Maximum Flow. Flow Graph

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Maximum Flow. Flow Graph"

Transcription

1 Mximum Flow Chper 26 Flow Grph A ommon enrio i o ue grph o repreen flow nework nd ue i o nwer queion ou meril flow Flow i he re h meril move hrough he nework Eh direed edge i ondui for he meril wih ome ed piy Verie re onneion poin u do no olle meril Flow ino verex mu equl he flow leving he verex, flow onervion 1

2 Smple Nework Nework Node Ar Flow ommuniion elephone exhnge, ompuer, ellie le, fier opi, mirowve rely voie, video, pke irui ge, regier, proeor wire urren mehnil join rod, em, pring he, energy hydruli reervoir, pumping ion, lke pipeline fluid, oil finnil ok, ompnie rnion money rnporion irpor, ril yrd, ree inereion highwy, riled, irwy roue freigh, vehile, penger hemil ie ond energy Flow Conep Soure verex where meril i produed Sink verex where meril i onumed For ll oher verie wh goe in mu go ou Flow onervion Gol: deermine mximum re of meril flow from oure o ink 2

3 Forml Mx Flow Prolem Grph G=(V,E) flow nework Direed, eh edge h piy (u,v) 0 Two peil verie: oure, nd ink For ny oher verex v, here i ph v Flow funion f : V V R Cpiy onrin: For ll u, v V: f(u,v) (u,v) Skew ymmery: For ll u, v V: f(u,v) = f(v,u) Flow onervion: For ll u V {, }: 2/15 5/1 0/9 2/5 /19 3/3 v V v V f ( u, v) f ( u, V ) 0, or f ( v, u) f ( V, u) 0 Cnellion of flow We would like o void wo poiive flow in oppoie direion eween he me pir of verie Suh flow nel (mye prilly) eh oher due o kew ymmery 2/15 5/19 2/15 5/19 2/9 5/5 0/9 3/5 5/1 2/3 5/1 2/3 3

4 Mx Flow We wn o find flow of mximum vlue from he oure o he ink Denoed y f Luky Puk Diriuion Nework Mx Flow, f = 19 Or i i? Be we n do? Ford-Fulkeron mehod Conin everl lgorihm: Reidue nework Augmening ph Find ph p from o (ugmening ph), uh h here i ome vlue x > 0, nd for eh edge (u,v) in p we n dd x uni of flow f(u,v) + x (u,v) Augmening Ph? /15 8/ /19 2/ 9 5/5 6/1 8/11 d 3/3

5 Reidul Nework To find ugmening ph we n find ny ph in he reidul nework: Reidul piie: f (u,v) = (u,v) f(u,v) i.e. he ul piy minu he ne flow from u o v Ne flow my e negive Reidul nework: G f =(V,E f ), where E f = {(u,v) V V : f (u,v) > 0} Oervion edge in E f re eiher edge in E or heir reverl: E f 2 E Su-grph Wih (u,v) nd f(u,v) 5/15 0/1 5/6 Reidul Su-Grph Reidul Grph Compue he reidul grph of he grph wih he following flow: /15 2/ 8/ 9 5/5 /19 6/1 8/11 d 3/3 5

6 Reidul Cpiy nd Augmening Ph Finding n Augmening Ph Find ph from o in he reidul grph The reidul piy of ph p in G f : f (p) = min{ f (u,v): (u,v) i in p} i.e. find he minimum piy long p Doing ugmenion: for ll (u,v) in p, we ju dd hi f (p) o f(u,v) (nd ur i from f(v,u)) Reuling flow i vlid flow wih lrger vlue. Reidul nework nd ugmening ph 6

7 The Ford-Fulkeron mehod Ford-Fulkeron(G,,) 1 for eh edge (u,v) in G.E do 2 f(u,v) f(v,u) 0 3 while here exi ph p from o in reidul nework G f do f = min{ f (u,v): (u,v) i in p} 5 for eh edge (u,v) in p do 6 f(u,v) f(u,v) + f 7 f(v,u) -f(u,v) 8 reurn f The lgorihm ed on hi mehod differ in how hey hooe p in ep 3. If hoen poorly he lgorihm migh no ermine. Exeuion of Ford-Fulkeron (1) Lef Side = Reidul Grph Righ Side = Augmened Flow 7

8 Exeuion of Ford-Fulkeron (2) Lef Side = Reidul Grph Righ Side = Augmened Flow Cu Doe he mehod find he minimum flow? Ye, if we ge o he poin where he reidul grph h no ph from o A u i priion of V ino S nd T = V S, uh h S nd T The ne flow (f(s,t)) hrough he u i he um of flow f(u,v), where S nd T Inlude negive flow k from T o S The piy ((S,T)) of he u i he um of piie (u,v), where S nd T The um of poiive piie Minimum u u wih he mlle piy of ll u. f = f(s,t) i.e. he vlue of mx flow i equl o he piy of min u. /15 6/1 2/ 8/ 8/11 9 5/5 /19 3/3 Cu piy = 2 Min Cu piy = 21 d 8

