An Algorithm for Integrated Pin Assignment and Buffer Planning Λ

Size: px
Start display at page:

Download "An Algorithm for Integrated Pin Assignment and Buffer Planning Λ"

Transcription

1 An Algoihm fo Ineged Pin Aignmen nd Buffe Plnning Λ Hu Xing, Xioing Tng, nd D.F. Wong Univeiy of Tex Auin, Auin, TX Silion Peeive, A Cdene Comny, Sn Cl, CA fxingh, ng, wongg@.uex.edu ABSTRACT The uffe lok mehodology h eome ineingly oul moe nd moe uffe e needed in dee-umion deign, nd i led o mny hllenging olem in hyil deign. In hi e, we een olynomil-ime ex lgoihm fo ineged in ignmen nd uffe lnning fo ll wo-in ne fom one mo lok (oue lok) o ll ohe lok of given uffe lok ln well minimizing he ol o α W + β R fo ny oiive α nd β whee W i he ol wie lengh nd R i he nume of uffe. By lying hi lgoihm ieively (eh ime ik one lok he oue lok), i ovide olynomil-ime lgoihm fo in ignmen nd uffe lnning fo ne mong mulile mo lok. Exeimenl eul demone i effiieny nd effeivene. Cegoie nd Suje Deio B.. [Ineged Ciui]: Deign Aid Plemen nd ouing; J.[Comue Aliion]: Comue-Aided Engineeing Comue-ided deign ie mny hllenging olem in hyil deign. In hiehil oh, uffe e lueed ogehe uffe lok o filie flooln nd ouing. Cong e l.[], Tng nd Wong[] nd Sk e l.[] ooed lgoihm fo uffe lok lnning olem o minimize he hi e nd he nume of uffe lok. In wo een wok, Dgn e l.[][] gve lgoihm fo glol uffeed ouing olem wih fixed in. Thei wok i ed on muliommodiy flow whih i n NP-hd olem. In hi e, we dde he olem of imulneou Pin ignmen nd Buffe lnning (PB) fo given uffe lok ln. Ou lgoihm ue min-o flow omuion whih i olvle in olynomil ime. Genel Tem Algoihm, Deign, Pefomne, Theoy Keywod uffe ineion, in ignmen, min-o mximum flow. INTRODUCTION A hi ize gow lge nd minimum feue ize i edued, he ine nd eine of wie inee dmilly. Thi mke ineonne ly iil ole in hieving high efomne nd eduing iui omlexiy in dee-umion deign. Mny ehniue hve een ooed o edue ineonne dely. One effeive wy i uffe ineion[][] nd i i hevily ued in hi deign. I i eimed h he moun of ineed uffe fo on-hi ineonne my e u o, in nm ehnology[]. A he me ime, he inoduion of o mny uffe () Λ Thi wok w illy uoed y he Nionl Siene Foundion unde gn CCR-. Pemiion o mke digil o hd oie of ll o of hi wok fo eonl o loom ue i gned wihou fee ovided h oie e no mde o diiued fo ofi o ommeil dvnge nd h oie e hi noie nd he full iion on he fi ge. To oy ohewie, o eulih, o o on eve o o ediiue o li, euie io eifi emiion nd/o fee. DAC, June -,, New Olen, Louiin, USA. Coyigh ACM ---//...$.. () Figue : () Thee ne ue uffe nd he ol wie lengh i. () An oiml oluion wih uffe nd wie lengh. Infomlly, he olem n e deied follow: given lemen of mo lok nd uffe lok, ign in nd ln uffe ineion fo he given e of ne uje o he euied lowe nd ue ound of onneion inevl (i.e., he nge of llowle dine eween wo uffe o wo in o in nd uffe) well minimizing he ol o α W + β R whee W

