Physics 15 Second Hour Exam

Save this PDF as:
 WORD  PNG  TXT  JPG

Size: px
Start display at page:

Download "Physics 15 Second Hour Exam"

Transcription

1 hc 5 Second Hou e nwe e Mulle hoce / ole / ole /6 ole / ol /

2 I ee eone ole lee how ll wo n ode o ecee l ced. I ou oluon e llegle no ced wll e gen.. onde he collon o wo 7. g Olc culng one hown elow. One one nll e nd he ohe oche wh eed o.5 /. he collon no hed-on, u he glncng one. Sone oe w n ngle o 66 o. (oe h he cue no o cle.) 66 o φ. e he le equon h goen coneon o oenu. co 66 n 66 coφ nφ.9.7 nφ coφ. e he le equon h goen coneon o eneg. c. h he delecon ngle, wh eec o he nl lne o oon, o one? Snce nd he collon glncng, φ 66 9, heeoe φ o. d. h he nl eloc o one? (.7.5.9) ; e. h he nl eloc o one?. 7.5

3 . l engnee h degn odw he o wo ou he u eed c cn he nd ll negoe un n he odw el. onde he wo ce elow. In he ce conde leel od whee c con he oce h eonle o he c negong he cue el. In he econd ce, he odw ned n ngle wh eec o he hozonl, n ode o no el on con o un he cone, u ned oe o he wegh o he c.. Dw he ee-od dg o he c ng he le hnd un on he l odw. (Hn hee he e e conc wh he od, he e oenl e nd wh llow he c o un he cone c con, whch he oduc o µ, whee µ..) g g. h he u eed wh whch 5 g c cn e le hnd un ound cue o du 5 on he leel od whou ldng? µ µ g µ g c. Dw he ee-od dg o he c ng he le hnd un on he ned odw. (Hn Do no ue led coodne e, l o h ued n nclned lne ole. he cene o he ccle ound whch he c elng n he e hozonl lne he c nd h dene o ccul oon ole.) n co g g d. h he eed whch he 5 g c cn e h cue whou elng on con, he du o he cue 7 nd he odw ned 5 o? g n g n n5. 6

4 . You he een ed o degn llc-ng e o eue he eed o ulle. ng whoe ng conn uended o he celng nd loc o M hng o he ng. ulle o ed ecll uwd no he oo o he loc. he ng u coeon d eued.. nd n eeon o he ulle nl eed n e o, M,, nd d (gnoe n chnge n gonl oenl eneg). on. o on. o ( M ) ( M ) M ( M ) M. h he eed o g ulle he loc g nd he ng wh ng conn 5 /, w coeed 5 c? M.g 5 (.5) 5. (.g) c. he eed o ound n /. Doe ou eul oe e ene wh eec o he eed o ound? ln. h ee le eonle eed when coed o he eed o ound. d. h he eod o he eulng ocllon o he loc-ulle-ng e?.g. 5 ol 6

5 II Mulle-hoce cle ou nwe o ech queon. ch ulle-choce queon woh on o ol o on.. h he chnge n oenu o n 8 g eon llng o hegh o oe he gound when he collde wh he gound?. g/. g/ c. 56 g/ d. g/. g loc ulled co hozonl uce (wh coecen o nec con µ.6) 5 oce deced o oe he hozonl. How uch wo done g he loc ulled long he hozonl uce dnce o 6?. J. 5 J c. 98 J d. -59J. onde long c o uno 5g. Suoe h zeo coeond o he le end o he c nd h wegh o 5g dded he 75c. h he - coodne o he cene o?. 7.7 c. 5 c c. 5. c d. 75 c. e lgh ojec () nd e he () ojec e ldng long conle uce he e eed. he lde u conle hll. hch o he ollowng ue, whee h he hegh he ojec eche oe he hozonl uce?. h > h. h > h c. h h d. cnno ell o he noon gen. 5. Suoe h owlng ll nd ell e hown o o hgh uldng wh he e gnude o he eloc. e he owlng ll e hown hozonll whle he ell hown uwd n ngle wh eec o he hozonl. Ignong ence, he ll. he he e gnude o he eloc he oo. ell > owlng ll c. owlng ll > ell d. cnno ell o he noon gen?

6 6. lge uc un no ll c nd uhe eoe ong. Dung he collon. he uc ee lge gnude oce on he c hn he c ee on he uc,. he uc ee lle gnude oce on he c hn he c ee on he uc, c. he uc nd c ee equl gnude oce on ech ohe, d. he c doen cull ee oce on he uc, he uc ju ee on gong. 7. Suoe h ll doed o uldng. he on o elee h gonl oenl eneg o U. Ju eoe h he gound, h nec eneg o. ng no ccoun ence, wh he elonh eween nd U?. > U. < U c. U d. cnno ell o he noon gen. 8. g duc lng hozonll / when ezed.8 g hw dng /. he hw cong n o ehnd nd e n ngle o o o he ecl ju eoe conc. he gnude o he eloc o he d ju e conc.. /.. / c..6 / d..6 / 9. In he oe queon, he ngle wh eec o he hozonl h he d e. o. - o c. 9 o d. -9 o. h he owe o oo h equed o l g eleo conn e o /? c. 7.6 d.9.