9 Mx Flow / Min Cu Theorem 1. Sine f (S,T) for ll u of (S,T) hen if f = (S,T) hen (S,T) mu e he min u of G 2. Thi implie h f i mximum flow of G 3. Thi implie h he reidul nework G f onin no ugmening ph. If here were ugmening ph hi would onrdi h we found he mximum flow of G nd from 2 3 we hve h he Ford Fulkeron mehod find he mximum flow if he reidul grph h no ugmening ph. Wor Ce Running Time Auming ineger flow Eh ugmenion inree he vlue of he flow y ome poiive moun. Augmenion n e done in O(E). Tol wor-e running ime O(E f* ), where f* i he mx-flow found y he lgorihm. Exmple of wor e: Augmening ph of 1 Reuling Reidul Nework Reuling Reidul Nework 9

10 Edmond Krp Tke hore ph (in erm of numer of edge) n ugmening ph Edmond-Krp lgorihm How do we find uh hore ph? Running ime O(VE 2 ), eue he numer of ugmenion i O(VE) Skipping he proof here Even eer mehod: puh-relel, O(V 2 E) runime Muliple Soure or Sink Wh if you hve prolem wih more hn one oure nd more hn one ink? Modify he grph o ree ingle uperoure nd uperink x e g d f 9 5 h 3 3 y i j e g d f 9 5 h 3 3 k l

11 Appliion Biprie Mhing Exmple given ommuniy wih n men nd m women Aume we hve wy o deermine whih ouple (mn/womn) re ompile for mrrige E.g. (Joe, Sun) or (Fred, Sun) u no (Frnk, Sun) Prolem: Mximize he numer of mrrige No polygmy llowed Cn olve hi prolem y reing flow nework ou of iprie grph Biprie Grph A iprie grph i n undireed grph G=(V,E) in whih V n e priioned ino wo e V 1 nd V 2 uh h (u,v) E implie eiher u V 1 nd v V 12 or vie ver. Th i, ll edge go eween he wo e V 1 nd V 2 nd no wihin V 1 nd V 2. 11

12 Model for Mhing Prolem Men on lefmo e, women on righmo e, edge if hey re ompile A B C D Men X Y Z Women A B C D A mhing X Y Z A X B Y C Z D Opiml mhing Soluion Uing Mx Flow Add uperoue, uperink, mke eh undireed edge direed wih flow of 1 A X A X B C D Y Z B C D Y Z Sine he inpu i 1, flow onervion preven muliple mhing 12

Graduate Algorithms CS F-18 Flow Networks

Graduate Algorithms CS F-18 Flow Networks Grue Algorihm CS673-2016F-18 Flow Nework Dvi Glle Deprmen of Compuer Siene Univeriy of Sn Frnio 18-0: Flow Nework Diree Grph G Eh ege weigh i piy Amoun of wer/eon h n flow hrough pipe, for inne Single

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ferury, 06 Leure #: Nework Flow I l hnged: Ferury, 06 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

1 The Network Flow Problem

1 The Network Flow Problem 5-5/65: Deign & Anlyi of Algorihm Ooer 5, 05 Leure #0: Nework Flow I l hnged: Ooer 5, 05 In hee nex wo leure we re going o lk ou n imporn lgorihmi prolem lled he Nework Flow Prolem. Nework flow i imporn

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

ALG 5.3 Flow Algorithms:

ALG 5.3 Flow Algorithms: ALG 5. low Algorihm: () Mx-flow, min-u Theorem () Augmening Ph () 0 - flow (d) Verex Conneiviy (e) Plnr low Min Reding Seleion: CLR, Chper 7 Algorihm Profeor John Reif Auxillry Reding Seleion: Hndou: "Nework

More information

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation

Bipartite Matching. Matching. Bipartite Matching. Maxflow Formulation Mching Inpu: undireced grph G = (V, E). Biprie Mching Inpu: undireced, biprie grph G = (, E).. Mching Ern Myr, Hrld äcke Biprie Mching Inpu: undireced, biprie grph G = (, E). Mflow Formulion Inpu: undireced,

More information

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001

Flow networks. Flow Networks. A flow on a network. Flow networks. The maximum-flow problem. Introduction to Algorithms, Lecture 22 December 5, 2001 CS 545 Flow Nework lon Efra Slide courey of Charle Leieron wih mall change by Carola Wenk Flow nework Definiion. flow nework i a direced graph G = (V, E) wih wo diinguihed verice: a ource and a ink. Each