2 i he ol wie lengh nd R i he nume of uffe. Figue how n exmle. The lemen inlude mo lok, nd uffe lok. Buffe lok my hve diffeen iie, i.e., he nume of uffe in uffe lok n e diffeen. h iy while he iie of nd e. A ne e inlude ne eween nd nd ne eween nd. The nge of llowle dine eween wo uffe o uffe nd in i ounded y Mnhn dine nd. Alo if he dine of wo in i longe hn, uffe hve o e ineed, i.e., he lowe nd ue ound fo he llowle dine eween wo in e nd. The uoe i o ign in nd ln uffe fo he ne while minimizing he nume of uffe nd he ol wie lengh. The gol of in ignmen i o find he ex loion of in on mo lok. Buffe lnning i o deide uffe uge long ne onneion o minin euied dely onin. The wo k e loely eled. Pin ignmen lone my negle mny imon fo ine ineonne i hd o edi, nd glol view of ne onneion i lwy helful. Figue () illue oluion y wo-e oh (i.e., in ignmen following uffe lnning). The in ignmen e deided oding o he hoe Mnhn dine. Tolly uffe e ued nd he wie lengh i. Figue () how n oiml oluion wih only one uffe nd he wie lengh i. In hi e, we een olynomil-ime ex lgoihm fo imulneou in ignmen nd uffe lnning fo ll wo-in ne fom one mo lok (oue lok) o ll ohe lok fo given uffe lok ln uh h eh ne ifie he lowe nd ue ound on onneion inevl well minimizing he ol o α W + β R fo ny oiive onn α nd β whee W i he ol wie lengh nd R i he nume of uffe. By lying hi lgoihm ieively (eh ime ik one lok he oue lok), i ovide olynomil-ime lgoihm fo in ignmen nd uffe lnning fo ne mong mulile mo lok. Exeimenl eul demone i effiieny nd effeivene. The e of he e i ognized follow. Seion define he PBO (Pin ignmen nd Buffe lnning fo One oue lok) olem whih imulneouly ign in nd ln uffe fo ne eween one mo lok nd ll ohe lok. In eion, we een newok flow fomulion o olve he PBO olem. Then we exend PBO olem o PB(Pin ignmen nd Buffe Plnning) olem whih onide ll ne mong mulile mo lok in eion. In eion, we lo ovide node lueing mehod o eed u he omuion. Finlly, we how he exeimenl eul in eion nd onlude he e in eion.. PIN-ASSIGNMENT AND BUFFER PLAN- NING FOR ONE SOURCE BLOCK (PBO) Given lemen of m + mo lok B = f ; ;:::; m g wih n uffe lok R = f ;:::; n g. (Fo onveniene, we ll oue lok nd ohe lok ink lok.) Eh uffe lok i (i = ;:::;n) i oied wih oiive inege i denoing he iy of i, i.e., uffe lok i n hold i uffe. Le N = N [ N [::: [ N m whee N i (i = ;:::;m) i he e of ne eween lok nd i ; P = P [ P [::: [ P m whee P i (i = ;;:::;m) i he e of ville in loion of lok i. The dine of wo oin u nd v on ln egion i denoed d uv.leuffe inevl e he llowle dine nge eween wo uffe o in nd uffe; nd in inevl e he llowle dine nge eween wo in. Fo onveniene, le onneion inevl efe o uffe inevl o in inevl. Suoe he lowe nd ue ound fo uffe inevl e L () () Figue : () A PBO olem wih mo lok nd uffe lok. The lowe nd ue ound of uffe inevl e nd eeively. And he in inevl e ounded nd. The iny ue xy on he oundie of mo lok e ville in loion. The ne e inlude one ne eween nd nd wo eween nd. () The oeonding flow newok gh. nd Ũ eeively; nd hoe fo in inevl e L nd Ū eeively. A vlid h men:. If he h i =( ; ;:::; k ; ) whee ; P nd i R (i = ;:::;k), hen he dine of eh h egmen i ounded y L nd Ũ, i.e., L» d» Ũ, L» d i i+» Ũ (i = ;:::;k ) nd L» d k» Ũ;. If he h i =( ; ) whee ; P, hen L» d» Ū. The lengh of h i he um of he dine of ll h egmen. Fo ny given oiive onn α nd β, he PBO olem i o find e of vlid h onneing nd ll ohe mo lok well minimizing he ol o α W + β R whee W i he ol lengh nd R i he nume of uffe. Eh h oeond o ne in N nd he wo end oin of he h e igned in loion fo hi ne. Figue () give imle exmle. Thee e mo lok nd uffe lok. The iie of he hee uffe lok,

3 nd e, nd eeively. Fo ny wo oin u nd v on he ln egion, hei oodine e (u x ;u y ) nd (v x ;v y ) eeively. Define dine d uv = ju x v x j + ju y v y j. The euied lowe nd ue ound fo uffe inevl e nd eeively; nd he ound fo in inevl e nd eeively. The uoe i o deide in nd uffe loion fo ne eween nd nd ne eween nd wih minimum o α W + β R.. THE ALGORITHM To olve he PBO olem, we fi onu newok gh, hen ly min-o flow lgoihm o ge he oluion. Given PBO olem, we onu he newok gh G = (V;E) wih iy U nd o C follow:. V = f;; ; ;:::; m g[r [P,whee i he oue node, i he ink node, nd i (i = ;:::;m) i uink node.. E = E [ E [ E [ E [ E [ E [ E,whee E = f(; )j P g, E = f( i ;)ji = ;;:::;mg, E = S m i= f(; i )j P i g, E = S m i= f( ; )j P ; P i ; L» d» Ūg, E = f( i ; j )ji = j;i; j = ;:::;n; L» d i j» Ũg, E = S n i= f( ; i )j P ; L» d i» Ũg, E = S n i= f( i ; )j P j ; j = ;:::;m; L» d i» Ũg. Edge Ciy: fo edge e( i ;), U(e) =jn i j,(i = ;:::;m); ohe edge e, U(e) =.. Node Ciy: fo i R, U( i )= i ; fo P, U() =; ohe node e inied.. Edge Co: fo e E [ E [ E, C(e) =; ohe edge e(u;v), C(e) =α d uv.. Node Co: fo R, C() =β; ohe node v, C(v) =. (U(v),C(v)) v (U(v),C(v)) v v" Figue : Node liing fo ied node. The new edge h iy U(v) nd o C(v). Figue () illue he onued newok gh fo he PBO olem in Figue (). Noe h whehe n edge (u;v) (u;v P [ R) hould e dded o G deend on whehe d uv fll in he nge [ L;Ũ] (o [ L;Ū]) o no. Fo exmle, he dine eween nd i, whih i le hn he lowe uffe inevl ound L =. Thu hee i no edge eween nd in he onued flow newok. Similly, he dine eween nd () () Figue : () flow f in he newok in Figue (), j f j =. () The oeonding oluion of in ignmen nd uffe lnning o he PBO olem of Figue (). i whih i lge hn he ue in inevl ound Ū =, hu he edge ( ; ) i no inluded. In he onued flow newok, evey node in P [ R h o nd iy. Howeve, lil newok flow olem only ign o nd iy o edge. Thi n e olved y liing he ied node v ino wo node v nd v. A new edge (v ;v ) i dded wih iy U(v) nd o C(v). Then hnge he oiginl edge (u;v) nd (v;w) ino edge (u;v ) nd (v ;w) eeively (efe o Figue ). Any flow in G n e med o in ignmen nd uffe lnning oluion fo ue of he given ne. The ued iie of R node in he flow e he nume of uffe needed in he oluion. Figue () illue flow f, j f j =. And Figue () i oluion of in ignmen nd uffe lnning deived fom he ove flow. If flow f exi nd j f j = jnj, hen we n find feile oluion of in ignmen nd uffe lnning fo ll of he ne in N. On he ohe hnd, given in ignmen nd uffe lnning oluion fo n ne, flow f (j f j = n) n lwy e found on he onued flow newok. Sine he ol iie of edge going ino ink node e m i= U( i;) = m i= jn ij = jnj, he mximum flow f mx in G, j f mx j»jnj. Thu if flow j f j < jnj, hen hee i no feile oluion o he oiginl PBO olem, whih euie onideing ll of he ne eween nd ll ohe mo lok.

