Computer Aided Geometric Design

Size: px
Start display at page:

Download "Computer Aided Geometric Design"

Transcription

1 Copue Aided Geoei Design Geshon Ele, Tehnion sed on ook Cohen, Riesenfeld, & Ele Geshon Ele, Tehnion

2 Definiion 3. The Cile Given poin C in plne nd nue R 0, he ile ih ene C nd dius R is defined s he se of ll poins in he plne disne R fo he poin C. In se noion e ie, { P =, : P - C = R } C R Geshon Ele, Tehnion

3 Definiion 3. The Ellipse Given o poins, F nd F lled he foi nd nue P K F - F, n ellipse is defined s he se of ll poins F F he su of hose disnes fo he foi K. Th is, { P =, : P - F + P - F = K }. Geshon Ele, Tehnion 3

4 The Ellipse The is onining he foi is lled he jo is of he ellipse nd he is ohogonl o he jo is hough he ene, C = F + F /, is denoed he ino is. If ene C is soe loion C =, he ellipse equls, Geshon Ele, Tehnion 4.

5 Definiion 3.3 The Hpeol Given o poins, F nd F lled he foi nd nue P K 0, hpeol is defined s he se of ll poins F F he diffeene of hose disnes fo he foi K. Th is, { P =, : P - F - P - F = K }. Quesion: Wh if K = 0? Geshon Ele, Tehnion 5

6 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 6 The Hpeol The is onining he foi is lled he jo is of he hpeol nd he is ohogonl o he jo is hough he ene, C = F + F /, is denoed he ino is. If ene C is soe loion C =, he hpeol equls,. o

7 Definiion 3.4 The Pol Given fied poin F lled he fous nd fied line lled he diei, he se of poins equidisn iseo fo F nd he diei is lled pol. Diei F Geshon Ele, Tehnion 7

8 The Pol = -, 0 Le he diei e he line = - nd ssue F =, 0. Then,, nd squing he epession, 4. Geshon Ele, Tehnion 8

9 Coni Seions z Conside he one z = +, hee is el nue. Quesion: Wh is he ffe of? Quesion: Wh is he shpe of Plne-Cone ineseion? Geshon Ele, Tehnion 9

10 z = + Coni Seions z Conside he plne = k. Then, z = k +, o = z / - k. If k = 0, z =, o To Lines. z k 0,, o Hpeol. k k Quesion: Wh e he foi of he hpeol? =k =k Geshon Ele, Tehnion 0

11 Coni Seions z = + z Conside he plne z =. Then, / = +, o ile. Quesion: Wh if = 0? z= Geshon Ele, Tehnion

12 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion Coni Seions Conside he plne z = +, 0. Then, o,,. z z = +

13 Coni Seions. z If =, hen he ineseion uve equls o, Pol., Quesion: Wh if = 0? Geshon Ele, Tehnion 3

14 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 4 Coni Seions If < hen le = - nd nd opleing he sque,, z.

15 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 5 Coni Seions Mulipling = -, nd dividing, e ge n Ellipse., z

16 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 6 Coni Seions If > hen le = - nd nd ulipling,. z.

17 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 7 Coni Seions If = 0, eihe = o e hve ossing lines. Oheise, 0, divide, Hpeol.. z

18 Iplii Qudi Funions s Conis We hve seen h ll oni seions e qudi iplii fos. Quesion: Ae ll qudi iplii fos oni seions? Geshon Ele, Tehnion 8

19 Iplii Qudi Funions s Conis Conside he genel qudi iplii fo of A + B + C + D + E + F = 0. Quesion: Is hee hnge of sis fo, o, suh h he se gph is dn he uve, A + C + D + E + F = 0? Geshon Ele, Tehnion 9

20 Definiion 3.7 Fo he qudi equion: A + B + C + D + E + F = 0, he quni B - 4AC, is lled he disiinn. Theoe 3.8 The disiinn is invin unde oions. Geshon Ele, Tehnion 0

21 Theoe 3.9 Eve iplii qudi is oni seion nd if B 4AC 0, 0, 0, he he he uve uve uve hpeol. Geshon Ele, Tehnion is is is n ellipse, pol, Poof Sine he disiinn is invin unde oions, oe hough he speil ngle so h B = 0 in he ne oed oodine sse. Then, B 4AC B' 4A' C' 4A' C'.

22 Theoe 3.0 An iplii funion f, = 0 is oni seion if nd onl if f is seond degee polnoil in nd. Quesion: Ho n e inuiivel onsu oni seions? Geshon Ele, Tehnion

23 5 Poins Consuion Quesion: Ho n degees of feedo does he qudi equion of A + B + C + D + E + F = 0 hve? These degees of feedo n e pesied using five poins i, i : A A A A A B B B B B Geshon Ele, Tehnion C C C C C D D D D D E E E E E F F F F F

24 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 4 5 Poins Consuion Con. O in i fo, Quesions: Wh is issing hee? F E D C B A 4, 4 3, 3 5, 5,,

25 5 Poins Consuion Con. Seeking oe inuiive ppoh, onside he fou lines hough he fou given poins, L 3 P L L P 3 L hough P nd P L hough P 3 nd P 4 L 4 P 4 L 3 hough P nd P 3 P L 4 hough P 4 nd P Geshon Ele, Tehnion 5

26 5 Poins Consuion Con. Le L i, = i + i + i. Then, L L L L Pj 0 P 0 j fo fo j j, 3,4 L 3 P P 3 L L 3 4 P j P j 0 0 fo fo j j,3 4, L 4 P P 4 Geshon Ele, Tehnion 6