7 Ueul oul Moon n he, o z-decon Uno cul Moon Geoe /lge G G c gen e oluon whoe c equon udc h Shee ngle cle, ± eco Ueul onn ound J ole o g G g σ eco decono eco o gnude n φ ne Moenu/oce o/neg He ne S g do U gh U I τ µ [ ] U c old new old new old new εσ β β oonl Moon lud Sle Honc Moon/e τ I I gh gh g gd M d n n g l n S ± µ λ

Physics 232 Exam II Mar. 28, 2005

Physics 232 Exam II Mar. 28, 2005 Phi 3 M. 8, 5 So. Se # Ne. A piee o gl, ide o eio.5, h hi oig o oil o i. The oil h ide o eio.4.d hike o. Fo wh welegh, i he iile egio, do ou ge o eleio? The ol phe dieee i gie δ Tol δ PhDieee δ i,il δ

More information

Addition & Subtraction of Polynomials

Addition & Subtraction of Polynomials Addiion & Sucion of Polynomil Addiion of Polynomil: Adding wo o moe olynomil i imly me of dding like em. The following ocedue hould e ued o dd olynomil 1. Remove enhee if hee e enhee. Add imil em. Wie

More information

X-Ray Notes, Part III

X-Ray Notes, Part III oll 6 X-y oe 3: Pe X-Ry oe, P III oe Deeo Coe oupu o x-y ye h look lke h: We efe ue of que lhly ffee efo h ue y ovk: Co: C ΔS S Sl o oe Ro: SR S Co o oe Ro: CR ΔS C SR Pevouly, we ee he SR fo ye hv pxel

More information

Physics 201 Lecture 2

Physics 201 Lecture 2 Physcs 1 Lecure Lecure Chper.1-. Dene Poson, Dsplcemen & Dsnce Dsngush Tme nd Tme Inerl Dene Velocy (Aerge nd Insnneous), Speed Dene Acceleron Undersnd lgebrclly, hrough ecors, nd grphclly he relonshps

More information

Use 10 m/s 2 for the acceleration due to gravity.

Use 10 m/s 2 for the acceleration due to gravity. ANSWERS Prjecle mn s he ecrl sum w ndependen elces, hrznl cmpnen nd ercl cmpnen. The hrznl cmpnen elcy s cnsn hrughu he mn whle he ercl cmpnen elcy s dencl ree ll. The cul r nsnneus elcy ny pn lng he prblc

More information

Classification of Equations Characteristics

Classification of Equations Characteristics Clssiiion o Eqions Cheisis Consie n elemen o li moing in wo imensionl spe enoe s poin P elow. The ph o P is inie he line. The posiion ile is s so h n inemenl isne long is s. Le he goening eqions e epesene

More information

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration

() t. () t r () t or v. ( t) () () ( ) = ( ) or ( ) () () () t or dv () () Section 10.4 Motion in Space: Velocity and Acceleration Secion 1.4 Moion in Spce: Velociy nd Acceleion We e going o dive lile deepe ino somehing we ve ledy inoduced, nmely () nd (). Discuss wih you neighbo he elionships beween posiion, velociy nd cceleion you

More information

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ;

w a s t h e t a r g e t f o r b i t t e r Gear* e d m y p o s i t i o n and. I s h a l l a c c e p t will ^travel a r o u n d t h e c o u n t r y, ; M M KER xor z > &5W3-> --1>-««K-U- - W - - - - ~ - -~-- >N!V- ---- - -> GENEROR MM GENE q - O F L N ; / U W 4 K -W RLPH GENZURG GERR RNGUHEO N F N L G H O - P -UM UN F - M W P W G

More information

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW)

( ) ( ) ( ) 0. Conservation of Energy & Poynting Theorem. From Maxwell s equations we have. M t. From above it can be shown (HW) 8 Conson o n & Ponn To Fo wll s quons w D B σ σ Fo bo n b sown (W) o s W w bo on o s l us n su su ul ow ns [W/ ] [W] su P su B W W 4 444 s W A A s V A A : W W R o n o so n n: [/s W] W W 4 44 9 W : W F

More information

Executive Committee and Officers ( )

Executive Committee and Officers ( ) Gifted and Talented International V o l u m e 2 4, N u m b e r 2, D e c e m b e r, 2 0 0 9. G i f t e d a n d T a l e n t e d I n t e r n a t i o n a2 l 4 ( 2), D e c e m b e r, 2 0 0 9. 1 T h e W o r

More information

The Mathematics of Harmonic Oscillators

The Mathematics of Harmonic Oscillators Th Mhcs of Hronc Oscllors Spl Hronc Moon In h cs of on-nsonl spl hronc oon (SHM nvolvng sprng wh sprng consn n wh no frcon, you rv h quon of oon usng Nwon's scon lw: con wh gvs: 0 Ths s sos wrn usng h

More information

183 IV-4N. opo !PF. M1 -ri ChV. rrj: M D " ;jj. I o! 7-F J,. 1;", f y S}! f.'# t., owl, DeptE ResSIE. ,re:, 't.,". ± f. so.' f Y"3 7F. ..

183 IV-4N. opo !PF. M1 -ri ChV. rrj: M D  ;jj. I o! 7-F J,. 1;, f y S}! f.'# t., owl, DeptE ResSIE. ,re:, 't.,. ± f. so.' f Y3 7F. .. M CV T /w ~ g e ± ow DeE ReE M D 8 VN oo P E o ± LL / L C Q M o ^ M > LL / e P L /9 ^ > R ^ V ) o C E w / # C e e M~ T o # % e ~ e K C E > T / / C G P ~ e * PT ^ e / w R E ^ E / C \ z M e / P w V / K 9

More information

v v at 1 2 d vit at v v 2a d

v v at 1 2 d vit at v v 2a d SPH3UW Unt. Accelerton n One Denon Pge o 9 Note Phyc Inventory Accelerton the rte o chnge o velocty. Averge ccelerton, ve the chnge n velocty dvded by the te ntervl, v v v ve. t t v dv Intntneou ccelerton

More information

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch.