4 () () () Figue : () A PB olem wih mo lok nd uffe lok. () The oeonding flow newok when i he oue lok. () The oeonding flow newok when i he oue lok. Fuhemoe, he o of he flow i lo he o of in ignmen nd uffe lnning oluion. Theefoe min-o mximum flow ign in nd ln uffe fo mny ne oile wih minimum ol o. The following heoem how h he PBO olem n e exly olved y min-o flow omuion on G. THEOREM. A min-o flow f, j f j = jnj, in G oeond o in ignmen nd uffe lnning oluion o PBO olem fo ll ne in N wih minimum ol o α W + β R fo ny given α nd β whee W i he ol wie lengh nd R i he nume of uffe. If he ize of he mx-flow, j f mx j < jnj, hen hee i no feile oluion o he PBO olem. A min-o mximum flow ign in nd ln uffe fo he mximum nume of ne wih minimum ol o. The lgoihm PBO-Flow n e ummized he following: Algoihm PBO-Flow(B, R, N, P, C, α, β). Conu he newok gh G(V;E). Aign iie U nd o C. Aly min-o mximum flow lgoihm on G. Deive he in ignmen nd uffe lnning oluion Finding min-o mximum flow in newok i lil olem fo whih evel olynomil-ime oiml lgoihm e ville[][]. Deiving oluion of PBO fom flow in G n e done in O(E) ime. Thu, if we do he doule ling lgoihm in[], we ge he following ime omlexiy fo he PBO olem. THEOREM. PBO-Flow lgoihm oimlly olve he PBO olem in O(VEloglogU mx log(vc mx )) ime fo G =(V;E),U mx i he mximum vlue of U, nd C mx i he mximum vlue of C. Noe h he omlexiy of ou PBO-Flow lgoihm i minly deenden on he ize of he onued newok gh G(V;E). Aoding o he gh onuion ule, jv j = + m + (jpj + jrj) (onide node liing), nd he ue ound of edge i m + jpj + jp j jpj + jpj jrj + jrj + jpj + jrj (in f, he nume of edge i muh mlle due o dine onin) whih i ounded y (jpj + jrj). In liion, we my u moe effo on eduing he nume of uffe. In hi e, we n e lge weigh o uffe node, i.e., lge β. Fo exmle, le β lge hn he ue dine ound Ũ. Ifweeβ lge enough, we end o ge oluion wih he minimum nume of uffe. Fuhe in ome iui, ome loion on lok my no e llowed fo in ignmen. In hi e, hee kind of loion will no e in he in e P. Oviouly, ou newok-flow ed lgoihm will no ign in o hee kind of loion.. PIN ASSIGNMENT AND BUFFER PLAN- NING (PB) In he ove eion, we diu how o olve PBO olem uing min-o mximum flow omuion. PBO olem only onide ne onneion eween one oue lok nd ohe lok. In eliy, we need o del wih ne onneion mong ll of he mo lok, lled PB(Pin ignmen nd Buffe Plnning) olem. The definiion of PBO olem n e eily exended o PB olem he following: Given:. lemen of m mo lok B = f ; ;:::; m g nd n uffe lok R = f ; ;:::; n g;uffelok i h iy i.. e of ville in loion P = P [P [::: [P m whee P i (i = ;:::;m) i e of ville in loion of mo lok i.. e of ne N = N [ N [::: [ N m whee N i (i = ;:::;m) i he e of ne eween lok i nd ll ohe lok.. wo non-negive nume L nd Ũ denoing he lowe nd ue ound of uffe inevl.. wo non-negive nume L nd Ū denoing he lowe nd ue ound of in inevl. Gol: Fo ny given oiive α nd β, find e of vlid h oeonding o he ne e N well minimizing he ol o α W +β R whee W i he ol wie lengh nd R i he nume of uffe. PBO-Flow lgoihm olve in ignmen nd uffe lnning fo ne eween one lok nd ll ohe lok. Nully, if we e eh mo lok he oue lok nd ly PBO-Flow lgoihm eeedly, we n ge oluion fo ll ne mong mulile mo lok. Thi i he i ide of PB-Flow lgoihm.