More information

Graphs III - Network Flow

Graphs III - Network Flow Graph III - Nework Flow Flow nework eup graph G=(V,E) edge capaciy w(u,v) 0 - if edge doe no exi, hen w(u,v)=0 pecial verice: ource verex ; ink verex - no edge ino and no edge ou of Aume every verex v

More information

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017

CS3510 Design & Analysis of Algorithms Fall 2017 Section A. Test 3 Solutions. Instructor: Richard Peng In class, Wednesday, Nov 15, 2017 Uer ID (NOT he 9 igi numer): gurell4 CS351 Deign & Anlyi of Algorihm Fll 17 Seion A Te 3 Soluion Inruor: Rihr Peng In l, Weney, Nov 15, 17 Do no open hi quiz ookle unil you re iree o o o. Re ll he inruion

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow.

Problem Set If all directed edges in a network have distinct capacities, then there is a unique maximum flow. CSE 202: Deign and Analyi of Algorihm Winer 2013 Problem Se 3 Inrucor: Kamalika Chaudhuri Due on: Tue. Feb 26, 2013 Inrucion For your proof, you may ue any lower bound, algorihm or daa rucure from he ex

More information

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445

Flow Networks Alon Efrat Slides courtesy of Charles Leiserson with small changes by Carola Wenk. Flow networks. Flow networks CS 445 CS 445 Flow Nework lon Efr Slide corey of Chrle Leieron wih mll chnge by Crol Wenk Flow nework Definiion. flow nework i direced grph G = (V, E) wih wo diingihed erice: orce nd ink. Ech edge (, ) E h nonnegie

More information

1 Motivation and Basic Definitions

1 Motivation and Basic Definitions CSCE : Deign and Analyi of Algorihm Noe on Max Flow Fall 20 (Baed on he preenaion in Chaper 26 of Inroducion o Algorihm, 3rd Ed. by Cormen, Leieron, Rive and Sein.) Moivaion and Baic Definiion Conider

More information

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1

5. Network flow. Network flow. Maximum flow problem. Ford-Fulkerson algorithm. Min-cost flow. Network flow 5-1 Nework flow -. Nework flow Nework flow Mximum flow prolem Ford-Fulkeron lgorihm Min-co flow Nework flow Nework N i e of direced grph G = (V ; E) ource 2 V which h only ougoing edge ink (or deinion) 2 V

More information

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t)

Admin MAX FLOW APPLICATIONS. Flow graph/networks. Flow constraints 4/30/13. CS lunch today Grading. in-flow = out-flow for every vertex (except s, t) /0/ dmin lunch oday rading MX LOW PPLIION 0, pring avid Kauchak low graph/nework low nework direced, weighed graph (V, ) poiive edge weigh indicaing he capaciy (generally, aume ineger) conain a ingle ource

More information

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples

Fall 2014 David Wagner 10/31 Notes. The min-cut problem. Examples CS 7 Algorihm Fll 24 Dvid Wgner /3 Noe The min-u problem Le G = (V,E) be direed grph, wih oure verex V nd ink verex V. Aume h edge re lbelled wih o, whih n be modelled o funion : E N h oie non-negive inegrl

More information

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network.

Max Flow, Min Cut COS 521. Kevin Wayne Fall Soviet Rail Network, Cuts. Minimum Cut Problem. Flow network. Sovie Rail Nework, Max Flow, Min u OS Kevin Wayne Fall Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming, :,. Minimum u Problem u Flow nework.! Digraph

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

Maximum Flow and Minimum Cut

Maximum Flow and Minimum Cut // Sovie Rail Nework, Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy. Nework Flow Flow nework.

More information

Max-flow and min-cut

Max-flow and min-cut Mx-flow nd min-cu Mx-Flow nd Min-Cu Two imporn lgorihmic prolem, which yield euiful duliy Myrid of non-rivil pplicion, i ply n imporn role in he opimizion of mny prolem: Nework conneciviy, irline chedule

More information

Network Flows: Introduction & Maximum Flow

Network Flows: Introduction & Maximum Flow CSC 373 - lgorihm Deign, nalyi, and Complexiy Summer 2016 Lalla Mouaadid Nework Flow: Inroducion & Maximum Flow We now urn our aenion o anoher powerful algorihmic echnique: Local Search. In a local earch

More information

Algorithmic Discrete Mathematics 6. Exercise Sheet

Algorithmic Discrete Mathematics 6. Exercise Sheet Algorihmic Dicree Mahemaic. Exercie Shee Deparmen of Mahemaic SS 0 PD Dr. Ulf Lorenz 7. and 8. Juni 0 Dipl.-Mah. David Meffer Verion of June, 0 Groupwork Exercie G (Heap-Sor) Ue Heap-Sor wih a min-heap

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 8/07/007 Main Reference: Secion 6.-6. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1

CS4445/9544 Analysis of Algorithms II Solution for Assignment 1 Conider he following flow nework CS444/944 Analyi of Algorihm II Soluion for Aignmen (0 mark) In he following nework a minimum cu ha capaciy 0 Eiher prove ha hi aemen i rue, or how ha i i fale Uing he

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Main Reference: Sections in CLRS.