27 5 Poins Consuion Con. Le L i, L j, = i + i + i j + j + j. Osevion: L i, L j, is qudi equion in nd. Osevion: L L P j, j =,,3,4 equl zeo! No onside he sufe onsn, z f, L L, L3 L4,. Quesion: To h is f P j, j =,,3,4 equl? Geshon Ele, Tehnion 7

28 z f, L L, L3 L4,. 5 Poins Consuion Con. Quesion: Ho n e pesie? Define fifh poin, P 5, nd ensue h f o, P 5 0 L L P 5 L 3 L 4 P L P5 L P5. P 5 L P L P L 4 L 3 P P L L P 3 P 4 Geshon Ele, Tehnion 8

29 Using Tngens Le L 3 L 4 nd hene L L f, = L L + L 3 T Quesion: Wh does he shpe of f, look like? P 5 P 5 is denoed he shoulde poin: M = P +P 4 /, nd he -oni equls = P 5 - M / T - M. L 3 =L 4 P =P M P 3 =P 4 Geshon Ele, Tehnion 9

30 Using Tngens P 5 = - M + T. Then L L he oni is Pol, Hpeol, Ellipse, if if if,,. L 3 =L 4 P =P P 5 M T P 3 =P 4 Geshon Ele, Tehnion 30

31 Coni As s Rionl Funions Assue T, P, nd P e no on he se line. Then, {U = P - T, V = P - T } spns he XY plne. Eve poin in he XY plne n e ien s u, v = T+uP - T+vP - T. Quesion: Is his oodine sse igid-oion invin? T U=0,V= P V 0 = T +u P, -T +v P, -T, 0 = T +u P, -T +vp, -T. P U=,V=0 U Geshon Ele, Tehnion 3

32 Coni As s Rionl Funions Quesion: Wh e he u, v oodines of he T P line? The T P line? The P P line? L : v = 0, L : u = 0, L 3 : u + v - = 0. T L 3 U=0,V= P P U=,V=0 V U L : T + u P - T = -u T + u P, L : T + vp - T = -v T + vp, L 3 : T + u P - T + -u P - T = u P + -u P. Geshon Ele, Tehnion 3

33 Coni As s Rionl Funions In uv oodines e hve 0 = L L + L 3 = uv + u + v -. Seing = -/ -, one ges Cu, v =-uv - u+v- = 0. T v u,v u U=0,V= P P U=,V=0 V U Fo 0, nd 0 u, v suh h u + v, Cu, v = 0 is inside he ingle P T P. Conside poin P on Cu, v = 0, P = u, v. Geshon Ele, Tehnion 33

34 u v, 0 v u v Coni As s Rionl Funions A Conside he io And he io TA u P A u u v v TA P A v v Geshon Ele, Tehnion 34 T A =0, v A =u, 0 u v u u,v U=0,V= P P U=,V=0 V U

35 Coni As s Rionl Funions u v v, u v u And onside he podu of hese o ios 4 u v u v T A =0, v A =u, 0 u,v U=0,V= P P U=,V=0 V U On poin u, v, in uve Cu, v, -uv = u+v- o u v u v nd 4 4. Geshon Ele, Tehnion 35

36 Theoe 3.3 U=0,V= P V A =0, v If P, T, P, A nd A e T u,v s ove, hen he podu A =u, 0 of he ios P U=,V=0 U TA A P TA A P uv u v is onsn fo he hole oni seion. Geshon Ele, Tehnion 36

37 Coni As s Rionl Funions u Beuse 4, e hve, u nd siill v. Geshon Ele, Tehnion 37

38 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 38 Coni As s Rionl Funions Going k o he oni uve, e hve. P T P T P T P T T P v T P u T T U V P P u,v

39 Coni As s Rionl Funions P T P. In ode o peeize s ionl fo,,, nd us sisf he folloing onsins,. = k, k = 4/- onsn.., p, o 0, nd, 0. 3., us e onoone fo,. Quesion: Wh, p o 0,? Wh is hee onoonii onsin? Geshon Ele, Tehnion 39

40 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 40 Coni As s Rionl Funions One possile soluion fo, is nd : o is veified. nd 3 e ivil o veif s ell.. 4 K

41 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 4 Coni As s Rionl Funions Then, Hene, eve oni seion n e ien s ionl qudi pei funion.. P T P P T P P T P

42 Eple 3.9 A of ile Assue ile of dius spnning degs. Fo i =,, i TA i i A P i TA i i A P TA i TA i os / os / T Thus, K os / P A A Quesion: Wh ill e he effe, if n, of, /? P P Geshon Ele, Tehnion 4

43 עשת/ב רדא/'כ ו" Geshon Ele, Tehnion 43 Hoogeneous Coodines The ionl fo of qudis equls, Le = -, = - -, 3 = -. Then,. P T P.,,, P T P P T P

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction

Invert and multiply. Fractions express a ratio of two quantities. For example, the fraction Appendi E: Mnipuling Fions Te ules fo mnipuling fions involve lgei epessions e el e sme s e ules fo mnipuling fions involve numes Te fundmenl ules fo omining nd mnipuling fions e lised elow Te uses of

More information

Three Dimensional Coordinate Geometry

Three Dimensional Coordinate Geometry HKCWCC dvned evel Pure Mhs. / -D Co-Geomer Three Dimensionl Coordine Geomer. Coordine of Poin in Spe Z XOX, YOY nd ZOZ re he oordine-es. P,, is poin on he oordine plne nd is lled ordered riple. P,, X Y

More information

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103

4/3/2017. PHY 712 Electrodynamics 9-9:50 AM MWF Olin 103 PHY 7 Eleodnais 9-9:50 AM MWF Olin 0 Plan fo Leue 0: Coninue eading Chap Snhoon adiaion adiaion fo eleon snhoon deies adiaion fo asonoial objes in iula obis 0/05/07 PHY 7 Sping 07 -- Leue 0 0/05/07 PHY

More information

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a.