5 Algoihm PB-Flow(B, R, N, P, C, α, β). Le e he oue lok;. Aly PBO-Flow(B, R, N, P, C, α, β). Fo i =om.. Le i e he oue lok; Adju he newok gh G(V;E). Aly PBO-Flow(B, R, N i, P, C, α, β). Deive he in ignmen nd uffe lnning oluion Noe h when diffeen lok e eleed he oue lok, hei onued flow newok e lighly diffeen, i.e., he edge iniden fom/o he in node of he wo lok e diffeen. So in PB-Flow lgoihm, eh ieion, we need o do ome djumen o nfom he exiing newok gh o he one oeonding o he nex oue lok(line ). Now uoe wo diffeen mo lok i nd i+ e eleed he oue lok euenilly. Le G i e he onued flow newok when i i hoen he oue lok. The following e hnge G i o i+ oeonding flow newok G i+ :. delee edge onneing he in node of P i nd he in node of ohe lok;. dd edge onneing he in node of P i+ nd he in node of ohe lok well minining dine onin.. evee he dieion of edge (;) whee P i nd R;. evee he dieion of edge (; ) whee R nd P i+ ;. evee he dieion of edge (; ) whee P i ;. evee he dieion of edge (; i+ ) whee P i+ ;. le i+ e he oue node nd he oiginl oue node eome uink node i. Thu emove he edge ( i+ ;) nd dd one new edge ( i ;). A illued in Figue, () i PB olem. () how he onued flow newok when i he oue lok. When he oue lok i wihed o, eome he oue node nd he oiginl one eome uink node. Bu he edge onneing wo uffe node emin unhnged. Fo newly dded edge (u;v),heoiα d uv nd he iy i. Fo ohe edge (u ;v ), he o i unhnged nd he iy i if no flow flow hough he oeonding edge in he eviou ieion. Ohewie, he iy i. A o he iie of node, imilly, if node v h iie lef fe uhing flow in G i, hen he iy of v i in G i+. G i nd G i+ hve he me node e. Alo i i ey o how h he nume of hnged edge i ounded y (jp i j + jp i+ j) (jpj + jrj). When king he dine onin ino onideion, hi ound n e fuhe gely edued. Thu he djumen o he gh n e effiienly omlihed. A wo in ne onneing i nd i+ elong o oh ne e N i nd N i+. Suoe we n ge feile oluion o he PB olem wih PB-Flow lgoihm. Afe lying PBO-Flow on G i, he ne elong o N i N i+ hould hve ledy een found. Thu we only need o onide N i+ N i ::: N while uhing flow on G i+. On he ohe hnd, we noie h ne elonging o N i N i+ hould oeond o h ( u ; ;:::; k ; v) ( u P i, v P i+, i R;i = ;:::;k) ing i. Then in he modified flow newok G i+, he h ( v ; k ;:::; ; u ) mu exi ine he edge onneion mong uffe lok e no hnged. Thu we n emove ll h onneed o node in P i+ y ineing he iie long ll hee h, nd lying PBO-Flow wih ne N i+. The oimliy of PBO-Flow gunee h he o will no inee. f = Fuhe even if he lgoihm doen eun feile oluion, (e.g, no feile oluion exi), he eond wy ill ouefom he fi one ine he oimliy of PBO-Flow ue h he new oluion won eome woe: eihe onneing moe ne o eduing he o.. IMPROVEMENT WITH NODE CLUSTER- ING Figue : The oeonding flow newok of he PB olem in Figue () uing node lueing mehod. () () () Figue : () A flow f, j f j = flow hough ue-node. () The oeonding newok nd flow oluion. () Deiving onneion fo oiginl in node. When we hndle ig iui whih my inlude huge moun of ne, he oeonding flow newok migh e uie lge. In ode o filie he oe of huge PB olem, we ooe he following node lueing mehod o eed u he omuion. Fo ny P, if i inide mo lok, i mu e onneed o ome in ouide he lok. Wihou lo of geneliy, we my ume h in i only on he oundy of mo lok. Then y gouing neigho in node ogehe, we n gely edue he nume of node, oneuenly eduing he nume of edge. One evel node e goued ogehe, we n ue he vege oodine he loion of he new ue-node. And he iy of he ue-node i he nume of node i inlude. Figue illue onued flow newok fo Figue () when neigho in e lueed o one ue-node. Aully, we n e diffeen le e o lok oding o hei ize o ohe euiemen. One we ge oluion fom he ue-node flow newok, we need o m he flow o oluion of he oiginl PB olem, i.e, diiuing he flow hough one ue-node o i in node. Of

