUCTURAL STABILITY OF SOLUTIONS TO THE RIEMANN

More information

Introduction to hyperbolic PDEs and Shallow Water Equations

Introduction to hyperbolic PDEs and Shallow Water Equations Introduction to hyperbolic PDEs and Shallow Water Equations Technische Universität München Fundamentals of Wave Simulation - Solving Hyperbolic Systems of PDEs Supervisor Leonhard Rannabauer 8/12/2017

More information

Modeling and Numerical Approximation of Traffic Flow Problems

Modeling and Numerical Approximation of Traffic Flow Problems Modeling and Numerical Approximation of Traffic Flow Problems Prof. Dr. Ansgar Jüngel Universität Mainz Lecture Notes (preliminary version) Winter Contents Introduction Mathematical theory for scalar conservation

More information

Green s Functions and Distributions

Green s Functions and Distributions CHAPTER 9 Green s Functions and Distributions 9.1. Boundary Value Problems We would like to study, and solve if possible, boundary value problems such as the following: (1.1) u = f in U u = g on U, where

More information

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x

Advanced Calculus Math 127B, Winter 2005 Solutions: Final. nx2 1 + n 2 x, g n(x) = n2 x . Define f n, g n : [, ] R by f n (x) = Advanced Calculus Math 27B, Winter 25 Solutions: Final nx2 + n 2 x, g n(x) = n2 x 2 + n 2 x. 2 Show that the sequences (f n ), (g n ) converge pointwise on [, ],

More information

Waves in a Shock Tube

Waves in a Shock Tube Waves in a Shock Tube Ivan Christov c February 5, 005 Abstract. This paper discusses linear-wave solutions and simple-wave solutions to the Navier Stokes equations for an inviscid and compressible fluid

More information

Mathematical Methods - Lecture 9

Mathematical Methods - Lecture 9 Mathematical Methods - Lecture 9 Yuliya Tarabalka Inria Sophia-Antipolis Méditerranée, Titane team, http://www-sop.inria.fr/members/yuliya.tarabalka/ Tel.: +33 (0)4 92 38 77 09 email: yuliya.tarabalka@inria.fr

More information

Finite Volume Schemes: an introduction

Finite Volume Schemes: an introduction Finite Volume Schemes: an introduction First lecture Annamaria Mazzia Dipartimento di Metodi e Modelli Matematici per le Scienze Applicate Università di Padova mazzia@dmsa.unipd.it Scuola di dottorato

More information

HOMEWORK 4 1. P45. # 1.

HOMEWORK 4 1. P45. # 1. HOMEWORK 4 SHUANGLIN SHAO P45 # Proof By the maximum principle, u(x, t x kt attains the maximum at the bottom or on the two sides When t, x kt x attains the maximum at x, ie, x When x, x kt kt attains

More information

Notes: Outline. Shallow water equations. Notes: Shallow water equations. Notes:

Notes: Outline. Shallow water equations. Notes: Shallow water equations. Notes: Outline Nonlinear hyperbolic systems Shallow water equations Shock waves and Hugoniot loci Integral curves in phase plane Compression and rarefaction R.J. LeVeque, University of Washington IPDE 2011, July

More information

Info. No lecture on Thursday in a week (March 17) PSet back tonight

Info. No lecture on Thursday in a week (March 17) PSet back tonight Lecture 0 8.086 Info No lecture on Thursday in a week (March 7) PSet back tonight Nonlinear transport & conservation laws What if transport becomes nonlinear? Remember: Nonlinear transport A first attempt

More information

MATH FALL 2014

MATH FALL 2014 MATH 126 - FALL 2014 JASON MURPHY Abstract. These notes are meant to supplement the lectures for Math 126 (Introduction to PDE) in the Fall of 2014 at the University of California, Berkeley. Contents 1.