H (2a, a) (u 2a) 2 (E) Show that u v 4a. Explain why this implies that u v 4a, with equality if and only u a if u v 2a. Chpter Review 89 IGURE ol hord GH of the prol 4. G u v H (, ) (A) Use the distne formul to show tht u. (B) Show tht G nd H lie on the line m, where m ( )/( ). (C) Solve m for nd sustitute in 4, otining

More information

The Ellipse. is larger than the other.

The Ellipse. is larger than the other. The Ellipse Appolonius of Perg (5 B.C.) disovered tht interseting right irulr one ll the w through with plne slnted ut is not perpendiulr to the is, the intersetion provides resulting urve (oni setion)

More information

Primal and Weakly Primal Sub Semi Modules

Primal and Weakly Primal Sub Semi Modules Aein Inenionl Jounl of Conepoy eeh Vol 4 No ; Jnuy 204 Pil nd Wekly Pil ub ei odule lik Bineh ub l hei Depen Jodn Univeiy of iene nd Tehnology Ibid 220 Jodn Ab Le be ouive eiing wih ideniy nd n -ei odule

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

Technical Vibration - text 2 - forced vibration, rotational vibration

Technical Vibration - text 2 - forced vibration, rotational vibration Technicl Viion - e - foced viion, oionl viion 4. oced viion, viion unde he consn eenl foce The viion unde he eenl foce. eenl The quesion is if he eenl foce e is consn o vying. If vying, wh is he foce funcion.

More information

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk

Equations from the Millennium Theory of Inertia and Gravity. Copyright 2004 Joseph A. Rybczyk Equtions fo the illenniu heoy of Ineti nd vity Copyight 004 Joseph A. Rybzyk ollowing is oplete list of ll of the equtions used o deived in the illenniu heoy of Ineti nd vity. o ese of efeene the equtions

More information

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1.

LECTURE 5. is defined by the position vectors r, 1. and. The displacement vector (from P 1 to P 2 ) is defined through r and 1. LECTURE 5 ] DESCRIPTION OF PARTICLE MOTION IN SPACE -The displcemen, veloci nd cceleion in -D moion evel hei veco nue (diecion) houh he cuion h one mus p o hei sin. Thei full veco menin ppes when he picle

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

Ch.4 Motion in 2D. Ch.4 Motion in 2D

Ch.4 Motion in 2D. Ch.4 Motion in 2D Moion in plne, such s in he sceen, is clled 2-dimensionl (2D) moion. 1. Posiion, displcemen nd eloci ecos If he picle s posiion is ( 1, 1 ) 1, nd ( 2, 2 ) 2, he posiions ecos e 1 = 1 1 2 = 2 2 Aege eloci

More information

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis 2/3/2007 Physics 253

Science Advertisement Intergovernmental Panel on Climate Change: The Physical Science Basis   2/3/2007 Physics 253 Science Adeisemen Inegoenmenl Pnel on Clime Chnge: The Phsicl Science Bsis hp://www.ipcc.ch/spmfeb7.pdf /3/7 Phsics 53 hp://www.fonews.com/pojecs/pdf/spmfeb7.pdf /3/7 Phsics 53 3 Sus: Uni, Chpe 3 Vecos

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev

Mathematical Reflections, Issue 5, INEQUALITIES ON RATIOS OF RADII OF TANGENT CIRCLES. Y.N. Aliyev themtil efletions, Issue 5, 015 INEQULITIES ON TIOS OF DII OF TNGENT ILES YN liev stt Some inequlities involving tios of dii of intenll tngent iles whih inteset the given line in fied points e studied

More information

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9

_ J.. C C A 551NED. - n R ' ' t i :. t ; . b c c : : I I .., I AS IEC. r '2 5? 9 C C A 55NED n R 5 0 9 b c c \ { s AS EC 2 5? 9 Con 0 \ 0265 o + s ^! 4 y!! {! w Y n < R > s s = ~ C c [ + * c n j R c C / e A / = + j ) d /! Y 6 ] s v * ^ / ) v } > { ± n S = S w c s y c C { ~! > R = n

More information

Ellipses. The second type of conic is called an ellipse.

Ellipses. The second type of conic is called an ellipse. Ellipses The seond type of oni is lled n ellipse. Definition of Ellipse An ellipse is the set of ll points (, y) in plne, the sum of whose distnes from two distint fied points (foi) is onstnt. (, y) d

More information

Equations and Boundary Value Problems

Equations and Boundary Value Problems Elmn Diffnil Equions nd Bound Vlu Poblms Bo. & DiPim, 9 h Ediion Chp : Sond Od Diffnil Equions 6 คณ ตศาสตร ว ศวกรรม สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา /555 ผศ.ดร.อร ญญา ผศ.ดร.สมศ กด วล ยร ชต Topis Homognous

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineeing Mechnics Lecue 13: Kinemics of igid bodies hmd Shhedi Shkil Lecue, ep. of Mechnicl Engg, UET E-mil: sshkil@me.bue.c.bd, shkil6791@gmil.com Websie: eche.bue.c.bd/sshkil Couesy: Veco Mechnics

More information

CHAPTER 7 Applications of Integration

CHAPTER 7 Applications of Integration CHAPTER 7 Applitions of Integtion Setion 7. Ae of Region Between Two Cuves.......... Setion 7. Volume: The Disk Method................. Setion 7. Volume: The Shell Method................ Setion 7. A Length

More information

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2

ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER 2 ANSWERS TO EVEN NUMBERED EXERCISES IN CHAPTER Seion Eerise -: Coninuiy of he uiliy funion Le λ ( ) be he monooni uiliy funion defined in he proof of eisene of uiliy funion If his funion is oninuous y hen