6 Tle : Avege eul of PB-Flow fo ime. All ne e found uing PB-Flow lgoihm File An X H S F M Gid x x x x x x Blok Buffe Blok Ne Time Ne-Ne (eond) PB-Flow Found Ne-Ne.. ne PB-Flow Ne-Ne.... (e ne) (.) (.) (.) (.) (.) (.) Buffe PB-Flow... (e ne) (.) (.) (.) (.) (.) (.) edued.%.%.%.%.%.% Ne-Ne... Wie (e ne) (.) (.) (.) (.) (.) (.) Lengh PB-Flow... (e ne) (.) (.) (.) (.) (.) (.) edued.%.%.%.%.%.% oue, we hoe he ming h he minimum onneion lengh. In Figue (), flow f, j f j = flow hough ue-node whih inlude in node. () how feile ming. Sill i n e olved wih min-o mximum flow hown in Figue (). Eh node i (i = ;;;) in he ue-node i onneed o he deinion node j ( j = ;;) if d i j ifie he dine onin. The iy of eh edge i. The o of edge ( i ; j ) i he dine of wo node d i j. All ohe edge hve o. Min-o mximum flow gunee o find n oiml ming.. EXPERIMENTAL RESULTS Ou lgoihm wee imlemened in C++ on Sun S Ul (MHz) wih M memoy. We eed PB-Flow on iui whih wee geneed ndomly. Fo ll file, we doed he node lueing mehod in Seion o edue unime. We omed PB-Flow lgoihm wih wo-e oh (fi ign in, hen ln uffe). We ued lil wy[] o ign in follow: y onneing he ene of wo mo lok, we go wo oing oin on he oundie of eh lok, hen ign in ound he oing oin fo he ne eween hee wo mo lok. Afe in ignmen w done fo ll ne, we ued ne-y-ne oh fo uffe lnning. The ne-y-ne oh onideed only one ne eh ime nd found he min-o h eween he wo in of he ne fo uffe ineion. Fo eh e iui, we eeed oh ohe ime. Tle lied he vege eul of hee ime. Uing PB-Flow, we ould find feile oluion of in ignmen nd uffe lnning fo ll of he ne wih ignifin imovemen on oh he ol wie lengh nd he nume of uffe. The l wo ow how he omion of he nume of uffe nd he ol wie lengh. Fo oh mehod, we lied he e eul nd he vlue e ne. The eenge w luled oding he vlue e ne ine he nume of found ne e diffeen. The l wo eing file F nd M inlude moe hn ne. The ne-y-ne oh n no hndle uh lge file. Fo omion uoe, we fi ly he node lueing egy o gou in, hen ue ne-yne fo uffe ineion.. CONCLUSION In hi e, we een olynomil-ime lgoihm fo imulneou in ignmen nd uffe lnning fo ll -in ne eween oue mo lok nd ll ohe lok uh h eh ne ifie he lowe nd ue ound of onneion inevl well minimizing he ol o α W + β R. By lying hi lgoihm ieively (eh ime ik one lok he oue lok), i ovide olynomil-ime lgoihm fo in ignmen nd uffe lnning fo ne mong mulile mo lok. Exeimenl eul demone h he lgoihm i vey effiien nd effeive.. REFERENCES [] R.K. Ahuj, A.V. Goldeg, J.B. Olin, nd R.E. Tjn, Finding minimum-o flow y doule ling, Mhemil Pogmming,. -,. [] R.K. Ahuj, T.L. Mgnni, nd J.B. Olin, Newok Flow, Penie Hll,. [] H.B.Bkoglu, Ciui, Ineonneion, nd Pkging fo VLSI, Addion-Weley,. [] J.Cong, Chllenge nd oouniie fo deign innovion in nnomee ehnologie, SRC Woking Pe, h:// mgm/fonie.dgw, De. [] J.Cong, T.Kong, nd D.Z. Pn, Buffe lok lnning fo ineonne diven floolnning, Po. ICCAD,. -, Nov.. [] T.H. Comen, C.E. Leieon, nd R.L. Rive, Inoduion o Algoihm, The MIT Pe,. [] F.F. Dgn, A.B.Khng, I.I. Mndoiu, S. Muddu, nd A. Zelikovky, Povly good glol uffeing uing n ville uffe lok ln, Po. ICCAD,. -,. [] F.F. Dgn, A.B.Khng, I.I. Mndoiu, S. Muddu, nd A. Zelikovky, Povly good glol uffeing y mulieminl muliommodiy flow oximion, Po. ASPDAC,. -,. [] R.Oen, Glol wie hmful?, Po. ISPD,. -,. [] B.Pe nd M.Loenzei, Phyil Deign Auomion of VLSI Syem, Benjmin/Cumming, Menlo Pk, CA. [] P.Sk, V. Sundmn nd C.K. Koh, Rouiliy-Diven Reee Blok Plnning fo Ineonne-Ceni Floolnning, Po. ISPD, Ail. [] X.Tng nd D.F. Wong, Plnning uffe loion y newok flow, Po. ISPD,. -, Ail.

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

Consider a Binary antipodal system which produces data of δ (t)

Consider a Binary antipodal system which produces data of δ (t) Modulaion Polem PSK: (inay Phae-hi keying) Conide a inay anipodal yem whih podue daa o δ ( o + δ ( o inay and epeively. Thi daa i paed o pule haping ile and he oupu o he pule haping ile i muliplied y o(

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Maximum Flow. Flow Graph

Maximum Flow. Flow Graph Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome

More information

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006

Homework 5 for BST 631: Statistical Theory I Solutions, 09/21/2006 Homewok 5 fo BST 63: Sisicl Theoy I Soluions, 9//6 Due Time: 5:PM Thusy, on 9/8/6. Polem ( oins). Book olem.8. Soluion: E = x f ( x) = ( x) f ( x) + ( x ) f ( x) = xf ( x) + xf ( x) + f ( x) f ( x) Accoing

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( )

Calculus 241, section 12.2 Limits/Continuity & 12.3 Derivatives/Integrals notes by Tim Pilachowski r r r =, with a domain of real ( ) Clculu 4, econ Lm/Connuy & Devve/Inel noe y Tm Plchow, wh domn o el Wh we hve o : veco-vlued uncon, ( ) ( ) ( ) j ( ) nume nd ne o veco The uncon, nd A w done wh eul uncon ( x) nd connuy e he componen

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Computer Aided Geometric Design

Computer Aided Geometric Design Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott

the king's singers And So It Goes the colour of song Words and Vusic by By Joel LEONARD Arranged by Bob Chilcott 085850 SATB div cppell US $25 So Goes Wods nd Vusic by By Joel Anged by Bob Chilco he king's singes L he colou of song A H EXCLUSVELY DSTRBUTED BY LEONARD (Fom The King's Singes 25h Annivesy Jubilee) So

More information

Physics 15 Second Hour Exam

Physics 15 Second Hour Exam hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ------------------------------- ol / I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7.