Main Reference: Sections in CLRS. Maximum Flow Reied 09/09/200 Main Reference: Secion 26.-26. in CLRS. Inroducion Definiion Muli-Source Muli-Sink The Ford-Fulkeron Mehod Reidual Nework Augmening Pah The Max-Flow Min-Cu Theorem The Edmond-Karp

More information

Today: Max Flow Proofs

Today: Max Flow Proofs Today: Max Flow Proof COSC 58, Algorihm March 4, 04 Many of hee lide are adaped from everal online ource Reading Aignmen Today cla: Chaper 6 Reading aignmen for nex cla: Chaper 7 (Amorized analyi) In-Cla

More information

Matching. Slides designed by Kevin Wayne.

Matching. Slides designed by Kevin Wayne. Maching Maching. Inpu: undireced graph G = (V, E). M E i a maching if each node appear in a mo edge in M. Max maching: find a max cardinaliy maching. Slide deigned by Kevin Wayne. Biparie Maching Biparie

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 7.1 Nework Flow Sovie Rail Nework, 19 Reerence: On he hiory o he ranporaion and maximum low problem. lexander Schrijver in Mah Programming, 91: 3, 00. (See Exernal Link ) Maximum Flow and Minimum Cu Max

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURES 17 Nework Flow Dualiy of Max Flow and Min Cu Algorihm: Ford-Fulkeron Capaciy Scaling Sofya Rakhodnikova S. Rakhodnikova; baed on lide by E. Demaine, C. Leieron, A. Smih,

More information

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges.

! Abstraction for material flowing through the edges. ! G = (V, E) = directed graph, no parallel edges. Sovie Rail Nework, haper Nework Flow Slide by Kevin Wayne. opyrigh Pearon-ddion Weley. ll righ reerved. Reference: On he hiory of he ranporaion and maximum flow problem. lexander Schrijver in Mah Programming,

More information

CSE 521: Design & Analysis of Algorithms I

CSE 521: Design & Analysis of Algorithms I CSE 52: Deign & Analyi of Algorihm I Nework Flow Paul Beame Biparie Maching Given: A biparie graph G=(V,E) M E i a maching in G iff no wo edge in M hare a verex Goal: Find a maching M in G of maximum poible

More information

Jonathan Turner Exam 2-10/28/03

Jonathan Turner Exam 2-10/28/03 CS Algorihm n Progrm Prolm Exm Soluion S Soluion Jonhn Turnr Exm //. ( poin) In h Fioni hp ruur, u wn vrx u n i prn v u ing u v i v h lry lo hil in i l m hil o om ohr vrx. Suppo w hng hi, o h ing u i prorm

More information

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem.

6/3/2009. CS 244 Algorithm Design Instructor: t Artur Czumaj. Lecture 8 Network flows. Maximum Flow and Minimum Cut. Minimum Cut Problem. Maximum Flow and Minimum Cu CS lgorihm Deign Inrucor: rur Czumaj Lecure Nework Max and min cu. Two very rich algorihmic problem. Cornerone problem in combinaorial opimizaion. Beauiful mahemaical dualiy.

More information

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6.

The solution is often represented as a vector: 2xI + 4X2 + 2X3 + 4X4 + 2X5 = 4 2xI + 4X2 + 3X3 + 3X4 + 3X5 = 4. 3xI + 6X2 + 6X3 + 3X4 + 6X5 = 6. [~ o o :- o o ill] i 1. Mrices, Vecors, nd Guss-Jordn Eliminion 1 x y = = - z= The soluion is ofen represened s vecor: n his exmple, he process of eliminion works very smoohly. We cn elimine ll enries

More information

A LOG IS AN EXPONENT.

A LOG IS AN EXPONENT. Ojeives: n nlze nd inerpre he ehvior of rihmi funions, inluding end ehvior nd smpoes. n solve rihmi equions nlill nd grphill. n grph rihmi funions. n deermine he domin nd rnge of rihmi funions. n deermine

More information

0 for t < 0 1 for t > 0

0 for t < 0 1 for t > 0 8.0 Sep nd del funcions Auhor: Jeremy Orloff The uni Sep Funcion We define he uni sep funcion by u() = 0 for < 0 for > 0 I is clled he uni sep funcion becuse i kes uni sep = 0. I is someimes clled he Heviside

More information

Randomized Perfect Bipartite Matching

Randomized Perfect Bipartite Matching Inenive Algorihm Lecure 24 Randomized Perfec Biparie Maching Lecurer: Daniel A. Spielman April 9, 208 24. Inroducion We explain a randomized algorihm by Ahih Goel, Michael Kapralov and Sanjeev Khanna for