Winnie flies again. Winnie s Song. hat. A big tall hat Ten long toes A black magic wand A long red nose. nose. She s Winnie Winnie the Witch. Wnn f gn ht Wnn Song A g t ht Tn ong to A k g wnd A ong d no. no Sh Wnn Wnn th Wth. y t d to A ong k t Bg gn y H go wth Wnn Whn h f. wnd ootk H Wu Wu th t. Ptu Dtony oo hopt oon okt hng gd ho y ktod nh

More information

CHAPTER 10: LINEAR DISCRIMINATION

CHAPTER 10: LINEAR DISCRIMINATION HAPER : LINEAR DISRIMINAION Dscmnan-based lassfcaon 3 In classfcaon h K classes ( k ) We defned dsmnan funcon g () = K hen gven an es eample e chose (pedced) s class label as f g () as he mamum among g

More information

Laplace Examples, Inverse, Rational Form

Laplace Examples, Inverse, Rational Form Lecure 3 Ouline: Lplce Exple, Invere, Rionl For Announceen: Rein: 6: Lplce Trnfor pp. 3-33, 55.5-56.5, 7 HW 8 poe, ue nex We. Free -y exenion OcenOne Roo Tour will e fer cl y 7 (:3-:) Lunch provie ferwr.

More information

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014

MODEL SOLUTIONS TO IIT JEE ADVANCED 2014 MODEL SOLUTIONS TO IIT JEE ADVANCED Pper II Code PART I 6 7 8 9 B A A C D B D C C B 6 C B D D C A 7 8 9 C A B D. Rhc(Z ). Cu M. ZM Secon I K Z 8 Cu hc W mu hc 8 W + KE hc W + KE W + KE W + KE W + KE (KE

More information

o Alphabet Recitation

o Alphabet Recitation Letter-Sound Inventory (Record Sheet #1) 5-11 o Alphabet Recitation o Alphabet Recitation a b c d e f 9 h a b c d e f 9 h j k m n 0 p q k m n 0 p q r s t u v w x y z r s t u v w x y z 0 Upper Case Letter

More information

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a)

FRACTIONAL MELLIN INTEGRAL TRANSFORM IN (0, 1/a) Ieol Jol o Se Reeh Pblo Volme Ie 5 y ISSN 5-5 FRACTIONAL ELLIN INTEGRAL TRANSFOR IN / S.. Kh R..Pe* J.N.Slke** Deme o hem hh Aemy o Egeeg Al-45 Pe I oble No.: 98576F No.: -785759 Eml-mkh@gml.om Deme o

More information

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes

Ans: In the rectangular loop with the assigned direction for i2: di L dt , (1) where (2) a) At t = 0, i1(t) = I1U(t) is applied and (1) becomes omewok # P7-3 ecngul loop of widh w nd heigh h is siued ne ve long wie cing cuen i s in Fig 7- ssume i o e ecngul pulse s shown in Fig 7- Find he induced cuen i in he ecngul loop whose self-inducnce is

More information

Hygienic Cable Glands

Hygienic Cable Glands ygc bl Gld followg h cll WA l h Mufcug h l oo c y Bocholog du hcl du: vodg buld-u cy. Gl bl ygc l food d d ckgg of ology y o o d u of ud ll ld hcucl wh hy ovd h f u o h cl o h o dh ooh fh No hd cod o d

More information

Train Up A Child Paul Marxhausen All Rights Reserved. Dedicated to Stu Tietz for 30 years of Lutheran teaching ministry. Free Praise License

Train Up A Child Paul Marxhausen All Rights Reserved. Dedicated to Stu Tietz for 30 years of Lutheran teaching ministry. Free Praise License Trn Up A Chld 2000 Pul Mrxhusen All Rghts Reserved Dedcted to Stu Tetz for 30 yers of Luthern techng mnstry Free Prse Lcense Ths lcense does NOT supercede or replce the rghts of the composer(s) under Unted

More information

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts.

Then the number of elements of S of weight n is exactly the number of compositions of n into k parts. Geneating Function In a geneal combinatoial poblem, we have a univee S of object, and we want to count the numbe of object with a cetain popety. Fo example, if S i the et of all gaph, we might want to

More information

High-ResolutionX-RayMicrotomograph

High-ResolutionX-RayMicrotomograph SkySn1272 Hgh-ReouonX-RyMoomogph Rehngfohekyofehnoogy X-RyMoomogphyoMo-CT: MoAdvnedNondeuve3DMoopy Mo-ompuedomogphyoMo-CT X-ymgngn3D,byhememehodued nhopct(o CAT )n,buonm ewhmveyneedeouon. Ieyepeenue3Dmoopy,whee

More information

T_s. e r So Dg. R a n. Ri de. The h o u r s for the tour and»adi\ idual r e s i d e n c e s, thus pro- r o n.

T_s. e r So Dg. R a n. Ri de. The h o u r s for the tour and»adi\ idual r e s i d e n c e s, thus pro- r o n. W V M N O Nx W O V! W O N O N - Y O N N VL N 25 M 4 946 M L O M 946 z z U J V- D J q V- J K W M Lj W L j N 5 J 946 J W O W W L j O M 6 W x 72 W W L j M 3 W Lj 9?45 J N \ 2 945 2470 O 200 W O L j Q W! W

More information

t s (half of the total time in the air) d?

t s (half of the total time in the air) d? .. In Cl or Homework Eercie. An Olmpic long jumper i cpble of jumping 8.0 m. Auming hi horizonl peed i 9.0 m/ he lee he ground, how long w he in he ir nd how high did he go? horizonl? 8.0m 9.0 m / 8.0

More information

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept.