More information

The Discontinuous Galerkin Method for Hyperbolic Problems

The Discontinuous Galerkin Method for Hyperbolic Problems Chapter 2 The Discontinuous Galerkin Method for Hyperbolic Problems In this chapter we shall specify the types of problems we consider, introduce most of our notation, and recall some theory on the DG

More information

Journal of Hyperbolic Differential Equations, Vol. 1, No. 1 (2004),

Journal of Hyperbolic Differential Equations, Vol. 1, No. 1 (2004), FONT TACKING FO SCALA BALANCE EQUATIONS K. H. KALSEN, N. H. ISEBO, AND J. D. TOWES Journal of Hyperbolic Differential Equations, Vol. 1, No. 1 (2004), 115-148 Abstract. We propose and prove convergence

More information

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness

Solutions in the sense of distributions. Solutions in the sense of distributions Definition, non uniqueness Solutions in the sense of distributions Definition, non uniqueness 1. Notion of distributions In order to build weak solutions to the Hopf equation, we need to define derivatives of non smooth functions,

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University Abstract We study two systems of conservation laws for polymer flooding in secondary

More information

On the piecewise smoothness of entropy solutions to scalar conservation laws for a large class of initial data

On the piecewise smoothness of entropy solutions to scalar conservation laws for a large class of initial data On the piecewise smoothness of entropy solutions to scalar conservation laws for a large class of initial data Tao Tang Jinghua Wang Yinchuan Zhao Abstract We prove that if the initial data do not belong

More information

FDM for wave equations

FDM for wave equations FDM for wave equations Consider the second order wave equation Some properties Existence & Uniqueness Wave speed finite!!! Dependence region Analytical solution in 1D Finite difference discretization Finite

More information

VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS

VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS Dept. of Math. Univ. of Oslo Pure Mathematics No. 2 ISSN 86 2439 January 25 VISCOSITY SOLUTIONS OF HAMILTON JACOBI EQUATIONS WITH DISCONTINUOUS COEFFICIENTS GIUSEPPE MARIA COCLITE AND NILS HENRIK RISEBRO

More information

MATH 126 FINAL EXAM. Name:

MATH 126 FINAL EXAM. Name: MATH 126 FINAL EXAM Name: Exam policies: Closed book, closed notes, no external resources, individual work. Please write your name on the exam and on each page you detach. Unless stated otherwise, you

More information

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws

Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Instability of Finite Difference Schemes for Hyperbolic Conservation Laws Alberto Bressan ( ), Paolo Baiti ( ) and Helge Kristian Jenssen ( ) ( ) Department of Mathematics, Penn State University, University

More information

SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS

SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS SHOCK WAVES FOR RADIATIVE HYPERBOLIC ELLIPTIC SYSTEMS CORRADO LATTANZIO, CORRADO MASCIA, AND DENIS SERRE Abstract. The present paper deals with the following hyperbolic elliptic coupled system, modelling

More information

Entropy and Relative Entropy

Entropy and Relative Entropy Entropy and Relative Entropy Joshua Ballew University of Maryland October 24, 2012 Outline Hyperbolic PDEs Entropy/Entropy Flux Pairs Relative Entropy Weak-Strong Uniqueness Weak-Strong Uniqueness for

More information

Scalar conservation laws with moving density constraints arising in traffic flow modeling

Scalar conservation laws with moving density constraints arising in traffic flow modeling Scalar conservation laws with moving density constraints arising in traffic flow modeling Maria Laura Delle Monache Email: maria-laura.delle monache@inria.fr. Joint work with Paola Goatin 14th International

More information

Coupling conditions for transport problems on networks governed by conservation laws

Coupling conditions for transport problems on networks governed by conservation laws Coupling conditions for transport problems on networks governed by conservation laws Michael Herty IPAM, LA, April 2009 (RWTH 2009) Transport Eq s on Networks 1 / 41 Outline of the Talk Scope: Boundary

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Various lecture notes for

Various lecture notes for Various lecture notes for 18311. R. R. Rosales (MIT, Math. Dept., 2-337) April 12, 2013 Abstract Notes, both complete and/or incomplete, for MIT s 18.311 (Principles of Applied Mathematics). These notes

More information

Lecture Notes on Numerical Schemes for Flow and Transport Problems

Lecture Notes on Numerical Schemes for Flow and Transport Problems Lecture Notes on Numerical Schemes for Flow and Transport Problems by Sri Redeki Pudaprasetya sr pudap@math.itb.ac.id Department of Mathematics Faculty of Mathematics and Natural Sciences Bandung Institute

More information

Chapter 3 Second Order Linear Equations

Chapter 3 Second Order Linear Equations Partial Differential Equations (Math 3303) A Ë@ Õæ Aë áöß @. X. @ 2015-2014 ú GA JË@ É Ë@ Chapter 3 Second Order Linear Equations Second-order partial differential equations for an known function u(x,

More information

Answers to Problem Set Number 04 for MIT (Spring 2008)