More information

Proper Projective Symmetry in some well known Conformally flat Space-Times

Proper Projective Symmetry in some well known Conformally flat Space-Times roper rojeie Smmer in some well nown onformll fl Spe-Times Ghulm Shir Ful of Engineering Sienes GIK Insiue of Engineering Sienes nd Tehnolog Topi Swi NWF isn Emil: shir@gii.edu.p sr sud of onformll fl

More information

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors

Transformations. Ordered set of numbers: (1,2,3,4) Example: (x,y,z) coordinates of pt in space. Vectors Trnformion Ordered e of number:,,,4 Emple:,,z coordine of p in pce. Vecor If, n i i, K, n, i uni ecor Vecor ddiion +w, +, +, + V+w w Sclr roduc,, Inner do roduc α w. w +,.,. The inner produc i SCLR!. w,.,

More information

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR

LIPSCHITZ ESTIMATES FOR MULTILINEAR COMMUTATOR OF MARCINKIEWICZ OPERATOR Reseh d ouiios i heis d hei Siees Vo. Issue Pges -46 ISSN 9-699 Puished Oie o Deee 7 Joi Adei Pess h://oideiess.e IPSHITZ ESTIATES FOR UTIINEAR OUTATOR OF ARINKIEWIZ OPERATOR DAZHAO HEN Dee o Siee d Ioio

More information

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4

MATHEMATICS IV 2 MARKS. 5 2 = e 3, 4 MATHEMATICS IV MARKS. If + + 6 + c epesents cicle with dius 6, find the vlue of c. R 9 f c ; g, f 6 9 c 6 c c. Find the eccenticit of the hpeol Eqution of the hpeol Hee, nd + e + e 5 e 5 e. Find the distnce

More information

10.3 The Quadratic Formula

10.3 The Quadratic Formula . Te Qudti Fomul We mentioned in te lst setion tt ompleting te sque n e used to solve ny qudti eqution. So we n use it to solve 0. We poeed s follows 0 0 Te lst line of tis we ll te qudti fomul. Te Qudti

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

1. Kinematics of Particles

1. Kinematics of Particles 1. Kinemics o Picles 1.1 Inoducion o Dnmics Dnmics - Kinemics: he sud o he geome o moion; ele displcemen, eloci, cceleion, nd ime, wihou eeence o he cuse o he moion. - Kineics: he sud o he elion eising

More information

Using hypothesis one, energy of gravitational waves is directly proportional to its frequency,

Using hypothesis one, energy of gravitational waves is directly proportional to its frequency, ushl nd Grviy Prshn Shool of Siene nd ngineering, Universiy of Glsgow, Glsgow-G18QQ, Unied ingdo. * orresponding uhor: : Prshn. Shool of Siene nd ngineering, Universiy of Glsgow, Glsgow-G18QQ, Unied ingdo,

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk

Equations from The Four Principal Kinetic States of Material Bodies. Copyright 2005 Joseph A. Rybczyk Equions fom he Fou Pinipl Kinei Ses of Meil Bodies Copyigh 005 Joseph A. Rybzyk Following is omplee lis of ll of he equions used in o deied in he Fou Pinipl Kinei Ses of Meil Bodies. Eh equion is idenified

More information

The Area of a Triangle

The Area of a Triangle The e of Tingle tkhlid June 1, 015 1 Intodution In this tile we will e disussing the vious methods used fo detemining the e of tingle. Let [X] denote the e of X. Using se nd Height To stt off, the simplest

More information

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric

v T Pressure Extra Molecular Stresses Constitutive equations for Stress v t Observation: the stress tensor is symmetric Momenum Blnce (coninued Momenum Blnce (coninued Now, wh o do wih Π? Pessue is p of i. bck o ou quesion, Now, wh o do wih? Π Pessue is p of i. Thee e ohe, nonisoopic sesses Pessue E Molecul Sesses definiion:

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

Introductions to ArithmeticGeometricMean

Introductions to ArithmeticGeometricMean Intoductions to AitheticGeoeticMen Intoduction to the Aithetic-Geoetic Men Genel The ithetic-geoetic en eed in the woks of J Lnden (77, 775) nd J-L Lgnge (784-785) who defined it though the following quite-ntul

More information

4.1 Schrödinger Equation in Spherical Coordinates

4.1 Schrödinger Equation in Spherical Coordinates Phs 34 Quu Mehs D 9 9 Mo./ Wed./ Thus /3 F./4 Mo., /7 Tues. / Wed., /9 F., /3 4.. -. Shodge Sphe: Sepo & gu (Q9.) 4..-.3 Shodge Sphe: gu & d(q9.) Copuo: Sphe Shodge s 4. Hdoge o (Q9.) 4.3 gu Moeu 4.4.-.

More information

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS

African Journal of Science and Technology (AJST) Science and Engineering Series Vol. 4, No. 2, pp GENERALISED DELETION DESIGNS Af Joul of See Tehology (AJST) See Egeeg See Vol. 4, No.,. 7-79 GENERALISED DELETION DESIGNS Mhel Ku Gh Joh Wylff Ohbo Dee of Mhe, Uvey of Nob, P. O. Bo 3097, Nob, Key ABSTRACT:- I h e yel gle ele fol

More information

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14

GeoTrig Notes Conventions and Notation: First Things First - Pythogoras and His Triangle. Conventions and Notation: GeoTrig Notes 04-14 Convenions nd Noion: GeoTrig Noes 04-14 Hello ll, his revision inludes some numeri exmples s well s more rigonomery heory. This se of noes is inended o ompny oher uorils in his series: Inroduion o EDA,

More information

D zone schemes

D zone schemes Ch. 5. Enegy Bnds in Cysls 5.. -D zone schemes Fee elecons E k m h Fee elecons in cysl sinα P + cosα cosk α cos α cos k cos( k + π n α k + πn mv ob P 0 h cos α cos k n α k + π m h k E Enegy is peiodic

More information

Coupled Mass Transport and Reaction in LPCVD Reactors

Coupled Mass Transport and Reaction in LPCVD Reactors ople Ma Tanpo an eaion in LPV eao ile A in B e.g., SiH 4 in H Sepaae eao ino o egion, inaafe & annla b - oniniy Eqn: : onveion-iffion iffion-eaion Eqn Ampion! ile peie i in majo aie ga e.g., H isih 4!