( ) ( ) Physics 111. Lecture 13 (Walker: Ch ) Connected Objects Circular Motion Centripetal Acceleration Centripetal Force Sept. Physics Lectue 3 (Wlke: Ch. 6.4-5) Connected Objects Cicul Motion Centipetl Acceletion Centipetl Foce Sept. 30, 009 Exmple: Connected Blocks Block of mss m slides on fictionless tbletop. It is connected

More information

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision?

How does the momentum before an elastic and an inelastic collision compare to the momentum after the collision? Experent 9 Conseraton o Lnear Moentu - Collsons In ths experent you wll be ntroduced to the denton o lnear oentu. You wll learn the derence between an elastc and an nelastc collson. You wll explore how

More information

Section 35 SHM and Circular Motion

Section 35 SHM and Circular Motion Section 35 SHM nd Cicul Motion Phsics 204A Clss Notes Wht do objects do? nd Wh do the do it? Objects sometimes oscillte in simple hmonic motion. In the lst section we looed t mss ibting t the end of sping.

More information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information

(a) Counter-Clockwise (b) Clockwise ()N (c) No rotation (d) Not enough information m m m00 kg dult, m0 kg bby. he seesw stts fom est. Which diection will it ottes? ( Counte-Clockwise (b Clockwise ( (c o ottion ti (d ot enough infomtion Effect of Constnt et oque.3 A constnt non-zeo toque

More information

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt.

Circuits 24/08/2010. Question. Question. Practice Questions QV CV. Review Formula s RC R R R V IR ... Charging P IV I R ... E Pt. 4/08/00 eview Fomul s icuis cice s BL B A B I I I I E...... s n n hging Q Q 0 e... n... Q Q n 0 e Q I I0e Dischging Q U Q A wie mde of bss nd nohe wie mde of silve hve he sme lengh, bu he dimee of he bss

More information

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion.

Content 5.1 Angular displacement and angular velocity 5.2 Centripetal acceleration 5.3 Centripetal force. 5. Circular motion. 5. Cicula otion By Liew Sau oh Content 5.1 Angula diplaceent and angula elocity 5. Centipetal acceleation 5.3 Centipetal foce Objectie a) expe angula diplaceent in adian b) define angula elocity and peiod

More information

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball

Analysis of Effects of Rebounds and Aerodynamics for Trajectory of Table Tennis Ball Al f Effc f Ru Ac f Tjc f Tl T Bll Juk Nu Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Ak Nkh Mchcl Scc Egg, Gu Schl f Egg, Ng Uv, Fu-ch, Chku-ku, Ng, J Yhku Hkw Mchcl Scc Egg, Gu Schl f

More information

Chapter 5: Quantization of Radiation in Cavities and Free Space

Chapter 5: Quantization of Radiation in Cavities and Free Space Quu O f Ph Ol Fh R Cll vy Ch 5: Quz f R Cv F S 5 Cll ly 5 Cll Cvy ly Mxwll u f lg J 4 h lv l C fl vy W f h g f h vy Th vy u luly ll W l u h J Cvy F Mxwll u v h wv u Th v u lv h f h fu h vy I w wh h v l

More information

Two-Pion Exchange Currents in Photodisintegration of the Deuteron

Two-Pion Exchange Currents in Photodisintegration of the Deuteron Two-Pion Exchange Cuens in Phoodisinegaion of he Deueon Dagaa Rozędzik and Jacek Goak Jagieonian Univesiy Kaków MENU00 3 May 00 Wiiasbug Conen Chia Effecive Fied Theoy ChEFT Eecoagneic cuen oeaos wihin

More information

CHAPTER 2 ELECTRIC FIELD

CHAPTER 2 ELECTRIC FIELD lecticity-mgnetim Tutil (QU PROJCT) 9 CHAPTR LCTRIC FILD.. Intductin If we plce tet chge in the pce ne chged d, n electttic fce will ct n the chge. In thi ce we pek f n electic field in thi pce ( nlgy

More information

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2

f(x) dx with An integral having either an infinite limit of integration or an unbounded integrand is called improper. Here are two examples dx x x 2 Impope Inegls To his poin we hve only consideed inegls f() wih he is of inegion nd b finie nd he inegnd f() bounded (nd in fc coninuous ecep possibly fo finiely mny jump disconinuiies) An inegl hving eihe

More information

FEEDBACK AMPLIFIERS. v i or v s v 0

FEEDBACK AMPLIFIERS. v i or v s v 0 FEEDBCK MPLIFIERS Feedback n mplers FEEDBCK IS THE PROCESS OF FEEDING FRCTION OF OUTPUT ENERGY (VOLTGE OR CURRENT) BCK TO THE INPUT CIRCUIT. THE CIRCUIT EMPLOYED FOR THIS PURPOSE IS CLLED FEEDBCK NETWORK.

More information

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs

No-Bend Orthogonal Drawings of Subdivisions of Planar Triconnected Cubic Graphs N-B Oh Dw f Sv f P Tcc Cc Gh (Ex Ac) M. S Rh, N E, T Nhz G Sch f If Scc, Th Uvy, A-y 05, S 980-8579, J. {,}@hz.c.h.c. h@c.h.c. Ac. A h h wh fx. I - h w f h, ch vx w ch w hz vc. A h hv - h w f f h - h w.