More information

Detection of a Solitude Senior s Irregular States Based on Learning and Recognizing of Behavioral Patterns

Detection of a Solitude Senior s Irregular States Based on Learning and Recognizing of Behavioral Patterns eeion of oliude enio Ieul e ed on Lenin nd Reonizin of eviol en ieki oki onmeme ki nii eme uio Kojim eme Kunio ukun eme Reenly enion i id o monioin yem w evio of oliude eon in ome e oulion of oliude enio

More information

Dividing Algebraic Fractions

Dividing Algebraic Fractions Leig Eheme Tem Model Awe: Mlilig d Diidig Algei Fio Mlilig d Diidig Algei Fio d gide ) Yo e he me mehod o mlil lgei io o wold o mlil meil io. To id he meo o he we o mlil he meo o he io i he eio. Simill

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes omewok # P7-3 ecngul loop of widh w nd heigh h is siued ne ve long wie cing cuen i s in Fig 7- ssume i o e ecngul pulse s shown in Fig 7- Find he induced cuen i in he ecngul loop whose self-inducnce is

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Bounding the Locality of Distributed Routing Algorithms

Bounding the Locality of Distributed Routing Algorithms Bonding he Loliy of Diied Roing Algoihm [Exended A] Poenji Boe Shool of Compe Siene Cleon Univeiy Ow, Cnd ji@.leon. Pz Cmi Dep. of Compe Siene Ben-Gion Univ. of he Negev Bee-Shev, Iel mip@.g..il Sephne

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

10 Statistical Distributions Solutions

10 Statistical Distributions Solutions Communictions Engineeing MSc - Peliminy Reding 1 Sttisticl Distiutions Solutions 1) Pove tht the vince of unifom distiution with minimum vlue nd mximum vlue ( is ) 1. The vince is the men of the sques

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1

Week 10: DTMC Applications Ranking Web Pages & Slotted ALOHA. Network Performance 10-1 Week : DTMC Alictions Rnking Web ges & Slotted ALOHA etwok efonce - Outline Aly the theoy of discete tie Mkov chins: Google s nking of web-ges Wht ge is the use ost likely seching fo? Foulte web-gh s Mkov

More information

Beechwood Music Department Staff

Beechwood Music Department Staff Beechwood Music Department Staff MRS SARAH KERSHAW - HEAD OF MUSIC S a ra h K e rs h a w t r a i n e d a t t h e R oy a l We ls h C o l le g e of M u s i c a n d D ra m a w h e re s h e ob t a i n e d

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2

VIA2 VIA1 MET2 VIA1. VIA2 w3 VIA2 MET1 MET3 MET3 MET2 VIA DESIGN RULE CONSIDERATION IN MULTI-LAYER MAZE ROUTING ALGORITHMS Jon Cong, Jie Fng nd Kei-Yong Khoo Comuer Siene Dermen, UCLA Lo Angele, CA 90095 el. 310-2065449, fx. 310-825-2273 fong, jfng, khoog@.ul.edu

More information

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security

General Non-Arbitrage Model. I. Partial Differential Equation for Pricing A. Traded Underlying Security 1 Geneal Non-Abiage Model I. Paial Diffeenial Equaion fo Picing A. aded Undelying Secuiy 1. Dynamics of he Asse Given by: a. ds = µ (S, )d + σ (S, )dz b. he asse can be eihe a sock, o a cuency, an index,

More information

Price Discrimination

Price Discrimination My 0 Price Dicriminion. Direc rice dicriminion. Direc Price Dicriminion uing wo r ricing 3. Indirec Price Dicriminion wih wo r ricing 4. Oiml indirec rice dicriminion 5. Key Inigh ge . Direc Price Dicriminion

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

On Fractional Operational Calculus pertaining to the product of H- functions

On Fractional Operational Calculus pertaining to the product of H- functions nenonl eh ounl of Enneen n ehnolo RE e-ssn: 2395-56 Volume: 2 ue: 3 une-25 wwwene -SSN: 2395-72 On Fonl Oeonl Clulu enn o he ou of - funon D VBL Chu, C A 2 Demen of hem, Unve of Rhn, u-3255, n E-ml : vl@hooom

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion.

Chapter 2. Kinematics in One Dimension. Kinematics deals with the concepts that are needed to describe motion. Chpe Kinemic in One Dimenin Kinemic del wih he cncep h e needed decibe min. Dynmic del wih he effec h fce he n min. Tgehe, kinemic nd dynmic fm he bnch f phyic knwn Mechnic.. Diplcemen. Diplcemen.0 m 5.0

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues?

Applications of these ideas. CS514: Intermediate Course in Operating Systems. Problem: Pictorial version. 2PC is a good match! Issues? CS514: Inmi Co in Oing Sm Poo Kn imn K Ooki: T liion o h i O h h k h o Goi oool Dii monioing, h, n noiiion gmn oool, h 2PC n 3PC Unling hm: om hing n ong om o onin, om n mng ih k oi To, l look n liion

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Lecture 9-3/8/10-14 Spatial Description and Transformation

Lecture 9-3/8/10-14 Spatial Description and Transformation Letue 9-8- tl Deton nd nfomton Homewo No. Due 9. Fme ngement onl. Do not lulte...8..7.8 Otonl et edt hot oof tht = - Homewo No. egned due 9 tud eton.-.. olve oblem:.....7.8. ee lde 6 7. e Mtlb on. f oble.