More information

Stress Analysis of Infinite Plate with Elliptical Hole

Stress Analysis of Infinite Plate with Elliptical Hole Sess Analysis of Infinie Plae ih Ellipical Hole Mohansing R Padeshi*, D. P. K. Shaa* * ( P.G.Suden, Depaen of Mechanical Engg, NRI s Insiue of Infoaion Science & Technology, Bhopal, India) * ( Head of,

More information

Final Exam. Tuesday, December hours, 30 minutes

Final Exam. Tuesday, December hours, 30 minutes an Faniso ae Univesi Mihael Ba ECON 30 Fall 04 Final Exam Tuesda, Deembe 6 hous, 30 minues Name: Insuions. This is losed book, losed noes exam.. No alulaos of an kind ae allowed. 3. how all he alulaions.

More information

Reinforcement learning

Reinforcement learning CS 75 Mchine Lening Lecue b einfocemen lening Milos Huskech milos@cs.pi.edu 539 Senno Sque einfocemen lening We wn o len conol policy: : X A We see emples of bu oupus e no given Insed of we ge feedbck

More information

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2

SAMPLE LABORATORY SESSION FOR JAVA MODULE B. Calculations for Sample Cross-Section 2 SAMPLE LABORATORY SESSION FOR JAVA MODULE B Calulations fo Sample Coss-Setion. Use Input. Setion Popeties The popeties of Sample Coss-Setion ae shown in Figue and ae summaized below. Figue : Popeties of

More information

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then.

April 8, 2017 Math 9. Geometry. Solving vector problems. Problem. Prove that if vectors and satisfy, then. pril 8, 2017 Mth 9 Geometry Solving vetor prolems Prolem Prove tht if vetors nd stisfy, then Solution 1 onsider the vetor ddition prllelogrm shown in the Figure Sine its digonls hve equl length,, the prllelogrm

More information

KINGS UNIT- I LAPLACE TRANSFORMS

KINGS UNIT- I LAPLACE TRANSFORMS MA5-MATHEMATICS-II KINGS COLLEGE OF ENGINEERING Punalkulam DEPARTMENT OF MATHEMATICS ACADEMIC YEAR - ( Even Semese ) QUESTION BANK SUBJECT CODE: MA5 SUBJECT NAME: MATHEMATICS - II YEAR / SEM: I / II UNIT-

More information

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations

Today - Lecture 13. Today s lecture continue with rotations, torque, Note that chapters 11, 12, 13 all involve rotations Today - Lecue 13 Today s lecue coninue wih oaions, oque, Noe ha chapes 11, 1, 13 all inole oaions slide 1 eiew Roaions Chapes 11 & 1 Viewed fom aboe (+z) Roaional, o angula elociy, gies angenial elociy

More information

8.3 THE HYPERBOLA OBJECTIVES

8.3 THE HYPERBOLA OBJECTIVES 8.3 THE HYPERBOLA OBJECTIVES 1. Define Hperol. Find the Stndrd Form of the Eqution of Hperol 3. Find the Trnsverse Ais 4. Find the Eentriit of Hperol 5. Find the Asmptotes of Hperol 6. Grph Hperol HPERBOLAS

More information

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics:

Forms of Energy. Mass = Energy. Page 1. SPH4U: Introduction to Work. Work & Energy. Particle Physics: SPH4U: Inroducion o ork ork & Energy ork & Energy Discussion Definiion Do Produc ork of consn force ork/kineic energy heore ork of uliple consn forces Coens One of he os iporn conceps in physics Alernive

More information

Physics 201, Lecture 5

Physics 201, Lecture 5 Phsics 1 Lecue 5 Tod s Topics n Moion in D (Chp 4.1-4.3): n D Kinemicl Quniies (sec. 4.1) n D Kinemics wih Consn Acceleion (sec. 4.) n D Pojecile (Sec 4.3) n Epeced fom Peiew: n Displcemen eloci cceleion

More information

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER

MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER MATHEMATICS II PUC VECTOR ALGEBRA QUESTIONS & ANSWER I One M Queston Fnd the unt veto n the deton of Let ˆ ˆ 9 Let & If Ae the vetos & equl? But vetos e not equl sne the oespondng omponents e dstnt e detons

More information

Inspiration and formalism

Inspiration and formalism Inspirtion n formlism Answers Skills hek P(, ) Q(, ) PQ + ( ) PQ A(, ) (, ) grient ( ) + Eerise A opposite sies of regulr hegon re equl n prllel A ED i FC n ED ii AD, DA, E, E n FC No, sies of pentgon

More information

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9

OH BOY! Story. N a r r a t iv e a n d o bj e c t s th ea t e r Fo r a l l a g e s, fr o m th e a ge of 9 OH BOY! O h Boy!, was or igin a lly cr eat ed in F r en ch an d was a m a jor s u cc ess on t h e Fr en ch st a ge f or young au di enc es. It h a s b een s een by ap pr ox i ma t ely 175,000 sp ect at