More information

Lecture 4. Electrons and Holes in Semiconductors

Lecture 4. Electrons and Holes in Semiconductors ecue 4 lec ad Hle i Semicduc I hi lecue yu will lea: eeai-ecmbiai i emicduc i me deail The baic e f euai gveig he behavi f elec ad hle i emicduc Shcley uai Quai-eualiy i cducive maeial C 35 Sig 2005 Faha

More information

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box

SPH3UW/SPH4U Unit 3.2 Forces in Cetripetal Motion Page 1 of 6. Notes Physics Tool Box SPH3UW/SPH4U Unit 3. Foce in Cetipetal Motion Page 1 o 6 Note Phyic Tool Box Net Foce: acting on an object in uniom cicula motion act towad the cente o the cicle. Magnitude o Net Foce: combine Newton Second

More information

Chapter 1 Electromagnetic Field Theory

Chapter 1 Electromagnetic Field Theory hpe ecgeic Fie The - ecic Fie ecic Dipe Gu w f : S iegece he ε = 6 fee pce. F q fie pi q q 9 F/ i he. ue e f icee chge: qk k k k ue uce ρ Sufce uce ρ S ie uce ρ qq qq g. Shw h u w F whee. q Pf F q S q

More information

Review of Mathematical Concepts

Review of Mathematical Concepts ENEE 322: Signls nd Systems view of Mthemticl Concepts This hndout contins ief eview of mthemticl concepts which e vitlly impotnt to ENEE 322: Signls nd Systems. Since this mteil is coveed in vious couses

More information

(T > w) F R = T - w. Going up. T - w = ma

(T > w) F R = T - w. Going up. T - w = ma ANSES Suspended Acceleratng-Objects A resultant orce causes a syste to accelerate. he drecton o the acceleraton s n the drecton o the resultant orce. As llustrated belo, hen suspended objects accelerate,

More information

Vibrations and Waves

Vibrations and Waves Chaper 3 3 Vbraons and Waes PROBEM SOUIONS 3. (a) ang o he rgh as pose, he sprng orce acng on he bloc a he nsan o release s F s 30 N 0.3 7 N or 7 N o he le A hs nsan, he acceleraon s a F s 7 N 0.60 g 8

More information

How to Use. The Bears Beat the Sharks!

How to Use. The Bears Beat the Sharks! Hw t U Th uc vd 24 -wd dng ctn bd n wht kd ncunt vy dy, uch mv tng, y, n Intnt ch cn. Ech ctn ccmnd by tw w-u ctc g ng tudnt cmhnn th ctn. Th dng ctn cn b ud wth ndvdu, m gu, th wh c. Th B cnd bmn, Dn

More information

Solutions to assignment 3

Solutions to assignment 3 D Sruure n Algorihm FR 6. Informik Sner, Telikeplli WS 03/04 hp://www.mpi-.mpg.e/~ner/oure/lg03/inex.hml Soluion o ignmen 3 Exerie Arirge i he ue of irepnie in urreny exhnge re o rnform one uni of urreny

More information

Effects of polarization on the reflected wave

Effects of polarization on the reflected wave Lecture Notes. L Ros PPLIED OPTICS Effects of polrzton on the reflected wve Ref: The Feynmn Lectures on Physcs, Vol-I, Secton 33-6 Plne of ncdence Z Plne of nterfce Fg. 1 Y Y r 1 Glss r 1 Glss Fg. Reflecton

More information

Baby Beauty Contest Judging Today In WR Recreation Halt

Baby Beauty Contest Judging Today In WR Recreation Halt MO BOOM JO R 7OM OJJM JC 20 946 MG 2 O H K F C O Ck C U VMR B G DON U M L H Y v C M G 2 v COMMNDNG MG-2 R R5-C k k C G - R k < v : L C B Z - v C R L C D H - v M -2 - «v G z F - MG-2 v j v v K O G - C

More information

Fr anchi s ee appl i cat i on for m

Fr anchi s ee appl i cat i on for m Other Fr anchi s ee appl i cat i on for m Kindly fill in all the applicable information in the spaces provided and submit to us before the stipulated deadline. The information you provide will be held

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

Ch04: Motion in two and three dimensions (2D and 3D)

Ch04: Motion in two and three dimensions (2D and 3D) Ch4: Motion in two and thee dimensions (D and 3D) Displacement, elocity and acceleation ectos Pojectile motion Cicula motion Relatie motion 4.: Position and displacement Position of an object in D o 3D

More information

4.8 Improper Integrals

4.8 Improper Integrals 4.8 Improper Inegrls Well you ve mde i hrough ll he inegrion echniques. Congrs! Unforunely for us, we sill need o cover one more inegrl. They re clled Improper Inegrls. A his poin, we ve only del wih inegrls

More information

Control Volume Derivation

Control Volume Derivation School of eospace Engineeing Conol Volume -1 Copyigh 1 by Jey M. Seizman. ll ighs esee. Conol Volume Deiaion How o cone ou elaionships fo a close sysem (conol mass) o an open sysem (conol olume) Fo mass

More information

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2

Active Load. Reading S&S (5ed): Sec. 7.2 S&S (6ed): Sec. 8.2 cte La ean S&S (5e: Sec. 7. S&S (6e: Sec. 8. In nteate ccuts, t s ffcult t fabcate essts. Instea, aplfe cnfuatns typcally use acte las (.e. las ae w acte eces. Ths can be ne usn a cuent suce cnfuatn,.e.

More information

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli

Introduction. Voice Coil Motors. Introduction - Voice Coil Velocimeter Electromechanical Systems. F = Bli UNIVERSITY O TECHNOLOGY, SYDNEY ACULTY O ENGINEERING 4853 Elecroechncl Syses Voce Col Moors Topcs o cover:.. Mnec Crcus 3. EM n Voce Col 4. orce n Torque 5. Mhecl Moel 6. Perornce Voce cols re wely use

More information

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below

approaches as n becomes larger and larger. Since e > 1, the graph of the natural exponential function is as below . Eponentil nd rithmic functions.1 Eponentil Functions A function of the form f() =, > 0, 1 is clled n eponentil function. Its domin is the set of ll rel f ( 1) numbers. For n eponentil function f we hve.