More information

LAPLACE TRANSFORMS. 1. Basic transforms

LAPLACE TRANSFORMS. 1. Basic transforms LAPLACE TRANSFORMS. Bic rnform In hi coure, Lplce Trnform will be inroduced nd heir properie exmined; ble of common rnform will be buil up; nd rnform will be ued o olve ome dierenil equion by rnforming

More information

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises

Flow Networks. Ma/CS 6a. Class 14: Flow Exercises 0/0/206 Ma/CS 6a Cla 4: Flow Exercie Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d e Sink 0/0/206 Flow

More information

Reminder: Flow Networks

Reminder: Flow Networks 0/0/204 Ma/CS 6a Cla 4: Variou (Flow) Execie Reminder: Flow Nework A flow nework i a digraph G = V, E, ogeher wih a ource verex V, a ink verex V, and a capaciy funcion c: E N. Capaciy Source 7 a b c d

More information

Network Flows UPCOPENCOURSEWARE number 34414

Network Flows UPCOPENCOURSEWARE number 34414 Nework Flow UPCOPENCOURSEWARE number Topic : F.-Javier Heredia Thi work i licened under he Creaive Common Aribuion- NonCommercial-NoDeriv. Unpored Licene. To view a copy of hi licene, vii hp://creaivecommon.org/licene/by-nc-nd/./

More information

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions

Today s topics. CSE 421 Algorithms. Problem Reduction Examples. Problem Reduction. Undirected Network Flow. Bipartite Matching. Problem Reductions Today opic CSE Algorihm Richard Anderon Lecure Nework Flow Applicaion Prolem Reducion Undireced Flow o Flow Biparie Maching Dijoin Pah Prolem Circulaion Loweround conrain on flow Survey deign Prolem Reducion

More information

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities:

Math 2142 Exam 1 Review Problems. x 2 + f (0) 3! for the 3rd Taylor polynomial at x = 0. To calculate the various quantities: Mah 4 Eam Review Problems Problem. Calculae he 3rd Taylor polynomial for arcsin a =. Soluion. Le f() = arcsin. For his problem, we use he formula f() + f () + f ()! + f () 3! for he 3rd Taylor polynomial

More information

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it

CSC 364S Notes University of Toronto, Spring, The networks we will consider are directed graphs, where each edge has associated with it CSC 36S Noe Univeriy of Torono, Spring, 2003 Flow Algorihm The nework we will conider are direced graph, where each edge ha aociaed wih i a nonnegaive capaciy. The inuiion i ha if edge (u; v) ha capaciy

More information

Chapter Introduction. 2. Linear Combinations [4.1]

Chapter Introduction. 2. Linear Combinations [4.1] Chper 4 Inrouion Thi hper i ou generlizing he onep you lerne in hper o pe oher n hn R Mny opi in hi hper re heoreil n MATLAB will no e le o help you ou You will ee where MATLAB i ueful in hper 4 n how

More information

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005

CS 473G Lecture 15: Max-Flow Algorithms and Applications Fall 2005 CS 473G Lecure 1: Max-Flow Algorihm and Applicaion Fall 200 1 Max-Flow Algorihm and Applicaion (November 1) 1.1 Recap Fix a direced graph G = (V, E) ha doe no conain boh an edge u v and i reveral v u,

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

graph of unit step function t

graph of unit step function t .5 Piecewie coninuou forcing funcion...e.g. urning he forcing on nd off. The following Lplce rnform meril i ueful in yem where we urn forcing funcion on nd off, nd when we hve righ hnd ide "forcing funcion"

More information

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem

MAXIMUM FLOW. introduction Ford-Fulkerson algorithm maxflow-mincut theorem MAXIMUM FLOW inroducion Ford-Fulkeron algorihm maxflow-mincu heorem Mincu problem Inpu. An edge-weighed digraph, ource verex, and arge verex. each edge ha a poiive capaciy capaciy 9 10 4 15 15 10 5 8 10

More information

Robust Network Coding for Bidirected Networks

Robust Network Coding for Bidirected Networks Rou Nework Coding for Bidireed Nework A. Sprinon, S. Y. El Rouyhe, nd C. N. Georghide Ar We onider he prolem of nding liner nework ode h gurnee n innneou reovery from edge filure in ommuniion nework. Wih

More information

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a.