More information

Lecture 2: Network Flow. c 14

Lecture 2: Network Flow. c 14 Comp 260: Avne Algorihms Tufs Universiy, Spring 2016 Prof. Lenore Cowen Srie: Alexner LeNil Leure 2: Nework Flow 1 Flow Neworks s 16 12 13 10 4 20 14 4 Imgine some nework of pipes whih rry wer, represene

More information

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s

ÖRNEK 1: THE LINEAR IMPULSE-MOMENTUM RELATION Calculate the linear momentum of a particle of mass m=10 kg which has a. kg m s MÜHENDİSLİK MEKANİĞİ. HAFTA İMPULS- MMENTUM-ÇARPIŞMA Linea oenu of a paicle: The sybol L denoes he linea oenu and is defined as he ass ies he elociy of a paicle. L ÖRNEK : THE LINEAR IMPULSE-MMENTUM RELATIN

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial

Fig. 1S. The antenna construction: (a) main geometrical parameters, (b) the wire support pillar and (c) the console link between wire and coaxial a b c Fig. S. The anenna consucion: (a) ain geoeical paaees, (b) he wie suppo pilla and (c) he console link beween wie and coaial pobe. Fig. S. The anenna coss-secion in he y-z plane. Accoding o [], he

More information

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes omewok # P7-3 ecngul loop of widh w nd heigh h is siued ne ve long wie cing cuen i s in Fig 7- ssume i o e ecngul pulse s shown in Fig 7- Find he induced cuen i in he ecngul loop whose self-inducnce is

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

Global alignment in linear space

Global alignment in linear space Globl linmen in liner spe 1 2 Globl linmen in liner spe Gol: Find n opiml linmen of A[1..n] nd B[1..m] in liner spe, i.e. O(n) Exisin lorihm: Globl linmen wih bkrkin O(nm) ime nd spe, bu he opiml os n

More information

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source

Illustrating the space-time coordinates of the events associated with the apparent and the actual position of a light source Illustting the spe-time oointes of the events ssoite with the ppent n the tul position of light soue Benh Rothenstein ), Stefn Popesu ) n Geoge J. Spi 3) ) Politehni Univesity of Timiso, Physis Deptment,

More information

ON A METHOD FOR FINDING THE NUMERICAL SOLUTION OF CAUCHY PROBLEM FOR 2D BURGERS EQUATION

ON A METHOD FOR FINDING THE NUMERICAL SOLUTION OF CAUCHY PROBLEM FOR 2D BURGERS EQUATION Europen Sienifi Journl Augus 05 /SPECIAL/ eiion ISSN: 857 788 Prin e - ISSN 857-743 ON A MEHOD FOR FINDING HE NUMERICAL SOLUION OF CAUCHY PROBLEM FOR D BURGERS EQUAION Mir Rsulo Prof. Been Uniersi Deprmen

More information

y z A left-handed system can be rotated to look like the following. z

y z A left-handed system can be rotated to look like the following. z Chpter 2 Crtesin Coördintes The djetive Crtesin bove refers to René Desrtes (1596 1650), who ws the first to oördintise the plne s ordered pirs of rel numbers, whih provided the first sstemti link between

More information

Problem Set 9 Due December, 7

Problem Set 9 Due December, 7 EE226: Random Proesses in Sysems Leurer: Jean C. Walrand Problem Se 9 Due Deember, 7 Fall 6 GSI: Assane Gueye his problem se essenially reviews Convergene and Renewal proesses. No all exerises are o be

More information

Motion on a Curve and Curvature

Motion on a Curve and Curvature Moion on Cue nd Cuue his uni is bsed on Secions 9. & 9.3, Chpe 9. All ssigned edings nd execises e fom he exbook Objecies: Mke cein h you cn define, nd use in conex, he ems, conceps nd fomuls lised below:

More information

MTH 146 Class 11 Notes

MTH 146 Class 11 Notes 8.- Are of Surfce of Revoluion MTH 6 Clss Noes Suppose we wish o revolve curve C round n is nd find he surfce re of he resuling solid. Suppose f( ) is nonnegive funcion wih coninuous firs derivive on he

More information

Existence and multiplicity of solutions to boundary value problems for nonlinear high-order differential equations

Existence and multiplicity of solutions to boundary value problems for nonlinear high-order differential equations Jounal of pplied Matheatics & Bioinfoatics, vol.5, no., 5, 5-5 ISSN: 79-66 (pint), 79-6939 (online) Scienpess Ltd, 5 Existence and ultiplicity of solutions to bounday value pobles fo nonlinea high-ode

More information

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID

ON THE EXTENSION OF WEAK ARMENDARIZ RINGS RELATIVE TO A MONOID wwweo/voue/vo9iue/ijas_9 9f ON THE EXTENSION OF WEAK AENDAIZ INGS ELATIVE TO A ONOID Eye A & Ayou Eoy Dee of e Nowe No Uvey Lzou 77 C Dee of e Uvey of Kou Ou Su E-: eye76@o; you975@yooo ABSTACT Fo oo we

More information

Extension of Hardy Inequality on Weighted Sequence Spaces

Extension of Hardy Inequality on Weighted Sequence Spaces Jourl of Scieces Islic Reublic of Ir 20(2): 59-66 (2009) Uiversiy of ehr ISS 06-04 h://sciecesucir Eesio of Hrdy Iequliy o Weighed Sequece Sces R Lshriour d D Foroui 2 Dere of Mheics Fculy of Mheics Uiversiy

More information

Properties and Formulas

Properties and Formulas Popeties nd Fomuls Cpte 1 Ode of Opetions 1. Pefom ny opetion(s) inside gouping symols. 2. Simplify powes. 3. Multiply nd divide in ode fom left to igt. 4. Add nd sutt in ode fom left to igt. Identity