More information

BALLADE TO THE MOON --- _ I _

BALLADE TO THE MOON --- _ I _ BALLADE TO THE MOON Danel Elde (b 986) Adago Msteoso 66 3 '0# 3 5 S A T B On moonlt nght 7 ' Yg " 2 9 l 0 wan de fee : pp e 9 : n n l j j: 2 a 0 On moonlt nght wan de' fee my mnd to oam on thoughts of

More information

Mass-Spring Systems Surface Reconstruction

Mass-Spring Systems Surface Reconstruction Mass-Spng Syses Physally-Based Modelng: Mass-Spng Syses M. Ale O. Vasles Mass-Spng Syses Mass-Spng Syses Snake pleenaon: Snake pleenaon: Iage Poessng / Sae Reonson: Iage poessng/ Sae Reonson: Mass-Spng

More information

M M 3. F orc e th e insid e netw ork or p rivate netw ork traffic th rough th e G RE tunnel using i p r ou t e c ommand, fol l ow ed b y th e internal

M M 3. F orc e th e insid e netw ork or p rivate netw ork traffic th rough th e G RE tunnel using i p r ou t e c ommand, fol l ow ed b y th e internal C i s c o P r o f i l e C o n t a c t s & F e e d b a c k H e l p C isc o S M B S up p ort A ssistant Pass Routing Information over IPsec VPN Tunnel between two ASA/PIX H ome > W ork W ith M y S ec urity

More information

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q.

Analytically, vectors will be represented by lowercase bold-face Latin letters, e.g. a, r, q. 1.1 Vector Alger 1.1.1 Sclrs A physicl quntity which is completely descried y single rel numer is clled sclr. Physiclly, it is something which hs mgnitude, nd is completely descried y this mgnitude. Exmples

More information

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c

F l a s h-b a s e d S S D s i n E n t e r p r i s e F l a s h-b a s e d S S D s ( S o-s ltiad t e D r i v e s ) a r e b e c o m i n g a n a t t r a c L i f e t i m e M a n a g e m e n t o f F l a-b s ah s e d S S D s U s i n g R e c o v e r-a y w a r e D y n a m i c T h r o t t l i n g S u n g j i n L e, e T a e j i n K i m, K y u n g h o, Kainmd J

More information

π,π is the angle FROM a! TO b

π,π is the angle FROM a! TO b Mth 151: 1.2 The Dot Poduct We hve scled vectos (o, multiplied vectos y el nume clled scl) nd dded vectos (in ectngul component fom). Cn we multiply vectos togethe? The nswe is YES! In fct, thee e two

More information

Graphical Analysis of a BJT Amplifier

Graphical Analysis of a BJT Amplifier 4/6/2011 A Graphcal Analyss of a BJT Amplfer lecture 1/18 Graphcal Analyss of a BJT Amplfer onsder agan ths smple BJT amplfer: ( t) = + ( t) O O o B + We note that for ths amplfer, the output oltage s

More information

Chapter 2: Descriptive Statistics

Chapter 2: Descriptive Statistics Chapte : Decptve Stattc Peequte: Chapte. Revew of Uvaate Stattc The cetal teecy of a oe o le yetc tbuto of a et of teval, o hghe, cale coe, ofte uaze by the athetc ea, whch efe a We ca ue the ea to ceate

More information

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model

6. Introduction to Transistor Amplifiers: Concepts and Small-Signal Model 6. ntoucton to anssto mples: oncepts an Small-Sgnal Moel Lectue notes: Sec. 5 Sea & Smth 6 th E: Sec. 5.4, 5.6 & 6.3-6.4 Sea & Smth 5 th E: Sec. 4.4, 4.6 & 5.3-5.4 EE 65, Wnte203, F. Najmaba Founaton o

More information

Supporting information How to concatenate the local attractors of subnetworks in the HPFP

Supporting information How to concatenate the local attractors of subnetworks in the HPFP n Effcen lgorh for Idenfyng Prry Phenoype rcors of Lrge-Scle Boolen Newor Sng-Mo Choo nd Kwng-Hyun Cho Depren of Mhecs Unversy of Ulsn Ulsn 446 Republc of Kore Depren of Bo nd Brn Engneerng Kore dvnced

More information

Remember: When an object falls due to gravity its potential energy decreases.

Remember: When an object falls due to gravity its potential energy decreases. Chapte 5: lectc Potental As mentoned seveal tmes dung the uate Newton s law o gavty and Coulomb s law ae dentcal n the mathematcal om. So, most thngs that ae tue o gavty ae also tue o electostatcs! Hee

More information

Inflammation and Carotid Artery Risk for Atherosclerosis Study

Inflammation and Carotid Artery Risk for Atherosclerosis Study Inflmmn nd Cd Ay Rk f Ahcl Sudy Ech Mn Mdcl Unvy Vnn Dpmn Anglgy TCT 2005; Ocb 2005, Whngn Pn Dclu Infmn Nm: Mn Ech Nhng dcl Bckgund Sk h hd-ldng cu f dh nd h m cmmn cu f pmnn dbly. Lg-y hmbmblm gnng fm

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

Released Assessment Questions, 2017 QUESTIONS

Released Assessment Questions, 2017 QUESTIONS Relese Assessmen Quesions, 17 QUESTIONS Gre 9 Assessmen of Mhemis Aemi Re he insruions elow. Along wih his ookle, mke sure ou hve he Answer Bookle n he Formul Shee. You m use n spe in his ook for rough