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay)

Sections 3.1 and 3.4 Exponential Functions (Growth and Decay) Secions 3.1 and 3.4 Eponenial Funcions (Gowh and Decay) Chape 3. Secions 1 and 4 Page 1 of 5 Wha Would You Rahe Have... $1million, o double you money evey day fo 31 days saing wih 1cen? Day Cens Day Cens

More information

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f

C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f C H A P T E R I G E N E S I S A N D GROWTH OF G U IL D S C o r p o r a t e l i f e i n A n c i e n t I n d i a e x p r e s s e d i t s e l f i n a v a r i e t y o f f o r m s - s o c i a l, r e l i g i

More information

Control Systems -- Final Exam (Spring 2006)

Control Systems -- Final Exam (Spring 2006) 6.5 Conrol Syem -- Final Eam (Spring 6 There are 5 prolem (inluding onu prolem oal poin. (p Given wo marie: (6 Compue A A e e. (6 For he differenial equaion [ ] ; y u A wih ( u( wha i y( for >? (8 For

More information

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction Appendi E: Mnipuling Fions Te ules fo mnipuling fions involve lgei epessions e el e sme s e ules fo mnipuling fions involve numes Te fundmenl ules fo omining nd mnipuling fions e lised elow Te uses of

More information

H STO RY OF TH E SA NT

H STO RY OF TH E SA NT O RY OF E N G L R R VER ritten for the entennial of th e Foundin g of t lair oun t y on ay 8 82 Y EEL N E JEN K RP O N! R ENJ F ] jun E 3 1 92! Ph in t ed b y h e t l a i r R ep u b l i c a n O 4 1922

More information

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002

Maximum likelihood estimate of phylogeny. BIOL 495S/ CS 490B/ MATH 490B/ STAT 490B Introduction to Bioinformatics April 24, 2002 Mmm lkelhood eme of phylogey BIO 9S/ S 90B/ MH 90B/ S 90B Iodco o Bofomc pl 00 Ovevew of he pobblc ppoch o phylogey o k ee ccodg o he lkelhood d ee whee d e e of eqece d ee by ee wh leve fo he eqece. he

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings.

THIS PAGE DECLASSIFIED IAW EO IRIS u blic Record. Key I fo mation. Ma n: AIR MATERIEL COMM ND. Adm ni trative Mar ings. T H S PA G E D E CLA SSFED AW E O 2958 RS u blc Recod Key fo maon Ma n AR MATEREL COMM ND D cumen Type Call N u b e 03 V 7 Rcvd Rel 98 / 0 ndexe D 38 Eneed Dae RS l umbe 0 0 4 2 3 5 6 C D QC d Dac A cesson

More information

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME

Quality control. Final exam: 2012/1/12 (Thur), 9:00-12:00 Q1 Q2 Q3 Q4 Q5 YOUR NAME Qulity contol Finl exm: // (Thu), 9:-: Q Q Q3 Q4 Q5 YOUR NAME NOTE: Plese wite down the deivtion of you nswe vey clely fo ll questions. The scoe will be educed when you only wite nswe. Also, the scoe will

More information

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2]

RUTH. land_of_israel: the *country *which God gave to his people in the *Old_Testament. [*map # 2] RUTH 1 Elimlk g ln M 1-2 I in im n ln Irl i n *king. Tr r lr rul ln. Ty r ug. Tr n r l in Ju u r g min. Elimlk mn y in n Blm in Ju. H i nm Nmi. S n Elimlk 2 *n. Tir nm r Mln n Kilin. Ty r ll rm Er mily.

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides.

1 PYTHAGORAS THEOREM 1. Given a right angled triangle, the square of the hypotenuse is equal to the sum of the squares of the other two sides. 1 PYTHAGORAS THEOREM 1 1 Pythgors Theorem In this setion we will present geometri proof of the fmous theorem of Pythgors. Given right ngled tringle, the squre of the hypotenuse is equl to the sum of the

More information

On The Estimation of Two Missing Values in Randomized Complete Block Designs

On The Estimation of Two Missing Values in Randomized Complete Block Designs Mahemaical Theoy and Modeling ISSN 45804 (Pape ISSN 505 (Online Vol.6, No.7, 06 www.iise.og On The Esimaion of Two Missing Values in Randomized Complee Bloc Designs EFFANGA, EFFANGA OKON AND BASSE, E.

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8

Molecular Evolution and Phylogeny. Based on: Durbin et al Chapter 8 Molecula Evoluion and hylogeny Baed on: Dubin e al Chape 8. hylogeneic Tee umpion banch inenal node leaf Topology T : bifucaing Leave - N Inenal node N+ N- Lengh { i } fo each banch hylogeneic ee Topology

More information

Eliza Chilimoniuk. International Game in Strategic Trade Policy. Introduction

Eliza Chilimoniuk. International Game in Strategic Trade Policy. Introduction Eli Chilimoniuk Inenionl Gme in Segi Tde Poliy Inoduion In mulieson siuion ih segi inedeendene eh gen eognies h he ofi he eeives deends no only on his on ion, u lso on he ehvio of ohe odues on he mke.

More information

Simple Methods for Stability Analysis of Nonlinear Control Systems

Simple Methods for Stability Analysis of Nonlinear Control Systems Poeeig of he Wol Coge o Egieeig Coe Siee 009 Vol II WCECS 009, Ooe 0-, 009, S Fio, USA Sile Meho fo Sili Ali of Nolie Cool Se R. Moek, Mee, IAENG, I. Sv, P. Pivoňk, P. Oe, M. Se A Thee eho fo ili li of

More information

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING

MEEN 617 Handout #11 MODAL ANALYSIS OF MDOF Systems with VISCOUS DAMPING MEEN 67 Handou # MODAL ANALYSIS OF MDOF Sysems wih VISCOS DAMPING ^ Symmeic Moion of a n-dof linea sysem is descibed by he second ode diffeenial equaions M+C+K=F whee () and F () ae n ows vecos of displacemens

More information

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk Equions fom he Fou Pinipl Kinei Ses of Meil Bodies Copyigh 005 Joseph A. Rybzyk Following is omplee lis of ll of he equions used in o deied in he Fou Pinipl Kinei Ses of Meil Bodies. Eh equion is idenified