More information

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review

Section P.1 Notes Page 1 Section P.1 Precalculus and Trigonometry Review Secion P Noe Pge Secion P Preclculu nd Trigonomer Review ALGEBRA AND PRECALCULUS Eponen Lw: Emple: 8 Emple: Emple: Emple: b b Emple: 9 EXAMPLE: Simplif: nd wrie wi poiive eponen Fir I will flip e frcion

More information

Solution to Problem First, the firm minimizes the cost of the inputs: min wl + rk + sf

Solution to Problem First, the firm minimizes the cost of the inputs: min wl + rk + sf Econ 0A Poblem Set 4 Solutions ue in class on Tu 4 Novembe. No late Poblem Sets accepted, so! This Poblem set tests the knoledge that ou accumulated mainl in lectues 5 to 9. Some of the mateial ill onl

More information

Section 1.3 Triangles

Section 1.3 Triangles Se 1.3 Tringles 21 Setion 1.3 Tringles LELING TRINGLE The line segments tht form tringle re lled the sides of the tringle. Eh pir of sides forms n ngle, lled n interior ngle, nd eh tringle hs three interior

More information

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) ,

Prerna Tower, Road No 2, Contractors Area, Bistupur, Jamshedpur , Tel (0657) , R Pen Towe Rod No Conttos Ae Bistupu Jmshedpu 8 Tel (67)89 www.penlsses.om IIT JEE themtis Ppe II PART III ATHEATICS SECTION I (Totl ks : ) (Single Coet Answe Type) This setion ontins 8 multiple hoie questions.

More information

7 Wave Equation in Higher Dimensions

7 Wave Equation in Higher Dimensions 7 Wave Equaion in Highe Dimensions We now conside he iniial-value poblem fo he wave equaion in n dimensions, u c u x R n u(x, φ(x u (x, ψ(x whee u n i u x i x i. (7. 7. Mehod of Spheical Means Ref: Evans,

More information

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard

The shortest path between two truths in the real domain passes through the complex domain. J. Hadamard Complex Analysis R.G. Halbud R.Halbud@ucl.ac.uk Depamen of Mahemaics Univesiy College London 202 The shoes pah beween wo uhs in he eal domain passes hough he complex domain. J. Hadamad Chape The fis fundamenal

More information

CSC 373: Algorithm Design and Analysis Lecture 9

CSC 373: Algorithm Design and Analysis Lecture 9 CSC 373: Algorihm Deign n Anlyi Leure 9 Alln Boroin Jnury 28, 2013 1 / 16 Leure 9: Announemen n Ouline Announemen Prolem e 1 ue hi Friy. Term Te 1 will e hel nex Mony, Fe in he uoril. Two nnounemen o follow

More information

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba

P441 Analytical Mechanics - I. Coupled Oscillators. c Alex R. Dzierba Lecure 3 Mondy - Deceber 5, 005 Wrien or ls upded: Deceber 3, 005 P44 Anlyicl Mechnics - I oupled Oscillors c Alex R. Dzierb oupled oscillors - rix echnique In Figure we show n exple of wo coupled oscillors,

More information

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors

VECTORS VECTORS VECTORS VECTORS. 2. Vector Representation. 1. Definition. 3. Types of Vectors. 5. Vector Operations I. 4. Equal and Opposite Vectors 1. Defnton A vetor s n entt tht m represent phsl quntt tht hs mgntude nd dreton s opposed to slr tht ls dreton.. Vetor Representton A vetor n e represented grphll n rrow. The length of the rrow s the mgntude

More information

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform?

Fourier Series & The Fourier Transform. Joseph Fourier, our hero. Lord Kelvin on Fourier s theorem. What do we want from the Fourier Transform? ourier Series & The ourier Transfor Wha is he ourier Transfor? Wha do we wan fro he ourier Transfor? We desire a easure of he frequencies presen in a wave. This will lead o a definiion of he er, he specru.

More information

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr.

How dark matter, axion walls, and graviton production lead to observable Entropy generation in the Early Universe. Dr. How dk me, xion wlls, nd gvion poduion led o obsevble Enopy geneion in he Ely Univese D. Andew Bekwih he D Albembein opeion in n equion of moion fo emegen sl fields implying Non-zeo sl field V && Penose

More information

New Oscillation Criteria For Second Order Nonlinear Differential Equations

New Oscillation Criteria For Second Order Nonlinear Differential Equations Researh Inveny: Inernaional Journal Of Engineering And Siene Issn: 78-47, Vol, Issue 4 (Feruary 03), Pp 36-4 WwwResearhinvenyCom New Osillaion Crieria For Seond Order Nonlinear Differenial Equaions Xhevair

More information

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2

MA 1201 Engineering Mathematics MO/2017 Tutorial Sheet No. 2 BIRLA INSTITUTE OF TECHNOLOGY, MESRA, RANCHI DEPARTMENT OF MATHEMATICS MA Egieeig Matheatis MO/7 Tutoia Sheet No. Modue IV:. Defie Beta futio ad Gaa futio.. Pove that,,,. Pove that, d. Pove that. & whee

More information

The Relationship between the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes Triangle Yuporn Rimcholakarn

The Relationship between the Nine-Point Circle, the Circumscribed Circle and the Inscribed Circle of Archimedes Triangle Yuporn Rimcholakarn Nresun Universit Journl: Siene nd Tehnolog 08; 63 The Reltionship between the Nine-Point irle, the irusribed irle nd the Insribed irle of rhiedes Tringle Yuporn Riholkrn Fult of Siene nd Tehnolog, Pibulsongkr

More information

Homework 2 Solutions

Homework 2 Solutions Mah 308 Differenial Equaions Fall 2002 & 2. See he las page. Hoework 2 Soluions 3a). Newon s secon law of oion says ha a = F, an we know a =, so we have = F. One par of he force is graviy, g. However,

More information

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.)