More information

PROPERTY DETAILS. ADDRESS Galleria Circle Bee Cave, TX 78738

PROPERTY DETAILS. ADDRESS Galleria Circle Bee Cave, TX 78738 PRPRTY DTAILS ADDRSS 13413 Gallera Crcle Bee Cave, TX 78738 FATURS»» asy accessbly o Bee Cave Road Hwy 71 RR 620»» ose proxmy o shoppng, resaurans major horoughares»» Two mle hke bke ral around he propery»»

More information

e t dt e t dt = lim e t dt T (1 e T ) = 1

e t dt e t dt = lim e t dt T (1 e T ) = 1 Improper Inegrls There re wo ypes of improper inegrls - hose wih infinie limis of inegrion, nd hose wih inegrnds h pproch some poin wihin he limis of inegrion. Firs we will consider inegrls wih infinie

More information

Lecture 11 SVM cont

Lecture 11 SVM cont Lecure SVM con. 0 008 Wha we have done so far We have esalshed ha we wan o fnd a lnear decson oundary whose margn s he larges We know how o measure he margn of a lnear decson oundary Tha s: he mnmum geomerc

More information

8.1 Laws. Purpose. Concept and Skill Check. Materials. Procedure EXPERIMENT DATE : PERIOD NAME. Plot a planetary orbit and apply Kepler s Laws.

8.1 Laws. Purpose. Concept and Skill Check. Materials. Procedure EXPERIMENT DATE : PERIOD NAME. Plot a planetary orbit and apply Kepler s Laws. ATE : PERIO NAME EXPERIMENT 8.1 Laws Purpose Plot a planetary orbit and apply Kepler s Laws. oncept and kill heck The motion of the planets has intrigued astronomers since they first gazed at the stars,

More information

Math 259 Winter Solutions to Homework #9

Math 259 Winter Solutions to Homework #9 Mth 59 Winter 9 Solutions to Homework #9 Prolems from Pges 658-659 (Section.8). Given f(, y, z) = + y + z nd the constrint g(, y, z) = + y + z =, the three equtions tht we get y setting up the Lgrnge multiplier

More information

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION

Chapter 6. NEWTON S 2nd LAW AND UNIFORM CIRCULAR MOTION Chapte 6 NEWTON S nd LAW AND UNIFORM CIRCULAR MOTION Phyic 1 1 3 4 ting Quetion: A ball attached to the end of a ting i whiled in a hoizontal plane. At the point indicated, the ting beak. Looking down

More information

EECE 301 Signals & Systems Prof. Mark Fowler

EECE 301 Signals & Systems Prof. Mark Fowler EECE 31 Signal & Syem Prof. Mark Fowler Noe Se #27 C-T Syem: Laplace Tranform Power Tool for yem analyi Reading Aignmen: Secion 6.1 6.3 of Kamen and Heck 1/18 Coure Flow Diagram The arrow here how concepual

More information

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise

M-ary Detection Problem. Lecture Notes 2: Detection Theory. Example 1: Additve White Gaussian Noise Hi ue Hi ue -ay Deecio Pole Coide he ole of decidig which of hyohei i ue aed o oevig a ado vaiale (veco). he efoace cieia we coide i he aveage eo oailiy. ha i he oailiy of decidig ayhig ece hyohei H whe

More information

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS BLADEN COUNTY LOCATION: NC 87 AT US 701 INTERSECTION WETLAND AND SURFACE WATER IMPACTS PERMIT TO NC 41

STATE OF NORTH CAROLINA DIVISION OF HIGHWAYS BLADEN COUNTY LOCATION: NC 87 AT US 701 INTERSECTION WETLAND AND SURFACE WATER IMPACTS PERMIT TO NC 41 am keeer :\Hyraulcs\ _nvronm enal\rawngs\_hy_prm_we_hgn $$$$$$Y$$$$$ $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$ $$$$U$$$$ : J: : ee hee or nex of hees ee hee or onvenonal ymols ee hees an for urvey onrol hees J

More information

Bellman-F o r d s A lg o r i t h m The id ea: There is a shortest p ath f rom s to any other verte that d oes not contain a non-negative cy cle ( can

Bellman-F o r d s A lg o r i t h m The id ea: There is a shortest p ath f rom s to any other verte that d oes not contain a non-negative cy cle ( can W Bellman Ford Algorithm This is an algorithm that solves the single source shortest p ath p rob lem ( sssp ( f ind s the d istances and shortest p aths f rom a source to all other nod es f or the case

More information

Chapter Linear Regression

Chapter Linear Regression Chpte 6.3 Le Regesso Afte edg ths chpte, ou should be ble to. defe egesso,. use sevel mmzg of esdul cte to choose the ght cteo, 3. deve the costts of le egesso model bsed o lest sques method cteo,. use

More information

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force.