Answers to Problem Set Number 04 for MIT (Spring 2008) Answers to Problem Set Number 04 for 18.311 MIT (Spring 008) Rodolfo R. Rosales (MIT, Math. Dept., room -337, Cambridge, MA 0139). March 17, 008. Course TA: Timothy Nguyen, MIT, Dept. of Mathematics, Cambridge,

More information

Hyperbolic PDEs. Chapter 6

Hyperbolic PDEs. Chapter 6 Chapter 6 Hyperbolic PDEs In this chapter we will prove existence, uniqueness, and continuous dependence of solutions to hyperbolic PDEs in a variety of domains. To get a feel for what we might expect,

More information

Final: Solutions Math 118A, Fall 2013

Final: Solutions Math 118A, Fall 2013 Final: Solutions Math 118A, Fall 2013 1. [20 pts] For each of the following PDEs for u(x, y), give their order and say if they are nonlinear or linear. If they are linear, say if they are homogeneous or

More information

Attribution-NonCommercial-NoDerivs 2.0 KOREA. Share copy and redistribute the material in any medium or format

Attribution-NonCommercial-NoDerivs 2.0 KOREA. Share copy and redistribute the material in any medium or format Attribution-NonCommercial-NoDerivs. KOREA You are free to : Share copy and redistribute the material in any medium or format Under the follwing terms : Attribution You must give appropriate credit, provide

More information

Theory and Applications of Conservation Laws

Theory and Applications of Conservation Laws Theory and Applications of Conservation Laws Patrick Dwomfuor Master of Science in Mathematics (for international students) Submission date: June 2014 Supervisor: Harald Hanche-Olsen, MATH Norwegian University

More information

MATH 425, FINAL EXAM SOLUTIONS

MATH 425, FINAL EXAM SOLUTIONS MATH 425, FINAL EXAM SOLUTIONS Each exercise is worth 50 points. Exercise. a The operator L is defined on smooth functions of (x, y by: Is the operator L linear? Prove your answer. L (u := arctan(xy u

More information

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine

Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine Lecture 2 The wave equation Mathématiques appliquées (MATH0504-1) B. Dewals, Ch. Geuzaine V1.0 28/09/2018 1 Learning objectives of this lecture Understand the fundamental properties of the wave equation

More information

arxiv: v2 [math.ap] 1 Jul 2011

arxiv: v2 [math.ap] 1 Jul 2011 A Godunov-type method for the shallow water equations with discontinuous topography in the resonant regime arxiv:1105.3074v2 [math.ap] 1 Jul 2011 Abstract Philippe G. efloch 1 and Mai Duc Thanh 2 1 aboratoire

More information

Delta-shock Wave Type Solution of Hyperbolic Systems of Conservation Laws

Delta-shock Wave Type Solution of Hyperbolic Systems of Conservation Laws Delta-shock Wave Type Solution of Hyperbolic Systems of Conservation Laws V. G. Danilov and V. M. Shelkovich Abstract. For some classes of hyperbolic systems of conservation laws we introduce a new definition

More information

Generalized Riemann Problems: From the Scalar Equation to Multidimensional Fluid Dynamics

Generalized Riemann Problems: From the Scalar Equation to Multidimensional Fluid Dynamics 1 Generalized Riemann Problems: From the Scalar Equation to Multidimensional Fluid Dynamics Matania Ben-Artizi and Joseph Falcovitz Institute of Mathematics, the Hebrew University of Jerusalem, Jerusalem

More information

On the Cauchy Problems for Polymer Flooding with Gravitation

On the Cauchy Problems for Polymer Flooding with Gravitation On the Cauchy Problems for Polymer Flooding with Gravitation Wen Shen Mathematics Department, Penn State University. Email: wxs27@psu.edu November 5, 2015 Abstract We study two systems of conservation

More information

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2

Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer C2 b 2 Numerical Methods for Conservation Laws WPI, January 2006 C. Ringhofer ringhofer@asu.edu, C2 b 2 2 h2 x u http://math.la.asu.edu/ chris Last update: Jan 24, 2006 1 LITERATURE 1. Numerical Methods for Conservation

More information

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang

Pointwise convergence rate for nonlinear conservation. Eitan Tadmor and Tao Tang Pointwise convergence rate for nonlinear conservation laws Eitan Tadmor and Tao Tang Abstract. We introduce a new method to obtain pointwise error estimates for vanishing viscosity and nite dierence approximations