BINOMIAL THEOREM SOLUTION. 1. (D) n. = (C 0 + C 1 x +C 2 x C n x n ) (1+ x+ x 2 +.) BINOMIAL THEOREM SOLUTION. (D) ( + + +... + ) (+ + +.) The coefficiet of + + + +... + fo. Moeove coefficiet of is + + + +... + if >. So. (B)... e!!!! The equied coefficiet coefficiet of i e -.!...!. (A),

More information

Physics 232 Exam I Feb. 13, 2006

Physics 232 Exam I Feb. 13, 2006 Phsics I Fe. 6 oc. ec # Ne..5 g ss is ched o hoizol spig d is eecuig siple hoic oio. The oio hs peiod o.59 secods. iiil ie i is oud o e 8.66 c o he igh o he equiliiu posiio d oig o he le wih eloci o sec.

More information

Second-Order Boundary Value Problems of Singular Type

Second-Order Boundary Value Problems of Singular Type JOURNAL OF MATEMATICAL ANALYSIS AND APPLICATIONS 226, 4443 998 ARTICLE NO. AY98688 Seond-Order Boundary Value Probles of Singular Type Ravi P. Agarwal Deparen of Maheais, Naional Uniersiy of Singapore,

More information

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c

STATICS. CENTROIDS OF MASSES, AREAS, LENGTHS, AND VOLUMES The following formulas are for discrete masses, areas, lengths, and volumes: r c STTS FORE foe is veto qutit. t is defied we its () mgitude, () oit of litio, d () dietio e kow. Te veto fom of foe is F F i F j RESULTNT (TWO DMENSONS) Te esultt, F, of foes wit omoets F,i d F,i s te mgitude

More information

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180.

2. There are an infinite number of possible triangles, all similar, with three given angles whose sum is 180. SECTION 8-1 11 CHAPTER 8 Setion 8 1. There re n infinite numer of possile tringles, ll similr, with three given ngles whose sum is 180. 4. If two ngles α nd β of tringle re known, the third ngle n e found

More information

Week 8. Topic 2 Properties of Logarithms

Week 8. Topic 2 Properties of Logarithms Week 8 Topic 2 Popeties of Logithms 1 Week 8 Topic 2 Popeties of Logithms Intoduction Since the esult of ithm is n eponent, we hve mny popeties of ithms tht e elted to the popeties of eponents. They e

More information

Physics 2A HW #3 Solutions

Physics 2A HW #3 Solutions Chper 3 Focus on Conceps: 3, 4, 6, 9 Problems: 9, 9, 3, 41, 66, 7, 75, 77 Phsics A HW #3 Soluions Focus On Conceps 3-3 (c) The ccelerion due o grvi is he sme for boh blls, despie he fc h he hve differen

More information

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA

Adrian Sfarti University of California, 387 Soda Hall, UC Berkeley, California, USA Innionl Jonl of Phoonis n Oil Thnolo Vol. 3 Iss. : 36-4 Jn 7 Rliisi Dnis n lonis in Unifol l n in Unifol Roin s-th Gnl ssions fo h loni 4-Vo Ponil in Sfi Unisi of Clifoni 387 So Hll UC Bkl Clifoni US s@ll.n

More information

ECE Microwave Engineering

ECE Microwave Engineering EE 537-635 Microwve Engineering Adped from noes y Prof. Jeffery T. Willims Fll 8 Prof. Dvid R. Jcson Dep. of EE Noes Wveguiding Srucures Pr 7: Trnsverse Equivlen Newor (N) Wveguide Trnsmission Line Model

More information

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r

m m m m m m m m P m P m ( ) m m P( ) ( ). The o-ordinte of the point P( ) dividing the line segment joining the two points ( ) nd ( ) eternll in the r CO-ORDINTE GEOMETR II I Qudrnt Qudrnt (-.+) (++) X X - - - 0 - III IV Qudrnt - Qudrnt (--) - (+-) Region CRTESIN CO-ORDINTE SSTEM : Retngulr Co-ordinte Sstem : Let X' OX nd 'O e two mutull perpendiulr

More information

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov)

Algorithms and Data Structures 2011/12 Week 9 Solutions (Tues 15th - Fri 18th Nov) Algorihm and Daa Srucure 2011/ Week Soluion (Tue 15h - Fri 18h No) 1. Queion: e are gien 11/16 / 15/20 8/13 0/ 1/ / 11/1 / / To queion: (a) Find a pair of ube X, Y V uch ha f(x, Y) = f(v X, Y). (b) Find

More information

D Properties and Measurement

D Properties and Measurement APPENDIX D. Review of Alge, Geomet, nd Tigonomet A D Popetie nd Meuement D. Review of Alge, Geomet, nd Tigonomet Alge Popetie of Logitm Geomet Plne Anltic Geomet Solid Anltic Geomet Tigonomet Li of Function

More information

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES

CHAPTER 11 PARAMETRIC EQUATIONS AND POLAR COORDINATES CHAPTER PARAMETRIC EQUATIONS AND POLAR COORDINATES. PARAMETRIZATIONS OF PLANE CURVES., 9, _ _ Ê.,, Ê or, Ÿ. 5, 7, _ _.,, Ÿ Ÿ Ê Ê 5 Ê ( 5) Ê ˆ Ê 6 Ê ( 5) 7 Ê Ê, Ÿ Ÿ $ 5. cos, sin, Ÿ Ÿ 6. cos ( ), sin (

More information

11.2 Proving Figures are Similar Using Transformations

11.2 Proving Figures are Similar Using Transformations Name lass ate 11. Poving igues ae Simila Using Tansfomations ssential Question: How can similait tansfomations be used to show two figues ae simila? esouce ocke ploe onfiming Similait similait tansfomation

More information