More information

A-1 WILDCARD BEER TASTING ROOM 3 DRAWING INDEX & STATE CODES 4 PROJECT DATA SOLANO AVE KAINS AVE. 5 AERIAL VIEW 6 PROJECT TEAM TENANT IMPROVEMENTS

A-1 WILDCARD BEER TASTING ROOM 3 DRAWING INDEX & STATE CODES 4 PROJECT DATA SOLANO AVE KAINS AVE. 5 AERIAL VIEW 6 PROJECT TEAM TENANT IMPROVEMENTS NN : 11 ONO VNU, BNY OWN: WI BWING O. XIING NN U: I B ING NN NB : FI FOO 1,090 F NO HNG MZZNIN 80 F 6 F O 1,70 F 1,5 F MZZNIN : MZZNIN I U O % 1 FOO NN OUPN O: 1 FOO FO O ING OOM 59 F 15 0.5 B 117 F 100

More information

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system

Previously. Extensions to backstepping controller designs. Tracking using backstepping Suppose we consider the general system 436-459 Advnced contol nd utomtion Extensions to bckstepping contolle designs Tcking Obseves (nonline dmping) Peviously Lst lectue we looked t designing nonline contolles using the bckstepping technique

More information

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s:

Chapter 7. Kleene s Theorem. 7.1 Kleene s Theorem. The following theorem is the most important and fundamental result in the theory of FA s: Chpte 7 Kleene s Theoem 7.1 Kleene s Theoem The following theoem is the most impotnt nd fundmentl esult in the theoy of FA s: Theoem 6 Any lnguge tht cn e defined y eithe egul expession, o finite utomt,

More information

Language Processors F29LP2, Lecture 5

Language Processors F29LP2, Lecture 5 Lnguge Pocessos F29LP2, Lectue 5 Jmie Gy Feuy 2, 2014 1 / 1 Nondeteministic Finite Automt (NFA) NFA genelise deteministic finite utomt (DFA). They llow sevel (0, 1, o moe thn 1) outgoing tnsitions with

More information

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2

156 There are 9 books stacked on a shelf. The thickness of each book is either 1 inch or 2 156 Thee ae 9 books sacked on a shelf. The hickness of each book is eihe 1 inch o 2 F inches. The heigh of he sack of 9 books is 14 inches. Which sysem of equaions can be used o deemine x, he numbe of

More information

6.8 Laplace Transform: General Formulas

6.8 Laplace Transform: General Formulas 48 HAP. 6 Laplace Tranform 6.8 Laplace Tranform: General Formula Formula Name, ommen Sec. F() l{ f ()} e f () d f () l {F()} Definiion of Tranform Invere Tranform 6. l{af () bg()} al{f ()} bl{g()} Lineariy

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

8.5 Circles and Lengths of Segments

8.5 Circles and Lengths of Segments LenghofSegmen20052006.nb 1 8.5 Cicle and Lengh of Segmen In hi ecion we will how (and in ome cae pove) ha lengh of chod, ecan, and angen ae elaed in ome nal way. We will look a hee heoem ha ae hee elaionhip

More information

Module 4: Moral Hazard - Linear Contracts

Module 4: Moral Hazard - Linear Contracts Module 4: Mol Hzd - Line Contts Infomtion Eonomis (E 55) Geoge Geogidis A pinipl employs n gent. Timing:. The pinipl o es line ontt of the fom w (q) = + q. is the sly, is the bonus te.. The gent hooses

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA

TWO INTERFACIAL COLLINEAR GRIFFITH CRACKS IN THERMO- ELASTIC COMPOSITE MEDIA WO INERFIL OLLINER GRIFFIH RS IN HERMO- ELSI OMOSIE MEDI h m MISHR S DS * Deme o Mheml See I Ie o eholog BHU V-5 I he oee o he le o he e e o eeg o o olle Gh e he ee o he wo ohoo mel e e e emee el. he olem

More information

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues

The Non-Truncated Bulk Arrival Queue M x /M/1 with Reneging, Balking, State-Dependent and an Additional Server for Longer Queues Alied Maheaical Sciece Vol. 8 o. 5 747-75 The No-Tucaed Bul Aival Queue M x /M/ wih Reei Bali Sae-Deede ad a Addiioal Seve fo Loe Queue A. A. EL Shebiy aculy of Sciece Meofia Uiveiy Ey elhebiy@yahoo.co

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

THIS PAGE DECLASSIFIED IAW E

THIS PAGE DECLASSIFIED IAW E THS PAGE DECLASSFED AW E0 2958 BL K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW E0 2958 B L K THS PAGE DECLASSFED AW E0 2958 THS PAGE DECLASSFED AW EO 2958 THS PAGE DECLASSFED AW EO 2958 THS

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

RIM= City-County Building, Suite 104 NE INV= Floor= CP #CP004 TOP SE BOLT LP BASE N= E= ELEV=858.

RIM= City-County Building, Suite 104 NE INV= Floor= CP #CP004 TOP SE BOLT LP BASE N= E= ELEV=858. f g c ch c y f M D b c Dm f ubc Wk x c M f g 23 IM=3. y-uy ug, u 0 N INV=0.0 F=0.99 20 M uh Kg, J. v. M, WI 303 h ch b b y v #00 O O O O N=93.200 =2920.00 ckby vyb FG2 f g Ghc c c c 03000 W FI ND O 9 0

More information

Electric Potential. and Equipotentials

Electric Potential. and Equipotentials Electic Potentil nd Euipotentils U Electicl Potentil Review: W wok done y foce in going fom to long pth. l d E dl F W dl F θ Δ l d E W U U U Δ Δ l d E W U U U U potentil enegy electic potentil Potentil

More information