Remark: Positive work is done on an object when the point of application of the force moves in the direction of the force. Unt 5 Work and Energy 5. Work and knetc energy 5. Work - energy theore 5.3 Potenta energy 5.4 Tota energy 5.5 Energy dagra o a ass-sprng syste 5.6 A genera study o the potenta energy curve 5. Work and

More information

Chapter 6 Continuous Random Variables and Distributions

Chapter 6 Continuous Random Variables and Distributions Chpter 6 Continuous Rndom Vriles nd Distriutions Mny economic nd usiness mesures such s sles investment consumption nd cost cn hve the continuous numericl vlues so tht they cn not e represented y discrete

More information

5.1 Estimating with Finite Sums Calculus

5.1 Estimating with Finite Sums Calculus 5.1 ESTIMATING WITH FINITE SUMS Emple: Suppose from the nd to 4 th hour of our rod trip, ou trvel with the cruise control set to ectl 70 miles per hour for tht two hour stretch. How fr hve ou trveled during

More information

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf

Faraday s Law. To be able to find. motional emf transformer and motional emf. Motional emf Objecie F s w Tnsfome Moionl To be ble o fin nsfome. moionl nsfome n moionl. 331 1 331 Mwell s quion: ic Fiel D: Guss lw :KV : Guss lw H: Ampee s w Poin Fom Inegl Fom D D Q sufce loop H sufce H I enclose

More information

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N

a v2 r a' (4v) 2 16 v2 mg mg (2.4kg)(9.8m / s 2 ) 23.52N 23.52N N Conceptual ewton s Law Applcaton Test Revew 1. What s the decton o centpetal acceleaton? see unom ccula moton notes 2. What aects the magntude o a ctonal oce? see cton notes 3. What s the deence between

More information

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) =

Fall 2004/05 Solutions to Assignment 5: The Stationary Phase Method Provided by Mustafa Sabri Kilic. I(x) = e ixt e it5 /5 dt (1) Z J(λ) = 8.35 Fall 24/5 Solution to Aignment 5: The Stationay Phae Method Povided by Mutafa Sabi Kilic. Find the leading tem fo each of the integal below fo λ >>. (a) R eiλt3 dt (b) R e iλt2 dt (c) R eiλ co t dt

More information

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites

GNSS-Based Orbit Determination for Highly Elliptical Orbit Satellites -Bd D f Hghy p Q,*, ug, Ch Rz d Jy u Cg f u gg, g Uvy f u d u, Ch :6--987, -:.q@ud.uw.du. h f uvyg d p If y, Uvy f w uh W, u : h Hghy p H ufu f y/yhu f h dgd hv w ud pg h d hgh ud pg h f f h f. Du h g

More information

L...,,...lllM" l)-""" Si_...,...

L...,,...lllM l)- Si_...,... > 1 122005 14:8 S BF 0tt n FC DRE RE FOR C YER 2004 80?8 P01/ Rc t > uc s cttm tsus H D11) Rqc(tdk ;) wm1111t 4 (d m D m jud: US

More information

1 Review: Volumes of Solids (Stewart )

1 Review: Volumes of Solids (Stewart ) Lecture : Some Bic Appliction of Te Integrl (Stewrt 6.,6.,.,.) ul Krin eview: Volume of Solid (Stewrt 6.-6.) ecll: we d provided two metod for determining te volume of olid of revolution. Te rt w by dic

More information

EECE 260 Electrical Circuits Prof. Mark Fowler

EECE 260 Electrical Circuits Prof. Mark Fowler EECE 60 Electicl Cicuits Pof. Mk Fowle Complex Numbe Review /6 Complex Numbes Complex numbes ise s oots of polynomils. Definition of imginy # nd some esulting popeties: ( ( )( ) )( ) Recll tht the solution

More information

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR

DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Bllei UASVM, Horilre 65(/008 pissn 1843-554; eissn 1843-5394 DERIVING THE DEMAND CURVE ASSUMING THAT THE MARGINAL UTILITY FUNCTIONS ARE LINEAR Crii C. MERCE Uiveriy of Agrilrl iee d Veeriry Mediie Clj-Npo,

More information

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position

Description Linear Angular position x displacement x rate of change of position v x x v average rate of change of position Chapte 5 Ccula Moton The language used to descbe otatonal moton s ey smla to the language used to descbe lnea moton. The symbols ae deent. Descpton Lnea Angula poston dsplacement ate o change o poston

More information

A Kalman filtering simulation

A Kalman filtering simulation A Klmn filering simulion The performnce of Klmn filering hs been esed on he bsis of wo differen dynmicl models, ssuming eiher moion wih consn elociy or wih consn ccelerion. The former is epeced o beer

More information

Topics for Review for Final Exam in Calculus 16A

Topics for Review for Final Exam in Calculus 16A Topics fo Review fo Finl Em in Clculus 16A Instucto: Zvezdelin Stnkov Contents 1. Definitions 1. Theoems nd Poblem Solving Techniques 1 3. Eecises to Review 5 4. Chet Sheet 5 1. Definitions Undestnd the

More information

IJRET: International Journal of Research in Engineering and Technology eissn: pissn:

IJRET: International Journal of Research in Engineering and Technology eissn: pissn: IJRE: Iiol Joul o Rh i Eii d holo I: 39-63 I: 3-738 VRIE OF IME O RERUIME FOR ILE RDE MOWER EM WI DIFFERE EO FOR EXI D WO E OF DEIIO VI WO REOLD IVOLVI WO OMOE. Rvihd. iiv i oo i Mhi R Eii oll RM ROU ih

More information

COMP 465: Data Mining More on PageRank

COMP 465: Data Mining More on PageRank COMP 465: Dt Mnng Moe on PgeRnk Sldes Adpted Fo: www.ds.og (Mnng Mssve Dtsets) Powe Iteton: Set = 1/ 1: = 2: = Goto 1 Exple: d 1/3 1/3 5/12 9/24 6/15 = 1/3 3/6 1/3 11/24 6/15 1/3 1/6 3/12 1/6 3/15 Iteton

More information

LULU WALKER ELEMENTARY SCHOOL

LULU WALKER ELEMENTARY SCHOOL LL WLK LMNY OOL OOM D VON mphitheater Public chools 100% onstruction Documents ugust 20 Lulu Walker lementary chool estroom D enovation 50 W oller oaster oad, ucson, Z 85704 Job No 1404 G D 6 0 5 KLND

More information