More information

SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS

SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS SOME PRELIMINARY NOTES ON HYPERBOLIC CONSERVATION LAWS KAYYUNNAPARA T. JOSEPH CENTRE FOR APPLICABLE MATHEMATICS TATA INSTITUTE OF FUNDAMENTAL RESEARCH BANGALORE 5665 1. Introduction Many of the physical

More information

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions

FOURIER TRANSFORMS. 1. Fourier series 1.1. The trigonometric system. The sequence of functions FOURIER TRANSFORMS. Fourier series.. The trigonometric system. The sequence of functions, cos x, sin x,..., cos nx, sin nx,... is called the trigonometric system. These functions have period π. The trigonometric

More information

1 Basic Second-Order PDEs

1 Basic Second-Order PDEs Partial Differential Equations A. Visintin a.a. 2011-12 These pages are in progress. They contain: an abstract of the classes; notes on some (few) specific issues. These notes are far from providing a

More information

Measure-valued - strong uniqueness for hyperbolic systems

Measure-valued - strong uniqueness for hyperbolic systems Measure-valued - strong uniqueness for hyperbolic systems joint work with Tomasz Debiec, Eduard Feireisl, Ondřej Kreml, Agnieszka Świerczewska-Gwiazda and Emil Wiedemann Institute of Mathematics Polish

More information

Math 342 Partial Differential Equations «Viktor Grigoryan

Math 342 Partial Differential Equations «Viktor Grigoryan Math 342 Partial Differential Equations «Viktor Grigoryan 15 Heat with a source So far we considered homogeneous wave and heat equations and the associated initial value problems on the whole line, as

More information

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE

CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE CLASSIFICATION AND PRINCIPLE OF SUPERPOSITION FOR SECOND ORDER LINEAR PDE 1. Linear Partial Differential Equations A partial differential equation (PDE) is an equation, for an unknown function u, that

More information

On the Front-Tracking Algorithm

On the Front-Tracking Algorithm JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS 7, 395404 998 ARTICLE NO. AY97575 On the Front-Tracking Algorithm Paolo Baiti S.I.S.S.A., Via Beirut 4, Trieste 3404, Italy and Helge Kristian Jenssen

More information

Math 126 Final Exam Solutions

Math 126 Final Exam Solutions Math 126 Final Exam Solutions 1. (a) Give an example of a linear homogeneous PE, a linear inhomogeneous PE, and a nonlinear PE. [3 points] Solution. Poisson s equation u = f is linear homogeneous when

More information

Skr. K. Nor. Vidensk. Selsk., 2003, no. 3, 49 pp

Skr. K. Nor. Vidensk. Selsk., 2003, no. 3, 49 pp STABILITY FOR ENTROPY SOLUTIONS OF NONLINEAR DEGENERATE PARABOLIC CONVECTION-DIFFUSION EQUATIONS WITH DISCONTINUOUS COEFFICIENTS L 1 K. H. KARLSEN, N. H. RISEBRO, AND J. D. TOWERS Skr. K. Nor. Vidensk.

More information

DELTA SHOCK WAVE FORMATION IN THE CASE OF TRIANGULAR HYPERBOLIC SYSTEM OF CONSERVATION LAWS

DELTA SHOCK WAVE FORMATION IN THE CASE OF TRIANGULAR HYPERBOLIC SYSTEM OF CONSERVATION LAWS DELTA SHOCK WAVE FORMATION IN THE CASE OF TRIANGULAR HYPERBOLIC SYSTEM OF CONSERVATION LAWS V.G. DANILOV AND D. MITROVIC Abstract. We describe δ-shock wave generation from continuous initial data in the

More information

MATH 317 Fall 2016 Assignment 5

MATH 317 Fall 2016 Assignment 5 MATH 37 Fall 26 Assignment 5 6.3, 6.4. ( 6.3) etermine whether F(x, y) e x sin y îı + e x cos y ĵj is a conservative vector field. If it is, find a function f such that F f. enote F (P, Q). We have Q x

More information

High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic Partial Differential Equations

High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic Partial Differential Equations University of New Mexico UNM Digital Repository Mathematics & Statistics ETDs Electronic Theses and Dissertations Summer 7-17-2017 High Order Hermite and Sobolev Discontinuous Galerkin Methods for Hyperbolic