Flow networks, flow, maximum flow. Some definitions. Edmonton. Saskatoon Winnipeg. Vancouver Regina. Calgary. 12/12 a. Flow nework, flow, maximum flow Can inerpre direced graph a flow nework. Maerial coure hrough ome yem from ome ource o ome ink. Source produce maerial a ome eady rae, ink conume a ame rae. Example: waer

More information

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso

Sph3u Practice Unit Test: Kinematics (Solutions) LoRusso Sph3u Prcice Uni Te: Kinemic (Soluion) LoRuo Nme: Tuey, Ocober 3, 07 Ku: /45 pp: /0 T&I: / Com: Thi i copy of uni e from 008. Thi will be imilr o he uni e you will be wriing nex Mony. you cn ee here re

More information

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques

Greedy. I Divide and Conquer. I Dynamic Programming. I Network Flows. Network Flow. I Previous topics: design techniques Algorihm Deign Technique CS : Nework Flow Dan Sheldon April, reedy Divide and Conquer Dynamic Programming Nework Flow Comparion Nework Flow Previou opic: deign echnique reedy Divide and Conquer Dynamic

More information

5.1-The Initial-Value Problems For Ordinary Differential Equations

5.1-The Initial-Value Problems For Ordinary Differential Equations 5.-The Iniil-Vlue Problems For Ordinry Differenil Equions Consider solving iniil-vlue problems for ordinry differenil equions: (*) y f, y, b, y. If we know he generl soluion y of he ordinry differenil

More information

Network Flow. Data Structures and Algorithms Andrei Bulatov

Network Flow. Data Structures and Algorithms Andrei Bulatov Nework Flow Daa Srucure and Algorihm Andrei Bulao Algorihm Nework Flow 24-2 Flow Nework Think of a graph a yem of pipe We ue hi yem o pump waer from he ource o ink Eery pipe/edge ha limied capaciy Flow

More information

1.0 Electrical Systems

1.0 Electrical Systems . Elecricl Sysems The ypes of dynmicl sysems we will e sudying cn e modeled in erms of lgeric equions, differenil equions, or inegrl equions. We will egin y looking fmilir mhemicl models of idel resisors,

More information

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 12 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm

The Residual Graph. 11 Augmenting Path Algorithms. Augmenting Path Algorithm. Augmenting Path Algorithm Augmening Pah Algorihm Greedy-algorihm: ar wih f (e) = everywhere find an - pah wih f (e) < c(e) on every edge augmen flow along he pah repea a long a poible The Reidual Graph From he graph G = (V, E,

More information

Soviet Rail Network, 1955

Soviet Rail Network, 1955 Sovie Rail Nework, 1 Reference: On he hiory of he ranporaion and maximum flow problem. Alexander Schrijver in Mah Programming, 1: 3,. Maximum Flow and Minimum Cu Max flow and min cu. Two very rich algorihmic

More information

( ) ( ) ( ) ( ) ( ) ( y )

( ) ( ) ( ) ( ) ( ) ( y ) 8. Lengh of Plne Curve The mos fmous heorem in ll of mhemics is he Pyhgoren Theorem. I s formulion s he disnce formul is used o find he lenghs of line segmens in he coordine plne. In his secion you ll

More information

Chapter 2: Evaluative Feedback

Chapter 2: Evaluative Feedback Chper 2: Evluive Feedbck Evluing cions vs. insrucing by giving correc cions Pure evluive feedbck depends olly on he cion ken. Pure insrucive feedbck depends no ll on he cion ken. Supervised lerning is

More information

Control Systems -- Final Exam (Spring 2006)

Control Systems -- Final Exam (Spring 2006) 6.5 Conrol Syem -- Final Eam (Spring 6 There are 5 prolem (inluding onu prolem oal poin. (p Given wo marie: (6 Compue A A e e. (6 For he differenial equaion [ ] ; y u A wih ( u( wha i y( for >? (8 For

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorihm Deign and Analyi LECTURE 0 Nework Flow Applicaion Biparie maching Edge-dijoin pah Adam Smih 0//0 A. Smih; baed on lide by E. Demaine, C. Leieron, S. Rakhodnikova, K. Wayne La ime: Ford-Fulkeron

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > for ll smples y i solve sysem of liner inequliies MSE procedure y i = i for ll smples

More information

Minimum Squared Error

Minimum Squared Error Minimum Squred Error LDF: Minimum Squred-Error Procedures Ide: conver o esier nd eer undersood prolem Percepron y i > 0 for ll smples y i solve sysem of liner inequliies MSE procedure y i i for ll smples

More information

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne.