More information

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory

Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Generation of undular bores and solitary wave trains in fully nonlinear shallow water theory Gennady El 1, Roger Grimshaw 1 and Noel Smyth 2 1 Loughborough University, UK, 2 University of Edinburgh, UK

More information

MATH 307: Problem Set #7

MATH 307: Problem Set #7 MATH 307: Problem Set #7 Due on: Feb 11, 2016 Problem 1 First-order Variation of Parameters The method of variation of parameters uses the homogeneous solutions of a linear ordinary differential equation

More information

1. Differential Equations (ODE and PDE)

1. Differential Equations (ODE and PDE) 1. Differential Equations (ODE and PDE) 1.1. Ordinary Differential Equations (ODE) So far we have dealt with Ordinary Differential Equations (ODE): involve derivatives with respect to only one variable

More information

Finite volume method for conservation laws V

Finite volume method for conservation laws V Finite volume method for conservation laws V Schemes satisfying entropy condition Praveen. C praveen@math.tifrbng.res.in Tata Institute of Fundamental Research Center for Applicable Mathematics Bangalore

More information

A stochastic particle system for the Burgers equation.

A stochastic particle system for the Burgers equation. A stochastic particle system for the Burgers equation. Alexei Novikov Department of Mathematics Penn State University with Gautam Iyer (Carnegie Mellon) supported by NSF Burgers equation t u t + u x u

More information

arxiv: v3 [math.ap] 26 May 2015

arxiv: v3 [math.ap] 26 May 2015 Delta shock wave for a 3 3 hyperbolic system of conservation laws arxiv:153.6693v3 [math.ap] 26 May 215 Richard De la cruz Juan Galvis Juan Carlos Juajibioy Leonardo Rendón August 27, 218 XV International

More information

Heat Equation on Unbounded Intervals

Heat Equation on Unbounded Intervals Heat Equation on Unbounded Intervals MATH 467 Partial Differential Equations J. Robert Buchanan Department of Mathematics Fall 28 Objectives In this lesson we will learn about: the fundamental solution

More information

Some Aspects of Solutions of Partial Differential Equations

Some Aspects of Solutions of Partial Differential Equations Some Aspects of Solutions of Partial Differential Equations K. Sakthivel Department of Mathematics Indian Institute of Space Science & Technology(IIST) Trivandrum - 695 547, Kerala Sakthivel@iist.ac.in

More information

LECTURE 5: THE METHOD OF STATIONARY PHASE

LECTURE 5: THE METHOD OF STATIONARY PHASE LECTURE 5: THE METHOD OF STATIONARY PHASE Some notions.. A crash course on Fourier transform For j =,, n, j = x j. D j = i j. For any multi-index α = (α,, α n ) N n. α = α + + α n. α! = α! α n!. x α =

More information

MATH 220 solution to homework 5

MATH 220 solution to homework 5 MATH 220 solution to homework 5 Problem. (i Define E(t = k(t + p(t = then E (t = 2 = 2 = 2 u t u tt + u x u xt dx u 2 t + u 2 x dx, u t u xx + u x u xt dx x [u tu x ] dx. Because f and g are compactly

More information

Summer 2017 MATH Solution to Exercise 5

Summer 2017 MATH Solution to Exercise 5 Summer 07 MATH00 Solution to Exercise 5. Find the partial derivatives of the following functions: (a (xy 5z/( + x, (b x/ x + y, (c arctan y/x, (d log((t + 3 + ts, (e sin(xy z 3, (f x α, x = (x,, x n. (a

More information

p. 6-1 Continuous Random Variables p. 6-2

p. 6-1 Continuous Random Variables p. 6-2 Continuous Random Variables Recall: For discrete random variables, only a finite or countably infinite number of possible values with positive probability (>). Often, there is interest in random variables

More information

Conservation Laws and Finite Volume Methods

Conservation Laws and Finite Volume Methods Conservation Laws and Finite Volume Methods AMath 574 Winter Quarter, 2011 Randall J. LeVeque Applied Mathematics University of Washington January 3, 2011 R.J. LeVeque, University of Washington AMath 574,

More information

Notes on Computational Mathematics

Notes on Computational Mathematics Notes on Computational Mathematics James Brunner August 19, 2013 This document is a summary of the notes from UW-Madison s Math 714, fall 2012 (taught by Prof. Shi Jin) and Math 715, spring 2013 (taught

More information