Maximum Flow. How do we transport the maximum amount data from source to sink? Some of these slides are adapted from Lecture Notes of Kevin Wayne. Conen Conen. Maximum flow problem. Minimum cu problem. Max-flow min-cu heorem. Augmening pah algorihm. Capaciy-caling. Shore augmening pah. Chaper Maximum How do we ranpor he maximum amoun daa from ource

More information

Positive and negative solutions of a boundary value problem for a

Positive and negative solutions of a boundary value problem for a Invenion Journl of Reerch Technology in Engineering & Mngemen (IJRTEM) ISSN: 2455-3689 www.ijrem.com Volume 2 Iue 9 ǁ Sepemer 28 ǁ PP 73-83 Poiive nd negive oluion of oundry vlue prolem for frcionl, -difference

More information

Chapter 7: Solving Trig Equations

Chapter 7: Solving Trig Equations Haberman MTH Secion I: The Trigonomeric Funcions Chaper 7: Solving Trig Equaions Le s sar by solving a couple of equaions ha involve he sine funcion EXAMPLE a: Solve he equaion sin( ) The inverse funcions

More information

Bisimulation, Games & Hennessy Milner logic p.1/32

Bisimulation, Games & Hennessy Milner logic p.1/32 Clil lnguge heory Biimulion, Gme & Henney Milner logi Leure 1 of Modelli Memii dei Proei Conorreni Pweł Sooińki Univeriy of Souhmon, UK I onerned rimrily wih lnguge, eg finie uom regulr lnguge; uhdown

More information

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V

2. VECTORS. R Vectors are denoted by bold-face characters such as R, V, etc. The magnitude of a vector, such as R, is denoted as R, R, V ME 352 VETS 2. VETS Vecor algebra form he mahemaical foundaion for kinemaic and dnamic. Geomer of moion i a he hear of boh he kinemaic and dnamic of mechanical em. Vecor anali i he imehonored ool for decribing

More information

16 Max-Flow Algorithms and Applications

16 Max-Flow Algorithms and Applications Algorihm A proce canno be underood by opping i. Underanding mu move wih he flow of he proce, mu join i and flow wih i. The Fir Law of Mena, in Frank Herber Dune (196) There a difference beween knowing

More information

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration.

Motion. Part 2: Constant Acceleration. Acceleration. October Lab Physics. Ms. Levine 1. Acceleration. Acceleration. Units for Acceleration. Moion Accelerion Pr : Consn Accelerion Accelerion Accelerion Accelerion is he re of chnge of velociy. = v - vo = Δv Δ ccelerion = = v - vo chnge of velociy elpsed ime Accelerion is vecor, lhough in one-dimensionl

More information

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function

ENGR 1990 Engineering Mathematics The Integral of a Function as a Function ENGR 1990 Engineering Mhemics The Inegrl of Funcion s Funcion Previously, we lerned how o esime he inegrl of funcion f( ) over some inervl y dding he res of finie se of rpezoids h represen he re under

More information

18 Extensions of Maximum Flow

18 Extensions of Maximum Flow Who are you?" aid Lunkwill, riing angrily from hi ea. Wha do you wan?" I am Majikhie!" announced he older one. And I demand ha I am Vroomfondel!" houed he younger one. Majikhie urned on Vroomfondel. I

More information

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0

Network flows. The problem. c : V V! R + 0 [ f+1g. flow network G = (V, E, c), a source s and a sink t uv not in E implies c(u, v) = 0 Nework flow The problem Seing flow nework G = (V, E, c), a orce and a ink no in E implie c(, ) = 0 Flow from o capaciy conrain kew-ymmery flow-coneraion ale of he flow jfj = P 2V Find a maximm flow from

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

S Radio transmission and network access Exercise 1-2

S Radio transmission and network access Exercise 1-2 S-7.330 Rdio rnsmission nd nework ccess Exercise 1 - P1 In four-symbol digil sysem wih eqully probble symbols he pulses in he figure re used in rnsmission over AWGN-chnnel. s () s () s () s () 1 3 4 )

More information

Global alignment in linear space

Global alignment in linear space Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n

More information

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x)

Properties of Logarithms. Solving Exponential and Logarithmic Equations. Properties of Logarithms. Properties of Logarithms. ( x) Properies of Logrihms Solving Eponenil nd Logrihmic Equions Properies of Logrihms Produc Rule ( ) log mn = log m + log n ( ) log = log + log Properies of Logrihms Quoien Rule log m = logm logn n log7 =

More information

September 20 Homework Solutions

September 20 Homework Solutions College of Engineering nd Compuer Science Mechnicl Engineering Deprmen Mechnicl Engineering A Seminr in Engineering Anlysis Fll 7 Number 66 Insrucor: Lrry Creo Sepember Homework Soluions Find he specrum

More information

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1

8.1. a) For step response, M input is u ( t) Taking inverse Laplace transform. as α 0. Ideal response, K c. = Kc Mτ D + For ramp response, 8-1 8. a For ep repone, inpu i u, U Y a U α α Y a α α Taking invere Laplae ranform a α e e / α / α A α 0 a δ 0 e / α a δ deal repone, α d Y i Gi U i δ Hene a α 0 a i For ramp repone, inpu i u, U Soluion anual

More information

PHYSICS 1210 Exam 1 University of Wyoming 14 February points

PHYSICS 1210 Exam 1 University of Wyoming 14 February points PHYSICS 1210 Em 1 Uniersiy of Wyoming 14 Februry 2013 150 poins This es is open-noe nd closed-book. Clculors re permied bu compuers re no. No collborion, consulion, or communicion wih oher people (oher

More information

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits.

two values, false and true used in mathematical logic, and to two voltage levels, LOW and HIGH used in switching circuits. Digil Logi/Design. L. 3 Mrh 2, 26 3 Logi Ges nd Boolen Alger 3. CMOS Tehnology Digil devises re predominnly mnufured in he Complemenry-Mel-Oide-Semionduor (CMOS) ehnology. Two ypes of swihes, s disussed

More information

26.1 Flow networks. f (u,v) = 0.

26.1 Flow networks. f (u,v) = 0. 26 Maimum Flow Ju a we can model a road map a a direced graph in order o find he hore pah from one poin o anoher, we can alo inerpre a direced graph a a flow nework and ue i o anwer queion abou maerial

More information

Mathematics 805 Final Examination Answers

Mathematics 805 Final Examination Answers . 5 poins Se he Weiersrss M-es. Mhemics 85 Finl Eminion Answers Answer: Suppose h A R, nd f n : A R. Suppose furher h f n M n for ll A, nd h Mn converges. Then f n converges uniformly on A.. 5 poins Se

More information

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients

Section 3.5 Nonhomogeneous Equations; Method of Undetermined Coefficients Secion 3.5 Nonhomogeneous Equaions; Mehod of Undeermined Coefficiens Key Terms/Ideas: Linear Differenial operaor Nonlinear operaor Second order homogeneous DE Second order nonhomogeneous DE Soluion o homogeneous

More information

CS 170 DISCUSSION 10 MAXIMUM FLOW. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17

CS 170 DISCUSSION 10 MAXIMUM FLOW. Raymond Chan raychan3.github.io/cs170/fa17.html UC Berkeley Fall 17 7 IUION MXIMUM FLOW Raymond han raychan.github.io/cs7/fa7.html U erkeley Fall 7 MXIMUM FLOW Given a directed graph G = (V, E), send as many units of flow from source node s to sink node t. Edges have capacity

More information

Designing A Fanlike Structure

Designing A Fanlike Structure Designing A Fnlike Sruure To proeed wih his lesson, lik on he Nex buon here or he op of ny pge. When you re done wih his lesson, lik on he Conens buon here or he op of ny pge o reurn o he lis of lessons.

More information

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation

The fundamental mass balance equation is ( 1 ) where: I = inputs P = production O = outputs L = losses A = accumulation Hea (iffusion) Equaion erivaion of iffusion Equaion The fundamenal mass balance equaion is I P O L A ( 1 ) where: I inpus P producion O oupus L losses A accumulaion Assume ha no chemical is produced or

More information

Discussion Session 2 Constant Acceleration/Relative Motion Week 03

Discussion Session 2 Constant Acceleration/Relative Motion Week 03 PHYS 100 Dicuion Seion Conan Acceleraion/Relaive Moion Week 03 The Plan Today you will work wih your group explore he idea of reference frame (i.e. relaive moion) and moion wih conan acceleraion. You ll

More information

CSE 421 Introduction to Algorithms Winter The Network Flow Problem

CSE 421 Introduction to Algorithms Winter The Network Flow Problem CSE 42 Inroducion o Algorihm Winer 202 The Nework Flow Problem 2 The Nework Flow Problem 5 a 4 3 x 3 7 6 b 4 y 4 7 6 c 5 z How much uff can flow from o? 3 Sovie Rail Nework, 955 Reference: On he hiory

More information

Solutions to Assignment 1

Solutions to Assignment 1 MA 2326 Differenial Equaions Insrucor: Peronela Radu Friday, February 8, 203 Soluions o Assignmen. Find he general soluions of he following ODEs: (a) 2 x = an x Soluion: I is a separable equaion as we

More information

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources

Solving Evacuation Problems Efficiently. Earliest Arrival Flows with Multiple Sources Solving Evcuion Prolem Efficienly Erlie Arrivl Flow wih Muliple Source Ndine Bumnn Univeriä Dormund, FB Mhemik 441 Dormund, Germny ndine.umnn@mh.uni-dormund.de Mrin Skuell Univeriä Dormund, FB Mhemik 441

More information

Chapter 8 The Complete Response of RL and RC Circuits

Chapter 8 The Complete Response of RL and RC Circuits Chaper 8 he Complee Response of R and RC Ciruis Exerises Ex 8.3-1 Before he swih loses: Afer he swih loses: 2 = = 8 Ω so = 8 0.05 = 0.4 s. 0.25 herefore R ( ) Finally, 2.5 ( ) = o + ( (0) o ) = 2 + V for

More information